
Don’t Waste My Efforts: Pruning Redundant Sanitizer Checks of
Developer-Implemented Type Checks

Yizhuo Zhai1, Zhiyun Qian1, Chengyu Song1, Manu Sridharan1,
Trent Jaeger1, Paul Yu2, Srikanth V. Krishnamurthy1

1University of California, Riverside
2U.S. Army Research Laboratory

Abstract
Type confusion occurs when C or C++ code accesses an object
after casting it to an incompatible type. The security impacts
of type confusion vulnerabilities are significant, potentially
leading to system crashes or even arbitrary code execution.
To mitigate these security threats, both static and dynamic
approaches have been developed to detect type confusion
bugs. However, static approaches can suffer from excessive
false positives, while existing dynamic approaches track type
information for each object to enable safety checking at each
cast, introducing a high runtime overhead.

In this paper, we present a novel tool T-PRUNIFY to re-
duce the overhead of dynamic type confusion sanitizers. We
observe that in large complex C++ projects, to prevent type
confusion bugs, developers often add their own encoding of
runtime type information (RTTI) into classes, to enable ef-
ficient runtime type checks before casts. T-PRUNIFY works
by first identifying these custom RTTI in classes, automati-
cally determining the relationship between field and method
return values and the concrete types of corresponding objects.
Based on these custom RTTI, T-PRUNIFY can identify cases
where a cast is protected by developer-written type checks
that guarantee the safety of the cast. Consequently, it can
safely remove sanitizer instrumentation for such casts, reduc-
ing performance overhead. We evaluate T-PRUNIFY based
on HexType, a state-of-the-art type confusion sanitizer that
supports extensive C++ projects such as Google Chrome. Our
findings demonstrate that our method significantly lowers
HexType’s average overhead by 25% to 75% in large C++
programs, marking a substantial enhancement in performance.

1 Introduction

Type confusion [3] is a critical type of vulnerability common
in type-unsafe programming languages such as C/C++. It oc-
curs when the program allocates or initializes a resource such
as a pointer or object using one type, but later accesses that re-
source using a type that is incompatible with the original type.

When a program experiences type confusion, it can result in
undesirable behaviors such as a system crash [10], informa-
tion leakage [13], and even arbitrary code execution [11].

To mitigate the threats introduced by type confusion vul-
nerabilities, both static and dynamic analyses have been ap-
plied. For example, static type inference and pointer analysis
have been developed to determine if a type cast is safe [9].
However, static approaches can generate a large number of
false positives because of their inherent imprecision and over-
approximation.

Besides static analysis, sanitizer-style runtime checks have
also been proposed [19, 22, 24, 26, 30, 31]. The key idea is
simple. Instead of checking for type compatibility at compile
time, the sanitizer instruments the program and tracks the
type of objects at runtime in order to perform precise type
checks. Clearly, such approaches are more precise than static
approaches, but are also more expensive as they incur run-
time overhead. Although these type confusion sanitizers are
faster than C++’s built in dynamic_cast [22, 24, 26], their run-
time overhead is still too high for deployment in production
systems.

One promising direction to reduce runtime overhead is
to statically recognize safe casts and avoid instrumentation
selectively. For example, CaVer [26] and HexType [24] track
data flow via pointers from object allocation sites to cast
sites; if the cast type is a supertype of the allocation site
type, then the corresponding runtime check can be eliminated.
However, as discussed in [9], static analyses are in general
imprecise and will often make conservative inferences, i.e.,
treating a safe type cast as potentially unsafe. For example,
pointer analysis, relied upon by CaVer [26], is a known hard
problem in static analysis. As a result, many unnecessary
runtime checks cannot be eliminated.

In this paper, we make the observation that pointer analysis
is not the only way to show a cast is safe. In particular, we find
that developers often encode custom runtime type information
(RTTI) directly into a structure or class, especially in complex
C++ class hierarchies, to facilitate their own type checks.
For example, Chrome defines a class BasicShape and many

1

classes inherit from this class, such as BasicShapeCircle,
BasicShapeEllipse and BasicShapePolygon. Those sub-
classes override a virtual function GetType(), which
returns enumeration constants kBasicShapeCircleType,
kBasicShapeEllipseType, and kBasicShapePolygonType,
respectively. In addition, we find that before casting a
pointer BasicShape *basic_shape to a subclass, developers
usually insert a type check using GetType(), e.g., checking
that basic_shape->GetType() == kBasicShapeCircle before
casting to BasicShapeCircle. Such checks ensure the
downcast is safe – and are often voluntarily inserted to avoid
type confusion bugs [5, 6, 8].

Our key insight is to leverage these developer-implemented
type checks to discover opportunities to remove redundant
sanitizer checks for type casts. Achieving this goal requires ad-
dressing two key challenges. First, we must identify developer-
encoded RTTI and the corresponding type checks, and vali-
date the correspondence between these checks and the class
hierarchy. Developer-written type checks may involve ar-
bitrary logic and can vary from one class hierarchy to an-
other, and the source code does not explicitly identify which
logic serves as a type check. To this end, we conduct an
exploratory investigation of real-world programming conven-
tions in Chrome, distilling them into several general patterns.
The most-common patterns encoded custom RTTI as a set
of predefined values (i.e., constants) in class definitions. By
performing a class-hierarchy-wide static analysis, we could
track the definitions and uses of such values and thereby auto-
matically deduce developer-inserted custom RTTI and type
checks. Note that our analysis verifies the correspondence
between the custom RTTI and the type hierarchy – each class
needs to take a unique value, allowing it to be distinguished
from others in the same hierarchy.

The second key challenge is to discover where a type cast
is correctly guarded by a custom type check, thereby proving
the cast cannot fail and enabling the removal of redundant
sanitizer checks. We tackle this challenge by using a flow-
and field-sensitive intra-procedural analysis to track the re-
fined type suggested by developer-implemented type checks,
validating if a downcast is always safe under all execution
paths.

Based on the above insights, we implemented our tech-
niques in an automated solution called T-PRUNIFY, that con-
ducts static analyses for C++ programs to (1) extract custom
RTTI based on understanding and surveying diverse class
hierarchies in popular applications, (2) identify developer-
implemented type checks based on the identified type infor-
mation, and (3) further validate the developer-implemented
type checks. In addition, T-PRUNIFY also uses the results to
prune unnecessary sanitizer checks. Our analysis is designed
to be sound with multiple verifications throughout the process
and will conservatively prune sanitizer checks only when the
developer-implemented checks are deemed safe. We evalu-
ated our solution on the SPEC CPU 2006 C++ programs,

LLVM toolchain and Chromium browser (the open-sourced
version of Google Chrome), one of the largest C++ programs,
which is also known to be prone to type-confusion vulner-
abilities [14–17]. The results showed that T-PRUNIFY can
indeed prune a large number of sanitizer checks safely and
reduce the runtime performance overhead compared to the
state-of-the-art sanitizer-based solution.

In summary, our main contributions of this paper are:

• We identify developer-inserted custom runtime type checks
as a previously-overlooked source of opportunity to reduce
the performance overhead of type confusion mitigation
techniques.

• We develop a custom solution to (1) automatically identify
developer-implemented custom runtime type checks and
(2) leverage them to prove the safety of type casting in C++
programs.

• We develop T-PRUNIFY that packages the insight into a
fully-automated system. To facilitate further research in this
direction, we have made the system open source and acces-
sible at https://github.com/seclab-ucr/TPrunify.

• We evaluate T-PRUNIFY against a state-of-the-art type san-
itizer Hextype [24] against popular open-source projects
and showed that the relative runtime overhead reductions
range from 25% to 75% for Chromium under standard
benchmarks, and 35.19% for the LLVM Clang toolchain.

2 Background and Motivation

In this section, we start with some basic background relevant
to type confusion. First, we describe the C++ type hierarchy,
casting operations and type confusion vulnerabilities. Then
we illustrate, with examples, how previous type confusion
checks are performed statically or dynamically (including
sanitizer checks executed at runtime), and why they are ineffi-
cient. This will then motivate the design and implementation
of T-PRUNIFY.

2.1 Type Casting in C++

C++ is an object-oriented programming language, which al-
lows programmers to define new types as classes. A class can
inherit from multiple ancestor classes. Descendant classes in-
herit members (methods and variables) from their ancestor(s)
and can optionally define additional members [28]. Generally
speaking, upcasts (i.e., casting a pointer of a derived class to
a pointer of an ancestor class) are considered safe, because
the memory scope an ancestor pointer can access is strictly
smaller than the memory scope of a descendent class; how-
ever, downcasts (i.e., casting a pointer of an ancestor class to a
pointer of a descendent class) may introduce memory corrup-
tion vulnerabilities, when the underlying allocated memory
object has a smaller memory scope than the destination type

2

https://github.com/seclab-ucr/TPrunify

demands. Figure 1 illustrates such an example; the code al-
locates a pointer of the base class and subsequently casts it
to the derived class (which is always at least as big as the
base class). In this example, the derived class includes an
additional field y, and accessing this field on the improperly-
casted Base pointer leads to an out-of-bounds memory access.

struct Base {int x;};

struct Derived : Base {int y;};

Base *base = new Base();

Derived *derived;

derived = static_cast<Derived*>(base);

derived->y; //<-error

Base: x

Derived: y

base
derived

derived->y
(Out of access scope of *base)

Figure 1: A code example and diagram of a type confusion problem
where a base class is incorrectly accessed using a pointer to a derived
class. The static_cast results in type confusion and accessing the
field y is out of the access scope of type Base. In the class definition,
the members are public, we ignore it to save space.

C++ provides four built-in type casting operations, in-
cluding reinterpret_cast, static_cast, dynamic_cast, and
const_cast, which we describe below:
reinterpret_cast<dest>(src) is similar to an explicit cast
in C, which allows conversion between any two arbitrary
types, regardless of their compatibility. Although this prim-
itive grants flexibility, the lack of safety checks can lead to
type confusion bugs.
static_cast<dest>(src) casts a pointer/object of src type
to a pointer/object of the dst type. Unlike reinterpret_cast,
static_cast performs lightweight compile-time type check-
ing to avoid bad casting. Specifically, the compiler will verify
whether the source class and the destination class are within
the same class hierarchy. However, it cannot detect an unsafe
downcast and thus, can still result in type confusion bugs.
dynamic_cast<dest>(src) can avoid unsafe downcasts be-
cause it performs a runtime type check to make sure the allo-
cation type of the source object is actually compatible with
the destination type, using C++’s own runtime type informa-
tion (RTTI). To perform a runtime type check, dynamic_cast
first locates the RTTI of the source object from a pointer
stored in its virtual function table. The RTTI contains a null-
terminated byte string of the mangled type name as the type
information of the current type, and one or more pointers
to its base classes’ RTTI. To check for type compatibility,
dynamic_cast recursively compares the mangled name of all
base classes of the source object with the mangled name of the

destination type. If a match is found, the casting is valid and
dynamic_cast returns a valid pointer; otherwise a null pointer
is returned. Since the type check involves slow string com-
parison and possible recursive traversal of the base classes’
RTTI, using dynamic_cast operators can be 90 times slower
than using static_cast [26]. Due to its performance over-
head, dynamic_cast is intentionally avoided in release builds
of well-developed applications such as Chrome.
const_cast<dest>(src) simply drops the const qualifier of
the source object. Since it does not actually modify the type
itself, it is not of interest to us.

For backward compatibility, C++ compilers also support
C-style explicit casts. When encountered, the compiler will
try the following sequence of casts one after another until the
program can be compiled without an error: (1) const_cast,
(2) static_cast, and (3) reinterpret_cast.

2.2 Type Confusion Sanitizers

Type confusion sanitizers [22, 24, 26] aim to overcome two
limitations of dynamic_cast: (1) its high runtime performance
overhead and (2) its limited protection scope (i.e., it only
supports classes with virtual function tables). To reduce the
runtime overhead, type confusion sanitizers typically employ
two optimizations. First, instead of storing the type informa-
tion as a string, they store a unique hash (guaranteed at link
time) of the mangled name, so that a compatibility check
can be done using an integer comparison instead of a string
comparison. Second, they compact all base classes’ type in-
formation into a single RTTI, where the hash values are also
sorted for faster binary search. To overcome the second limi-
tation, type confusion sanitizers store the RTTI of an object in
a disjoint lookup table. To perform runtime type checks, type
confusion sanitizers first extract the type hierarchies during
compile time and emit RTTI that records all the compatible
types of a class (i.e., all ancestor classes, including itself). At
runtime, after an object is allocated, type confusion sanitizers
associate the object with its RTTI (e.g., by using a hash table
where the key is the address of the object and the value is the
RTTI entry). At the cast site, the sanitizer retrieves the RTTI
and looks for a matching hash value among all compatible
types with the destination type.

2.3 C++ Casting with Custom Run Time Type
Information (RTTI)

Although designers of type confusion sanitizers have spent
lots of effort trying to reduce the runtime overhead, these
sanitizers still introduce significant overhead. For example,
during our evaluation, a state-of-the-art type confusion sani-
tizer HexType [24] still introduces a 10.2%−65.7% overhead
on Chromium benchmarks. A large portion of this overhead
comes from its lookup of RTTI. Specifically, to maintain

3

class Base {ClassType type_; virtual void f();};

class Derived : Base {int y;};

class Derived2 : Derived {int z;}

Derived2 d2;

ClassType
type_ vft_Base
int y

vft_Derived
int z

vft_Derived2 type_info*
*D2

VFT for Derived2 type_info for Derived2

type_info for Derived

type_info for Base

base *
*

base *
*

*
*

D2 : Derived2,

Derived, Base

Extra Object Management ClassType type_
vft_Base

int y
vft_Derived

int z
vft_Derived2

D2

Address

of d2

(1) Code Example (2) dynamic_cast<> Lookup

(3) Sanitizer lookup (4) Custom Type Information Lookup

ObjEntry

obj1_addr d2_addr

…

Figure 2: The code example and three different methods for verifying the safety of a type cast. (2) The dyn_cast method validates the safety of
the cast by utilizing the type information stored in the virtual table. (3) Sanitizer approaches perform type checks by tracking and extracting the
type information stored in a disjoint data set. (4) Developers perform the type checks directly through the custom RTTI defined within the class
hierarchy.

binary compatibility, type confusion sanitizers use decou-
pled RTTI (i.e., the RTTI of an object is stored disjointedly
at another memory location). As a result, they need extra
steps to find the RTTI. In practice, large C++ projects like
the Chromium browser and the LLVM compiler frameworks
prefer developer-inserted custom RTTI and type checks to
prevent type confusion vulnerabilities. Because such RTTI
is tightly coupled with an object (e.g., as a member field or
a special virtual function), runtime type checking is much
more efficient than both dynamic_cast and type confusion
sanitizers.

Figure 2 visualizes the differences between the three differ-
ent approaches, i.e., dynamic_cast, type confusion sanitizers,
and developer-inserted RTTI. In (1), a base class and two
derived classes are defined, with one derived class inherit-
ing from Base and the other from Derived. The ClassType

is a predefined enumeration variable. An object d2 of the
Derived2 class is then instantiated. In (2), the memory layout
of the d2 object is depicted. When a dynamic_cast<dst>(d2)

operation is executed, it first locates the RTTI of the object,
which is stored as the first item in the virtual function table
(VFT). By following the pointer, the mangled name of the
base class is extracted and compared with type name of dst.
If a match is found, the casting is considered valid. However,
this lookup process involves traversing a linked list, making
it relatively slow. The sanitizers’ lookup is demonstrated in
(3). After obtaining the address of d2, it refers to an additional
data structure specifically designed for efficient lookup. This
data structure stores all compatible types of the runtime ob-

ject, including D2. By utilizing caching, the lookup process
becomes significantly faster compared to the dynamic_cast

operation. Finally, in (4), the lookup process is illustrated
when the class encodes custom RTTI. In this case, the field
type_ which holds the custom RTTI is directly accessed, and a
value comparison is performed, resulting in the fastest lookup
method.

In fact, during our investigation, we found that most of
the type confusion vulnerabilities in the Chrome browser
have been preemptively fixed by means of developer-
implemented type checks with custom RTTI [5, 6, 8].
This motivates us to develop T-PRUNIFY. For instance,
CVE-2021-30561 [12] is a type confusion vulnerability
in Chrome. It allows a remote attacker to potentially ex-
ploit heap corruption via a crafted HTML page. Figure 3
shows the vulnerability and the main patch. Inside func-
tion WasmJs::InstallConditionalFeatures(), the variable
maybe_webassembly is retrieved as a type of Object; it is
then directly cast into a JSObject and used later. How-
ever, the object retrieved could in fact be of types other
than JSObject, which causes a type confusion vulnerabil-
ity. The patch fixed the bug by adding a custom type check
webassembly_obj->IsJSObject() at line 15 to ensure that the
type is of JSObject before proceeding to the subsequent type
cast.

4

1 /* Main patch for CVE-2021-3056,
2 * uninteresting code lines are ommited.
3 */
4 void WasmJs::InstallConditionalFeatures(Isolate* isolate,
5 Handle<Context>

context) {↪→

6 - Handle<JSObject> webassembly = Handle<JSObject>::cast(
7 - maybe_webassembly.ToHandleChecked());
8 + Handle<Object> webassembly_obj;
9 + if (!maybe_webassembly.ToHandle(&webassembly_obj)) {

10 + // There is not {WebAssembly} object.
11 + // We just return without adding the
12 + // {Exception} constructor.
13 + return;
14 + }
15 + if (!webassembly_obj->IsJSObject()) {
16 + // The {WebAssembly} object is invalid.
17 + // As we cannot add the {Exception}
18 + // constructor, we just return.
19 + return;
20 + }
21 + Handle<JSObject> webassembly =

Handle<JSObject>::cast(webassembly_obj);↪→

22 }

Figure 3: The simplified patch for CVE-2021-30561

3 Overview of T-PRUNIFY

In cases where developers have already encoded custom run-
time type information (RTTI) into C++ classes and imple-
mented their own type checks, we aim to identify and remove
redundant type confusion sanitizer checks, thereby reducing
sanitizer overhead. To this end, we design and implement a
lightweight static analysis tool named T-PRUNIFY that can
achieve this goal.

Input

Program Source
Code

Custom Type Information Inference

Type
Hierarchy

classclassclassclassclass

Type Info 0

Type Info 1

Type Info n
……

Database

Static Safe Casting VerificationOutput

Lightweight
Instrumented Program

Classes

LLVM IR SanitizerControl Flow

Safe Cast 0

Safe Cast 1

Safe Cast n
……

Type Check 0

Type Check 1

Type Check n
……

Figure 4: Work flow of T-PRUNIFY.

Figure 4 depicts the workflow of T-PRUNIFY. It consists
of two high-level components, which are briefly described
below:
1. Custom Type Check Inference. In this step, T-PRUNIFY
takes the source code of the target program as input and at-
tempts to recognize all the custom type checks inserted by
developers. To do so, we first infer custom runtime type in-
formation (RTTI) encoded by developers by analyzing class
definitions. The challenge lies in the lack of a unified standard
for encoding or annotating such custom type information,

which can vary across modules and class hierarchies in the
program. Therefore, we need to have a comprehensive un-
derstanding of the various patterns developers can choose to
encode custom types. In our solution, we perform an offline
manual investigation of various class hierarchies in Chrome,
and summarize them into three common patterns. With these
patterns, T-PRUNIFY performs static analysis to automati-
cally recognize and validate custom RTTI in classes, and then
stores them in a database. Based on the identified custom
RTTI, we then recognize developer-implemented type checks
(e.g., in the form of if statements) as operations over the type
information.
2. Static Safe Casting Verification. Based on the identified
custom type checks, we then try to prove statically whether a
downcast is always safe (i.e., the destination class is always
compatible with the class indicated by the type check under
all execution paths). The challenge is that type casts may not
be performed immediately after a type check, and further-
more the type check may not always be correct. To tackle
this challenge, T-PRUNIFY employs an intra-procedural flow-
and field-sensitive static analysis to track the refined type sug-
gested by developer-implemented type checks, and validate
if a downcast will be safe. Once T-PRUNIFY determines a
cast is safe, it will instruct a sanitizer to not insert another
redundant type check at compile time. In the end, the output
is a hardened program that enjoys the same level of security
guarantee but with a much lower runtime overhead.

4 Custom Type Check Inference

As mentioned above, T-PRUNIFY uses existing developer-
inserted custom type checks to eliminate type confusion
sanitizer-induced checks. In this section, we describe how
to identify developer-inserted custom type checks.

4.1 Systematic Investigation

Developers can choose to explicitly encode the runtime type
information (RTTI) in a class definition directly. However,
such encoding can be ad-hoc as it is entirely up to the de-
velopers to design a scheme to differentiate types. To under-
stand how custom RTTI are commonly encoded, we conduct
a manual investigation of over 100 Chrome hierarchies and
identified several common categories as follows.
Category 1: Custom RTTI encoded in a Base Class Field.
One way to store type information in C++ is by using a field
defined in the base class, which is initialized to a different
and unique value in each subclass according to its concrete
type. Figure 5 shows part of the type hierarchy that class
CSSValue belongs to. Class CSSValue defines a private mem-
ber called class_type_, which is initialized in the construc-
tor. Three subclasses CSSImageValue, CSSShadowValue, and
CSSURIValue initialize this member field through their respec-

5

class CSSValue {
public:
explicit CSSValue(ClassType class_type)

: class_type_(class_type) {}
bool IsImageValue() const {

return class_type_ == kImageClass; }
bool IsShadowValue() const {

return class_type_ == kShadowClass; }
bool IsURIValue() const {

return class_type_ == kURIClass; }
private:
const uint8_t class_type_; // enum ClassType

};
class CSSImageValue : public CSSValue {
public:
CSSImageValue() : CSSValue(kImageClass) {}

};
class CSSShadowValue : public CSSValue {
public:
CSSShadowValue() : CSSValue(kShadowClass) {}

};
class CSSURIValue : public CSSValue {
public:
CSSURIValue() : CSSValue(kURIClass) {}

};

Figure 5: An example in Category 1: type information is stored in
a member field, which is initialized with a different enumeration
constant. Arrow indicates the inheritance relationship.

tive constructors with different values. In this example, the
three values, e.g., kImageClass are unique enumeration con-
stants. The base class CSSValue also defines three utility func-
tions for type checking IsImageValue(), IsShadowValue(),
and IsURIValue().

Category 2: Custom RTTI as a Constant Without Fields.
Classes in this category override a virtual method defined
in the base class to return different constants to indicate the
actual type of the object. Consider the class hierarchy of class
BasicShape shown in Figure 6, it defines a virtual method
GetType(). Each subclass overrides this method by return-
ing a different enumeration constant that uniquely identifies
its object type. For example, the subclass BasicShapeCircle

overrides GetType() inherited from the base class to return
kBasicShapeCircleType, which is unique to this subclass.

Category 3: Custom RTTI as a Type Check Function.
Classes in this category do not use enumeration constants to
indicate custom types; instead, they define custom type check
functions. Figure 7 illustrates such an example where a base
class CanvasImageSource defines a number of virtual meth-
ods, like IsVideoElement() and IsCanvasElement(), which re-
turns false by default. The two subclasses: HTMLVideoElement
and HTMLCanvasElement each override the corresponding type
check method to return true. When the IsVideoElement()

method is called, it returns true only if the object is of class
HTMLVideoElement. This method, along with its return value
true, serves as a way to uniquely identify the object type.

class BasicShape {
public:

virtual ShapeType GetType() const = 0;
};
class BasicShapeCircle : public BasicShape {
public:

ShapeType GetType() const override {
return kBasicShapeCircleType;

}
};
class BasicShapeEllipse final : public BasicShape {
public:

ShapeType GetType() const override {
return kBasicShapeEllipseType;
}

};
class BasicShapePolygon final : public BasicShape {
public:

ShapeType GetType() const override {
return kBasicShapePolygonType;

}
};

Figure 6: An example in Category 2: the type information returned
by a virtual method is overridden in each subclass to return a different
enumeration constant.

4.2 Custom RTTI Identification
As the foundation of our solution, we need to construct a pre-
cise database that contains custom RTTI for a class hierarchy
(i.e., a group of classes that share a base class), referred as
class signatures, that can uniquely identify a class/type in the
hierarchy. In other words, we will construct a map between a
class signature and the actual (allocation) type. More specifi-
cally, we scan all the source code files (including header files)
and look for class hierarchies that match the aforementioned
three categories. For the first two categories, we check the
following conditions at the syntax level:

1. a unique enumeration constant is either assigned to a
member field of each class in the hierarchy, or returned
by a virtual method;

2. if a member field is assigned with the constant, the as-
signment should happen inside the constructor and the
field should not be modified once it is initialized.

For the third category, we use the following heuristics:

1. each class in the hierarchy overrides a unique method
and changes its return value.

2. each class should have at least one overridden method
that returns a unique value not seen in other classes in
the hierarchy.

For each class hierarchy (classes that share a base class), we
store the unique constant and method (collectively consid-
ered as the class signature) and its corresponding class type

6

class CanvasImageSource {
public:

virtual bool IsVideoElement() const { return false; }
virtual bool IsCanvasElement() const { return false; }
virtual bool IsVideoFrame() const { return false; }

};
class HTMLVideoElement : public CanvasImageSource {
public:

bool IsVideoElement() const override { return true; }
};
class CanvasRenderingContextHost : public

CanvasImageSource {↪→

};
class HTMLCanvasElement : public

CanvasRenderingContextHost {↪→

public:
bool IsCanvasElement() const override { return true; }

};
class VideoFrame : public CanvasImageSource {

bool IsVideoFrame() const override { return true;}
}

Figure 7: An example in Category 3: type information is encoded as
the return value of a custom type checking function that is overridden
to return true in the corresponding subclass.

in our database. Note that we find that a class hierarchy can
sometimes have a subset of classes with signatures while
the remaining classes do not have signatures by design. In
other words, there may be a “sub-class-hierarchy” within a
complete hierarchy that encodes class signatures. To accom-
modate such cases, we effectively look for such sub-class-
hierarchies. As long as the heuristics described above apply
to the sub-class-hierarchy, we still infer that it has encoded
class signatures.

4.3 Custom Type Check Identification
Given the database, we can perform an analysis to find the
type checks in the target program. In general, any statement
that uses the custom type information to control the program
flow is considered a type check. More specifically, we look for
statements that are of the form of type == c (including switch

cases), where the left-hand side can be any expression that
evaluates to a previously-recognized type-indicating member
variable or type-indicating method, and the right-hand side is
a constant. Given that we have mapped each unique constant
to a corresponding class type, we can tell exactly which type
is checked for in the statement.

Figure 8 shows an example of type checks relating
to class BasicShape, which is described in Figure 6; the
type check compares basic_shape->GetType() against enu-
meration constants that we record in the database (e.g.,
kBasicShapeCircleType), and then jump to different program
branches. T-PRUNIFY can identify each switch case as a type
check, and determine that the type of object basic_shape is
BasicShapeCircle between line 7 and line 11. We also discuss
how Chrome sometimes uses custom C++ template expres-

1 /* Some code snippet for use of custom type information,
2 * uninteresting code lines are ommited.
3 * */
4 std::unique_ptr<Shape> Shape::CreateShape(const

BasicShape* basic_shape) {↪→

5 std::unique_ptr<Shape> shape;
6 switch (basic_shape->GetType()) {
7 case BasicShape::kBasicShapeCircleType: {
8 /*To<> is implemented as a static_cast<>*/
9 const BasicShapeCircle* circle =

To<BasicShapeCircle>(basic_shape);↪→

10 //...
11 }
12 case BasicShape::kBasicShapeEllipseType: {
13 const BasicShapeEllipse* ellipse =

To<BasicShapeEllipse>(basic_shape);↪→

14 //...
15 }
16 case BasicShape::kBasicShapePolygonType: {
17 const BasicShapePolygon* polygon =

To<BasicShapePolygon>(basic_shape);↪→

18 //...
19 }
20 }
21 }

Figure 8: The simplified code for class BasicShape.

sions to perform type checks in §6.
Note that we find rare cases where a type check would

not look like a straight equality comparison in the form of
type == c. Instead, it can use inequality comparisons, e.g., >=
or <=. We do not currently recognize such type checks and
leave them as future work.

5 Static Safe Casting Verification

After constructing the database of custom type information
and identifying the custom type checks in the program, the
next step is to determine whether the type casts are actually
safe, i.e., sufficiently protected by those checks. At a high
level, given a type check, we analyze all the type cast state-
ments that are dominated by the type check. If the destination
type in the type cast statement is compatible with the checked
type, we consider it a safe type cast.

There are several considerations in performing such an
analysis. First, type casts do not always happen immediately
after a type check, and the pointer used for the type check may
not be the same one that is used for type casts. Therefore, we
perform a flow-sensitive and field-sensitive intra-procedural
pointer analysis to make sure that the pointer points to the
same object at the type check and the type cast. For example,
the casting at line 13 in Figure 9 is safe because case1 and
base point to the same object.

Second, the pointer analysis needs to consider different
execution paths and summarize possible types along all ex-
ecution paths. Therefore, T-PRUNIFY will only determine a
casting as safe if all types are compatible with the destination

7

1 class Base;
2 class Sub : Base;
3 class SubSub: Base;
4 // operator isa<>() is an identified type check
5 void foo(Base *base, Base *other) {
6 Base *case1, *case2, *case3, case4;
7 Sub *sub; SubSub *subsub;
8 case1 = case2 = case3 = case4 = base;
9 if (isa<Sub*>(base)) {

10 // case1: check is done using base
11 // but casting is done using case1
12 // need to know base alias with case1
13 sub = static_cast<Sub*>(case1); // SAFE
14 if (other != nullptr) {
15 case2 = other;
16 }
17 // case2: may point to both 'other' of Base* type
18 // and base of Sub* type (due to the check)
19 // Base* is not compatible with Sub*
20 sub = static_cast<Sub*>(case2); // possibly UNSAFE
21 // case3: the check is insffucient
22 // previous check only indicate base if of Sub* type
23 // not compatible with SubSub*
24 subsub = static_cast<SubSub*>(case3); // possibly

UNSAFE↪→

25 if (isa<SubSub*>(base)) {
26 // case4: continuous refinement
27 // after this check, we know base is of
28 // SubSub* type
29 subsub = static_cast<SubSub*>(case4); // SAFE
30 }
31 }
32 }

Figure 9: Different corner cases need to be considered when proving
when a type cast is safe.

type. For example, T-PRUNIFY cannot prove that the casting
at line 20 in Figure 9 is safe. This is because case2 may point
to both an object of Sub type due to the type check at line 9,
and an object of Base type due to the pointer reassignment
at line 15. As not all aliased objects are compatible with the
destination type Sub*, the casting is potentially unsafe and
needs an additional runtime check.

Third, it is possible that the type check is insufficient in pro-
tecting subsequent type casts, e.g., the target of the type cast is
not compatible with the type checked. Therefore, T-PRUNIFY
does not blindly trust a custom type check; it also performs
a type compatibility check to ensure that the refined type
suggested by the type check is indeed compatible with the
destination type of cast. If T-PRUNIFY cannot determine the
casting is safe, it acts conservatively and will not eliminate a
sanitizer check. This is because such cases can potentially be
real type confusion bugs. For example, T-PRUNIFY cannot
prove the casting at line 24 in Figure 9 as safe, because the
check at line 9 only indicates case3, which is a must-alias
with base, is of type Sub*, which is not compatible with type
SubSub*.

Fourth, the analysis should consider multiple type checks
that gradually narrow down the type to a more specific type

(i.e., subclass). This also means the analysis should be flow-
sensitive. For example, the casting at line 29 in Figure 9 is
safe, because after the check at line 25, the type of base is
further narrowed down to SubSub*. However, without a flow-
sensitive analysis, one cannot be sure base’s type must be
SubSub*.

Finally, type casts can be performed in a separate function
from the function that performed the type check. For example,
the type cast may happen in a callee of a caller that performs
the type check. In such cases, we cannot conclude that the
type cast is safe simply because one caller has performed a
safe type check. Instead, we need to analyze all callers to
make sure safe type checks are always present before the
type cast. In our current design, we perform only an intra-
procedural analysis that makes sure the type cast happens in
the same function that performs the type check. We consider
this a conservative solution and will extend it to the inter-
procedural case in the future.

In the end, once T-PRUNIFY finds a safe casting, it will
inform an existing type confusion sanitizer not to emit redun-
dant type checks during the compilation.

6 Implementation

In this section, we describe several key implementation details.
Overall, we implement T-PRUNIFY on top of the libclang
library and LLVM (v14.0.5). The implementation consists
of 9,652 lines of code in total. Specifically, we implement
the component “custom runtime type information inference”
using libclang by analyzing the source code of the target pro-
gram (as certain information like the C++ class hierarchies
is preserved better at the source code level). We implement
the component “static safe casting verification” using LLVM
passes as LLVM is more appropriate for pointer analysis.
Since our analysis spans source code and LLVM IR, we need
to pass intermediate analysis results from source code level
to the IR level, which we will describe in this section. In ad-
dition, we modified a state-of-the-art type confusion sanitizer,
HexType [24], to facilitate the evaluation of T-PRUNIFY.

Class Hierarchy Construction. The C++ compiler front-
end like Clang can accurately parse the C++ class hierarchy.
However, as the LLVM IR language is generic (i.e., needs
to support different source languages) and is relatively low
level, the C++ class hierarchies are not explicitly stored at the
IR level. Therefore, we implement a Clang plugin to store
the C++ class hierarchies (i.e., inheritance relations and type
compatibility) and store them for further use.

Class Signature Database Building. This part is done by
analyzing the source code of a target program directly (instead
of LLVM IR). Specifically, we use libclang’s python binding.
Besides missing the class hierarchy information at the LLVM

8

IR level, another reason for source code analysis is that enu-
meration constants at C/C++ level will be lowered to integer
constants thus losing their semantic information and become
indistinguishable from other integer constants. libclang al-
lows the user to iterate the abstract syntax tree (AST) to get
compilation time information (e.g., the type of the variable,
the name of the variable, the type of the functions). Using
libclang, we iterate through the AST to (1) extract enumera-
tion constants used to assist identification of custom runtime
type information (see §4 for details), and (2) record the use of
these constants (e.g., assignment, comparison, return value).

Feeding Source Code Analysis Results to the LLVM Anal-
ysis. The class signature database stores variable names,
method names, and enumeration constants to assist iden-
tification of custom type checks. However, at the LLVM
IR level, names of C++ virtual methods are available only
in type definitions. At method call sites, virtual methods
will be lowered to indirect calls, thus losing the source
code level semantics. For example, a simple method call
of basic_shape->GetType() would look like the following in
LLVM IR (simplified for reading):

%41 = getelementptr (%"class.blink::BasicShape"*)** %40, 5
%42 = load i32 (%"class.blink::BasicShape"*)** %41
%43 = call noundef i32 %42(%"class.blink::BasicShape"* %0)

switch i32 %43, label %342 [
...

To overcome this issue, we modified the Clang++ front-end to
annotate LLVM IR with method names. In the above example,
our annotation would label %42 as GetType(). The IR snippet
is shown as:

@.str.2 = "blink::BasicShape::GetType"
%vfn = getelementptr (%"class.blink::BasicShape"*)** %vtable, 5
%10 = load i32 (%"class.blink::BasicShape"*)** %vfn
%call31 = call noundef i32 %10(%basic_shape)
%11 = call i32 @llvm.annotation(i32 %call31, (@.str.2))
switch i32 %call31, label %sw.default [
...

The %vtable is the equivalent pointer as %40 before the anno-
tation.

Manually-Summarized Type Checks We find that some
subsystems of Chrome choose to use custom C++ templates
to implement type checks. For example, we have seen IsA<T>

frequently which operates as a type check for type T. Behind
the template, different classes can choose to implement it
differently. Since our solution to recognize type checks is by
analyzing the source code, we currently recognize these state-
ments specifically through manually-curated domain knowl-
edge. Technically, we could pre-process the source code into
a version without templates and then perform our follow-up

analysis. However, due to implementation issues, we were
not able to succeed at this point. We leave this as our future
work.

7 Evaluation

To assess the extent of custom Run-Time Type Information
(RTTI) usage and the effectiveness of T-PRUNIFY, we con-
ducted a comprehensive examination of open-source C/C++
software. Subsequently, we carried out a systematic evaluation
with the aim of addressing the following research inquiries:

• RQ1: How prevalent is custom RTTI?
• RQ2: How many casts can be classified by T-PRUNIFY as

safe casts out of all the downcast operations?
• RQ3: How accurate is T-PRUNIFY in identifying classes

with custom RTTI, type checks, and safe casts? In other
words, we measure the false negatives and false positives
of T-PRUNIFY.

• RQ4: How much runtime overhead can T-PRUNIFY im-
prove by pruning unnecessary sanitzier checks?

Experimental Setting. All evaluations are conducted on
machines equipped with Intel(R) Xeon(R) Gold 6248 CPU
processors and 1024GB RAM, running on a 64-bit Ubuntu
18.04.6 LTS operating system.
Evaluation Target and Experimental Setup. To investigate
the prevalence of custom RTTI, we sampled open sourced
C/C++ programs with large code bases. Then, we applied
T-PRUNIFY to the following programs: the SPEC CPU2006
C++ program, Chromium and the LLVM toolchain. We chose
Chromium and the LLVM toolchain as evaluation targets
because they are complex, large-scale, and well-engineered
pieces of software. If we show that our analysis if effective
on them, we argue that it should also work on other targets,
as long as the project leverages developer-inserted custom
runtime type information (RTTI) to avoid unsafe castings.

In addition, unlike smaller programs that may not have com-
plex class hierarchies (and hence, few developer-implemented
type checks), according to our analysis, both Chromium and
LLVM source code indeed have many complex class hier-
archies and a large number of developer-implemented type
checks. Therefore, we believe they represent ideal bench-
marks to validate the ideas proposed in this paper. We believe
that other large-scale programs would also similarly benefit
from our solution.

We design experiments by compiling those programs into
three versions: the original program (original) without any
instrumentation, the fully HexType-instrumented program
(program-hextype), and the program with reduced instrumen-
tation after applying T-PRUNIFY (program- T-Prunify). For
program-hexytpe and program- T-Prunify, we did not instru-
ment libc++ as the standard C++ library because (1) we con-
sider it as safe and (2) it does not include any custom RTTI.

9

HexType Configurations. The original HexType [24] was
implemented based on llvm-3.9.0, which is no longer com-
patible with the Chromium version we tested. Therefore, we
ported it to llvm-14.0.5, which could be used to compile the
target Chromium we evaluated. When assessing the overhead,
we considered all the optimizations implemented by Hex-
Type, including the elimination of checks for safe casts that
can be verified during compilation time. We also apply this
HexType version when evaluating SPEC CPU2006 and the
LLVM toolchain.
Benchmarks. In order to effectively showcase the per-
formance improvements achieved through the use of
T-PRUNIFY, we provide further details on the benchmarks
used in our experiments. SPEC CPU is a well-established
benchmark, and we use the running time to represent
the performance. For Chromium, we chose three different
benchmarks, namely Speedometer, JetStream2, and Motion
Mark [4] to exercise different parts of a browser. Speedome-
ter is a benchmark that measures the responsiveness of web
applications by simulating user interactions with the browser
(e.g., DOM manipulation). JetStream2 is a comprehensive
benchmark suite that measures the performance of JavaScript
and WebAssembly in advanced web applications. It consists
of a variety of tests, including latency and throughput tests,
that cover a wide range of web application use cases. Finally,
Motion Mark is a benchmark designed to thoroughly test the
graphics systems of web browsers. This benchmark includes
a variety of subtests, including the CSS, image and text ren-
dering, that assess the performance of the browser’s rendering
capabilities. For LLVM toolchains, we use the Linux kernel
v6.5 under allyesconfig as the compilation target.

7.1 Prevalence of custom RTTI
We selected seven C/C++ open sourced software projects with
large codebases. As shown in Table 1, we observed that 4 out
of 7 projects had type confusion CVEs, implying common
uses of type casts. In addition, we randomly sampled 10 class
hierarchies for each project and found the use of custom RTTI
in 6 of the 7 projects. In summary, all six projects demon-
strated a substantial utilization of custom RTTI. This result
underscores the prevalence of custom RTTI in C/C++ soft-
ware. For Chromium, we find 8 out of the 10 sampled class
hierarchies were found to contain custom RTTI; for Firefox
and the LLVM toolchain, 6 out of 10 sampled class hierar-
chies include custom RTTI. In the case of JavaScriptCore,
although only 3 out of 10 sampled classes contain custom
RTTI, some are located in important modules, e.g., the DOM
module.

7.2 Coverage
In this section, we will first show the overall results of ana-
lyzing the three projects, based on the results, we calculate

Table 1: Prevalence of the custom RTTI in large scale C/C++ soft-
ware.

Software TypeConfusion CVE Custom RTTI

Chromium Y Y (8/10)
Mozilla Firefox Y Y (6/10)
Hermers Y Y (7/10)
JavaScriptCore Y Y (3/10)
LLVM ToolChain N Y (6/10)
QT N Y (5/10)
Boost N N

the coverage, which measures out of all the downcasts, how
many of them are identified as the safe casts.

The overall result is shown in Table 3, using Chromium as
an example; there is a total of 54,617 classes that are part of
class hierarchies, out of which 6,671 are base classes, forming
class hierarchies. We observe that all downcasts occur within
1,123 of these class hierarchies and a total of 5,160 classes
appear as downcast targets.

Among the 1,123 class hierarchies, we identify 719 hier-
archies, and 3,585 classes within these hierarchies, that have
custom RTTI. Furthermore, we find 827 classes in total that
have both RTTI and appear as downcast targets. As we can
see, many classes have custom RTTI but are never used as
downcast targets. Upon inspecting some such cases, we find
that their custom RTTI is used in scenarios like serialization
and deserialization [1] or logging [7].

Finally, we find 49,364 downcast operations in Chromium,
and 23,721 of them have destination types with custom RTTI.
A subset of these downcasts, i.e., 6,704, are determined to be
safe casts. In other words, T-PRUNIFY finds these downcasts
are protected by developer-inserted type checks. Overall, this
represents a significant fraction of downcasts that can be
exempt from sanitizer checks.

Since 6,704 out of 49,304 downcasts in Chromium are
identified as safe casts by T-PRUNIFY, the coverage is
6,704/49,304 = 13.58%. Similarly, the coverages for SPEC
CPU xalancbmk and the LLVM toolchain are 9.82% and
9.49%, respectively. Although the static coverage appears
low, the dynamic type checking reduction is far more signifi-
cant, which we will show in §7.4. Since T-PRUNIFY does not
find custom RTTI in the other six SPEC CPU C++ programs,
we only list the results for xalancbmk here.

7.3 Accuracy
In this section, we selected Chromium as our test subject
to evaluate the outcomes at each critical step. These steps
include custom RTTI identification, type check identification,
and safe casts identification. Then, we manually curated the
ground truth of the above steps relating to the top 50 classes
(that appeared as destination types of downcasts). Using this
dataset, we then analyzed the accuracy of the results produced
by our system, specifically looking for any false positives or

10

false negatives.

Custom RTTI Identification We collected the top 50 down-
cast targets and list them in the Table 2. We found that 25
of the top 50 classes had custom RTTI encoded, and our
approaches correctly identified 20 of the 25, resulting in 5
false negatives. We are unable to infer the custom type info
encoded in 5 classes primarily due to the patterns that we
currently do not recognize, as described in §4.1. For instance,
one of them is the class v8:Uint32 which has a member func-
tion IsUint32() that returns true if the object is of class
v8::Uint32. However, this function examines whether the
object value is within the range of [0, kMaxUInt32]. Among
the 20 classes that are identified to have custom RTTI by
T-PRUNIFY, we find no false positives; this is expected as our
analysis is conservative.

Type Check Identification. In terms of false negatives in
this step, since T-PRUNIFY failed to identify the RTTI of 5
classes, it will therefore automatically miss type checks re-
lating to these 5 classes. To evaluate whether our safe cast
identification will miss any additional cases, we sample 54
type checks from the remaining 20 classes with custom RTTI.
For most classes, we sampled three checks per class (how-
ever, note that there are cases where we can find only one
type check). The results show that T-PRUNIFY can identify
all 54 type checks, meaning no false negatives. To evaluate
false positives, we sample 50 type checks that are reported by
T-PRUNIFY, and all of them are true positives.

Safe Cast Identification. We follow a similar approach de-
scribed above to evaluate the false negatives and false posi-
tives of safe cast identification. The same 54 sampled type
checks are also in fact safe casts, according to our manual
analysis. T-PRUNIFY successfully identifies 51 to be safe
casts, missing the remaining 3 because of the lack of an inter-
procedural analysis, i.e., the check is performed in a caller
function but the cast happened in a callee. So, we have 3 false
negatives in this data set. In addition, we sampled some cases
to see whether the lack of inter-procedural analysis is the only
reason. In particular, we find one false negative even when the
check and cast are in the same function. The example is lo-
cated in the v8 submodule: a base class BaseSpace which has
two subclasses NormalPageSpace and LargePageSpace. Before
casting an object space to type NormalPageSpace, the devel-
oper performed a type check !(space.is_large()). This case
constitutes a safe cast. However, T-PRUNIFY failed to iden-
tify it because it did not take into account the fact that there
are only two possible types, !is_large() effectively indicates
that space is of type NormalPageSpace. Finally, we also collect
3 patches that fix type confusion vulnerabilities in Chrome
with developer-implemented type checks and they are all iden-
tified by T-PRUNIFY, i.e., no false negatives. To evaluate false
positives, we sample 50 safe casts reported by T-PRUNIFY
from six different submodules and find none of them are false
positives. Overall, the results exhibit a high accuracy, with

Table 2: The top 50 downcast classes targets in the Chromium,
of cast is the frequency, Type Info? is the ground truth whether
the class has encoded some form of the custom type information. The
last column shows whether T-PRUNIFY captured those information
into our database.

Cast to # of Type T-PRUNIFY
cast Info? Captured?

v8::FunctionTemplate 3117 Y Y
v8::Object 2974 Y Y
v8::Int32 2735 Y N
blink::Element 1973 Y Y
llvm::Constant 1541 N N
blink::EventTarget 1507 N N
v8::Uint32 1343 Y N
llvm::Instruction 971 N N
v8::Number 827 Y Y
llvm::Function 806 N N
blink::HTMLElement 716 Y Y
blink::WebGLRenderingContextBase 476 N N
blink::WebGL2RenderingContextBase 445 N N
perfetto::trace_processor::TypedColumn 421 N N
blink::LocalFrame 405 Y Y
blink::LocalDOMWindow 401 Y Y
blink::DOMWindow 397 N N
v8::Boolean 395 Y Y
blink::WebGLUniformLocation 374 N N
v8::internal::Isolate 312 N N
v8::Array 304 N N
skjson::ObjectValue 294 N N
v8::JSVisitor 286 N N
GrGpuResource 276 N N
blink::UniqueElementData 273 Y Y
llvm::cl::OptionValueCopy 273 N N
v8::String 273 Y Y
blink::ShareableElementData 267 Y Y
blink::JSBasedEventListener 241 Y Y
blink::CSSPrimitiveValue 231 Y Y
blink::SVGElement 225 Y Y
tint::sem::Vector 213 N N
blink::LayoutBoxModelObject 208 Y Y
blink::LayoutBlockFlow 203 Y N
v8::internal::compiler::HeapObjectData 196 N N
blink::Longhand 195 Y N
blink::LayoutBox 177 Y N
ppapi::PPB_Graphics3D_Shared 166 N N
blink::Node 153 N N
content::WebContentsImpl 149 N N
base::DictionaryValue 148 N N
blink::Document 145 Y Y
llvm::StructType 143 N N
blink::HTMLInputElement 142 Y Y
blink::NGPhysicalBoxFragment 140 Y Y
blink::HTMLCanvasElement 135 Y Y
blink::TransformPaintPropertyNode 134 N N
llvm::GlobalValue 126 N N
llvm::MDString 121 N N
blink::JSEventHandler 118 Y Y

11

Table 3: Overall statistics of the results.

of Chromium LLVM xalancbmk

class hierarchies 6, 671 934 86
classes in hierarchies 54,617 8,842 825

class hierarchies with downcasts 1,123 244 7
classes as downcast targets 5,160 2,537 59

class hierarchies w/ custom RTTI found 719 183 3
classes w/ custom RTTI found 3,585 1,404 38
classes w/ custom RTTI & as downcast targets 827 1,064 19

downcast ops 49,364 211,571 560
downcast ops where destination types w/ RTTI 23,721 161,442 192
downcast ops with type checks (safe casts) 6,704 30,027 55

no false positive and very few false negatives in each steps.

7.4 Runtime Overhead Reduction

So far, we have evaluated the results of T-PRUNIFY stati-
cally, e.g., the effectiveness of T-PRUNIFY in terms of the
statically-identified safe casts. In this section, we will mea-
sure the runtime overhead achieved by T-PRUNIFY compared
to the state-of-the-art solution, HexType. As mentioned, we
evaluate T-PRUNIFY in three programs: xalancbmk in SPEC
CPU 2006, Chromium and LLVM toolchain. When evaluating
Chromium, we utilize three widely recognized web browser
benchmarks. As for the LLVM toolchain, we assess its per-
formance by compiling the Linux kernel version 6.5 with the
allyesconfig configuration. We tested each benchmark six
times back-to-back, and eliminate the first run as it would be
a cold start. Then we use the box plot to visualize the result of
the last five run for programs with some deviations. We use
the median values as the representative numbers to represent
the overhead; the results are depicted in Table 4. Further, we
calculate the type checks that instrumented by HexType and
T-PRUNIFY when running those benchmarks; the results are
shown in Table 6.
Results for xalancbmk. We measured the performance with
five runs. As seen in Figure 10a, the median of the baseline
running time (without any instrumentation) is 158s. When
compiled with HexType, the median running time increases
to 163s, which translates into an overhead of 1.03×. When
compiled with T-PRUNIFY, the median running time is 161s,
resulting in an overhead of 1.02×. Interestingly, we do ob-
serve the program compiled with T-PRUNIFY experiences
significantly fewer type checks, i.e., from 283 million to 80
million. Yet the end-to-end overhead reduction is not pro-
nounced in this benchmark. This is attributed to the fact that
these type checks constitute a relatively minor portion of the
total execution time.
Results for Chromium. To compute the runtime over-
head for Chromium, we rely on the “scores” produced by
each benchmark for each Chromium, Chromium-hextype, and
Chromium- T-PRUNIFY, respectively. Note that these scores
from different benchmarks may consist of different metrics,

Table 4: Overhead improvement for three projects relative to their
respective benchmarks, the improvement is calculated based on the
HexType instrumentation.

Software Benchmark Hextype T-PRUNIFY

SPEC CPU xalancbmk 1.03× 1.02×

Chromium Speedometer 1.11× 1.08×
Chromium JetStream2 1.22× 1.05×
Chromium MotionMark 2.92× 1.51×

LLVM Linux 16.7× 10.5×

e.g., throughput. Nevertheless, we assume these scores cap-
tured the most suitable metrics as intended by each bench-
mark, where high score shows better performance.

For Speedometer, we see that the original Chromium can
achieve 40.3 runs/min, while chrome-hextype and chrome-
reduced achieved 36.2 runs/min and 37.2 runs/min, re-
spectively. Overall, Chromium-hextype experiences a rela-
tively low overhead on the Speedometer benchmark to be-
gin with, i.e., 10.2%, indicating that the exercised sanitizer-
inserted checks have a relatively low proportion. Nevertheless,
T-PRUNIFY manages to reduce the overhead from 10.2% (=

1− 36.2
40.3

) to 7.7% (= 1− 37.2
40.3

), representing a 25% rela-
tive reduction. In Table 6, we also report the total number
of type checks that are executed at runtime with HexType
and T-PRUNIFY. We can see that T-PRUNIFY successfully
eliminated a large number of checks that would otherwise be
performed by HexType. The box plot for five runs is shown
in Figure 10b.

In JetStream2, the overall score of the original Chromium
is 68.6, while Chromium-hextype and Chromium-reduced
achieved scores of 56.3 and 65.6 respectively. The improve-

ment is significant, from 17.9% (= 1 − 56.3
68.6

) to 4.4% (=

1− 65.6
68.6

), representing a 75% relative reduction in overhead.
In fact, the score of Chromium-reduced is very close to that
of the uninstrumented Chromium. Looking at Table 6, we
can see that the majority of the sanitizer checks are pruned,
i.e., 2,800M out of 3,795M. We believe that the observed
high ratio can be attributed to the predominant use of the V8
engine in the exercised code paths by JetStream2. The V8
engine has a history of being susceptible to numerous type
confusion bugs [14–17]. Consequently, developers have in-
serted a significant number of type checks as a precautionary
measure to mitigate potential vulnerabilities. The box plot for
five runs is shown in Figure 10c.

In MotionMark, the overall score of the original Chromium
is 72.31, while Chromium-hextype and Chromium-reduced
achieved 24.75 and 47.78, respectively. The improvement of
results is the most significant out of the three benchmarks, i.e.,

from 65.8% (= 1− 24.75
72.31

) to 33.9% (= 1− 47.78
72.31

), represent-
ing a 48.5% relative reduction in overhead. The box plot for

12

Base HexType T-Prunify

156

158

160

162

164

166

168

Ru
nn

in
g

Ti
m

e
(s

)
Performace Evaluation on xalancbmk Benchmark

(a) The box plot for performance comparison among three configurations in
xalancbmk benchmark. Lower running time means higher performance.

Base HexType T-Prunify
35

36

37

38

39

40

41

42

Ru
ns

/M
in

ut
e

Performace Evaluation on Chromium Benchmark - Speedometer

(b) The box plot for performance comparison among three configurations in
Speedometer benchmark. Higher number means better performance.

Base HexType T-Prunify

56

58

60

62

64

66

68

70

Sc
or

es

Performace Evaluation on Chromium Benchmark - JetStream2

(c) The box plot for performance comparison among three configurations in
JetStream2 benchmark. Higher score means better performance.

Base HexType T-Prunify

30

40

50

60

70

Sc
or

es

Performace Evaluation on Chromium Benchmark - MotionMark

(d) The box plot for performance comparison among three configurations in
MotionMark benchmark. Higher score means better performance.

Figure 10: Box plots for xalancbmk and Chromium benchmarks. Figure (a) is the boxplot for xalancbmk, lower running time means higher
performance. Figures (b), (c) and (d) shows the benchmarks for Chromium, higher score means better performance.

five runs is shown in Figure 10d.

According to Table 6, T-PRUNIFY results in 327M fewer
sanitizer checks at runtime. The significant number of pruned
checks in this benchmark is due to the many rendering ele-
ments such as SVG node and HTML elements with CSS style.
Many of these classes have custom RTTI and safe casts (as
some of our examples showed in §2).

Results for LLVM Toolchain. Next, we calculate the run-
time overhead for the LLVM toolchain. Specifically, we use
it to compile the Linux kernel v6.5 with allyesconfig and
measure the compilation time to represent the performance.
Overall, we find that HexType takes 369 mins to finish the
compilation, while T-PRUNIFY takes only 231 mins. We
conducted five runs in this experiment and dropped the first
run, since four runs yield identical running times measured in
minutes, we do not include the box plot here. The compila-
tion speed up is shown in Table 4, we reduced the HexType’s
16.2× overhead to 10.5×, representing a 35.19% overhead
improvement. This significant improvement can be attributed
to the 743B (46.82%) fewer sanitizer checks at runtime.

Compilation overhead Besides the run time overhead, we
also log the compile time overheads that T-PRUNIFY brings
to compile the Chromium and LLVM Toolchain; the results
are shown in Table 5. Compared to HexType, the compi-
lation time is shorter, which means the analysis performed
by T-PRUNIFY is relatively lightweight and saves significant
instrumentation workload. The difference in compilation time
between HexType and T-PRUNIFY can be attributed to two
reasons. First, HexType inserts sanitizers’ type check func-
tions in the front end. Second, in the optimization phase,
HexType analyzes each inserted type check function, extract-
ing the source type and target type to perform the compilation
time safe casts validation. T-Prunify can help reduce the over-
heads from both operations because fewer sanitizer’s type
check functions are inserted in the first place.

In summary, we demonstrate that in each of the bench-
marks, T-PRUNIFY significantly reduces the overhead of
redundant sanitizers’ type checks at runtime, even though
only about 10% of the type-cast checks are pruned statically
as described in §7.2. This is likely due to such redundant

13

Table 5: Compilation time comparison.

Program original HexType T-PRUNIFY

Chromium (-j32) 38min 59min 56min
LLVM Toolchain (-j32) 13min 67min 39min

Table 6: Number of dynamic cast verification performed by HexType
versus TPRunify.

Benchmark Hextype T-PRUNIFY Reduced

Chromium-Speedometer 1, 558 M 241 M 1, 317 M (84.53%)
Chromium-JetStream2 3, 795 M 995 M 2, 800 M (73.78%)
Chromium-MotionMark 502 M 175 M 327 M (65.24%)

xalancbmk 283 M 80 M 203 M (71.73%)

LLVM-compile-Linux 1, 587 B 844 B 743 B (46.82%)

checks being frequently executed at runtime, and these checks
being expensive to execute.

8 Limitations and Extensions

While our experimental results are quite promising, we did
encounter some practical limitations of T-PRUNIFY while
manually assessing accuracy. In the custom RTTI identifi-
cation phase, we discovered cases where a wide range of
constants or even structure pointers were used to assist en-
coding custom RTTI information, patterns not handled by
our current approach. These cases could be addressed in fu-
ture work by doing deeper semantic analysis during the RTTI
identification phase. It is also interesting to investigate the en-
coding patterns of custom RTTI across open-source projects
beyond Chrome. Additionally, our safe cast analysis is cur-
rently intra-procedural, which means that it may overlook
certain safe casts that occur across different function calls. In
future work we plan to make this analysis inter-procedural,
thereby supporting cases where a type check occurs in a caller
while the cast occurs in the callee.

Beyond the aforementioned improvements, there are multi-
ple fruitful ways to broaden and extend this work. First, we
believe there are uses for automatic detection of custom RTTI
schemes beyond reducing sanitizer overhead. For example, in
cases where casts are not protected by a type check, one could
automatically insert type checks into the code using the cus-
tom RTTI found by our technique. Also, we believe it would
be worthwhile to extend our RTTI detection approach could to
support structs in the C language—there also, custom RTTI
has been used to ensure cast safety [2].

9 Related Works

In this section, we compare T-PRUNIFY with closely related
work in three areas.

Type Confusion Sanitizers. As mentioned before, type
confusion sanitizers aim to detect bad castings that can intro-
duce confusion vulnerabilities, by instrumenting the target
program with additional runtime checks. Undefined Behavior
sanitizer (UBSan) [31] is one of the earliest available type
confusion sanitizers. It relies on the standard C++ RTTI to
perform type compatibility check. As a result, it does not sup-
port non-polymorphic classes and may introduce crashes [26].
Recently, Clang CFI [30] also added support for detecting
type confusing bugs by leveraging the standard C++ RTTI.
CaVer [26] aims to address two main issues of the standard
C++ RTTI: (1) it improves the speed of type checking by using
unique hashes instead of mangled names, and by including all
compatible types in a single RTTI entry, instead of requiring
traversing the class hierarchy; (2) it supports non-polymorphic
classes by using a decoupled lookup table to find RTTI associ-
ated with a memory object. TypeSan [22] and HexType [24]
further improve the performance and coverage over CaVer
by using lower cost data structures, caching, and by expand-
ing the instrumentation targets. EffectiveSan [19] can also
detect type confusion vulnerabilities, besides other memory
errors like out-of-bound and use-after-free. EffectiveSan uses
low-fat pointer [18, 20, 25] to achieve efficient metadata ac-
cess. It also supports checking casts between primitive types.
Bitype [27] further compress the metadata structure into bit
stream and speedup the compatibility check via xor opera-
tions. T-PRUNIFY is orthogonal and complementary to these
type confusion sanitizers as our goal is to leverage developer-
inserted custom type checks to eliminate redundant checks
induced by type sanitizers. Therefore, T-PRUNIFY can be
combined with any of these type sanitizers.

Optimizing Sanitizer Checks. There are also some work
to reduce the sanitizers’ overhead, these work could be di-
vided into two categories. The first is using sanitizer-specific
static analysis to remove only semantically redundant checks,
for example, RedCard [21] is designed to use static analysis
to reduce the redundant instrumentation for dynamic race
conditions. Similarly, DataGuard [23] uses a set of sophisti-
cated static analyses to prove the safety of stack objects and
migrate them to safe stack, thus reducing the runtime pro-
tection overhead. Furthermore, WPBound [29] utilizes value
range analysis to effectively minimize the number of out-of-
bound memory checks inserted by sanitizers. Besides static
analysis, SIMBER [33] incorporates statistical inferences to
identify redundant bound checks. Another approach develops
the framework and use general heuristics to remove costly
sanitizer checks irrespective their semantics, those work in-
cludes ASAP [32] and SanRazor [34]. ASAP [32] allows
developers to specify the acceptable percentage of runtime
overhead based on their resource constraints. Leveraging this
information, ASAP automatically instruments the program
to maximize the security promise within the given budget.
While SanRazor [34] combines runtime profiling and static

14

analysis to identify and eliminate repeated and redundant
checks, thereby optimizing computing resources. T-PRUNIFY
falls within the first category, but with a specific focus on type
confusion sanitizers.

10 Conclusion

Type confusion vulnerabilities are severe security threats to
C/C++ programs. Due to the high performance overhead of
the standard C++ runtime type information (RTTI), in large
complex C++ projects like the Chrome browser, developers
usually introduce custom RTTI and type checks to prevent
type confusion bugs. Based on this observation, we imple-
mented T-PRUNIFY, a tool that can automatically identify
developer-inserted type checks and leverage these checks to
validate the safety of type casts. Applying T-PRUNIFY to the
Chrome browser allows us to identify a large number, i.e.,
6,704, of safe casts. Leveraging this information, T-PRUNIFY
can help remove redundant type casting checks induced by
type confusion sanitizers like HexType and reduce the corre-
sponding performance overhead by 25% to 75%.

Acknowledgment

We would like to thank the anonymous reviewers for their
insightful comments that helped improve the quality of the
paper. And many thanks to our shepherd who paid a lot
of patience and effort to check our revision. This research
was partially sponsored by the U.S. Army Combat Capa-
bilities Development Command Army Research Laboratory
and was accomplished under Cooperative Agreement Num-
ber W911NF-13-2-0045 (ARL Cyber Security CRA). The
views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Combat
Capabilities Development Command Army Research Lab-
oratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation here
on. It was also partially supported by NSF grant #1801534,
#1652954, #1953933, #2155213 and #2046026.

References

[1] flattenable_is_valid_as_child(). https:
//github.com/google/skia/blob/main/src/
core/SkRuntimeEffect.cpp#L371.

[2] Linux Commit f306dff7. https://
github.com/torvalds/linux/commit/
17cfe79a65f98abe535261856c5aef14f306dff7,
2018.

[3] CWE-843: Access of Resource Using Incompatible
Type (’Type Confusion’). https://cwe.mitre.org/
data/definitions/843.html, 2022.

[4] Browser Benchmarks. https://browserbench.org,
2023.

[5] [compiler] fix bug in representation-
changer::getword32representationfor. https:
//chromium.googlesource.com/v8/v8/+/
fd29e246f65a7cee130e72cd10f618f3b82af232%
5E%21/#F0, 2023.

[6] [parser] fix eval tracking. https://
chromium.googlesource.com/v8/v8/+/
a4aece44c60ea1be4699667dbd27403574520df0%
5E%21/#F1, 2023.

[7] v8/src/objects/js-objects.cc. https://source.
chromium.org/chromium/chromium/src/+/main:
v8/src/objects/js-objects.cc;l=2865?q=
JSObject::JSObjectShortPrint, 2023.

[8] [wasm] refine installation of the we-
bassembly.exception constructor. https:
//chromium.googlesource.com/v8/v8/+/
c0614e9bcef7266d2e4544602d668c01b5dcaa37%
5E%21/#F0, 2023.

[9] Satish Chandra and Thomas Reps. Physical type check-
ing for c. In Proceedings of the 1999 ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software
tools and engineering, pages 66–75, 1999.

[10] National Vulnerability Database. CVE-2015-
3077. https://nvd.nist.gov/vuln/detail/
CVE-2015-3077, 2015.

[11] National Vulnerability Database. CVE-2021-
21224. https://nvd.nist.gov/vuln/detail/
CVE-2021-21224, 2021.

[12] National Vulnerability Database. CVE-2021-
30561. https://nvd.nist.gov/vuln/detail/
CVE-2021-30561, 2021.

[13] National Vulnerability Database. CVE-2022-
1486. https://nvd.nist.gov/vuln/detail/
CVE-2022-1486, 2022.

[14] National Vulnerability Database. CVE-2023-
0473. https://nvd.nist.gov/vuln/detail/
CVE-2023-0473, 2023.

[15] National Vulnerability Database. CVE-2023-
0703. https://nvd.nist.gov/vuln/detail/
CVE-2023-0703, 2023.

15

https://github.com/google/skia/blob/main/src/core/SkRuntimeEffect.cpp#L371
https://github.com/google/skia/blob/main/src/core/SkRuntimeEffect.cpp#L371
https://github.com/google/skia/blob/main/src/core/SkRuntimeEffect.cpp#L371
https://github.com/torvalds/linux/commit/17cfe79a65f98abe535261856c5aef14f306dff7
https://github.com/torvalds/linux/commit/17cfe79a65f98abe535261856c5aef14f306dff7
https://github.com/torvalds/linux/commit/17cfe79a65f98abe535261856c5aef14f306dff7
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/843.html
https://browserbench.org
https://chromium.googlesource.com/v8/v8/+/fd29e246f65a7cee130e72cd10f618f3b82af232%5E%21/#F0
https://chromium.googlesource.com/v8/v8/+/fd29e246f65a7cee130e72cd10f618f3b82af232%5E%21/#F0
https://chromium.googlesource.com/v8/v8/+/fd29e246f65a7cee130e72cd10f618f3b82af232%5E%21/#F0
https://chromium.googlesource.com/v8/v8/+/fd29e246f65a7cee130e72cd10f618f3b82af232%5E%21/#F0
https://chromium.googlesource.com/v8/v8/+/a4aece44c60ea1be4699667dbd27403574520df0%5E%21/#F1
https://chromium.googlesource.com/v8/v8/+/a4aece44c60ea1be4699667dbd27403574520df0%5E%21/#F1
https://chromium.googlesource.com/v8/v8/+/a4aece44c60ea1be4699667dbd27403574520df0%5E%21/#F1
https://chromium.googlesource.com/v8/v8/+/a4aece44c60ea1be4699667dbd27403574520df0%5E%21/#F1
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/objects/js-objects.cc;l=2865?q=JSObject::JSObjectShortPrint
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/objects/js-objects.cc;l=2865?q=JSObject::JSObjectShortPrint
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/objects/js-objects.cc;l=2865?q=JSObject::JSObjectShortPrint
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/objects/js-objects.cc;l=2865?q=JSObject::JSObjectShortPrint
https://chromium.googlesource.com/v8/v8/+/c0614e9bcef7266d2e4544602d668c01b5dcaa37%5E%21/#F0
https://chromium.googlesource.com/v8/v8/+/c0614e9bcef7266d2e4544602d668c01b5dcaa37%5E%21/#F0
https://chromium.googlesource.com/v8/v8/+/c0614e9bcef7266d2e4544602d668c01b5dcaa37%5E%21/#F0
https://chromium.googlesource.com/v8/v8/+/c0614e9bcef7266d2e4544602d668c01b5dcaa37%5E%21/#F0
https://nvd.nist.gov/vuln/detail/CVE-2015-3077
https://nvd.nist.gov/vuln/detail/CVE-2015-3077
https://nvd.nist.gov/vuln/detail/CVE-2021-21224
https://nvd.nist.gov/vuln/detail/CVE-2021-21224
https://nvd.nist.gov/vuln/detail/CVE-2021-30561
https://nvd.nist.gov/vuln/detail/CVE-2021-30561
https://nvd.nist.gov/vuln/detail/CVE-2022-1486
https://nvd.nist.gov/vuln/detail/CVE-2022-1486
https://nvd.nist.gov/vuln/detail/CVE-2023-0473
https://nvd.nist.gov/vuln/detail/CVE-2023-0473
https://nvd.nist.gov/vuln/detail/CVE-2023-0703
https://nvd.nist.gov/vuln/detail/CVE-2023-0703

[16] National Vulnerability Database. CVE-2023-
1215. https://nvd.nist.gov/vuln/detail/
CVE-2023-1215, 2023.

[17] National Vulnerability Database. CVE-2023-
1235. https://nvd.nist.gov/vuln/detail/
CVE-2023-1235, 2023.

[18] Gregory J Duck and Roland HC Yap. Heap bounds
protection with low fat pointers. In Proceedings of the
25th International Conference on Compiler Construc-
tion (CC), pages 132–142, 2016.

[19] Gregory J Duck and Roland HC Yap. Effectivesan: type
and memory error detection using dynamically typed
c/c++. In Proceedings of the 39th ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, pages 181–195, 2018.

[20] Gregory J Duck, Roland HC Yap, and Lorenzo Caval-
laro. Stack bounds protection with low fat pointers. In
Annual Network and Distributed System Security Sym-
posium (NDSS), 2017.

[21] Cormac Flanagan and Stephen N Freund. Redcard: Re-
dundant check elimination for dynamic race detectors.
In European Conference on Object-Oriented Program-
ming, pages 255–280. Springer, 2013.

[22] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias
Payer, Cristiano Giuffrida, Herbert Bos, and Erik
Van Der Kouwe. Typesan: Practical type confusion
detection. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
pages 517–528, 2016.

[23] Kaiming Huang, Yongzhe Huang, Mathias Payer,
Zhiyun Qian, Jack Sampson, Gang Tan, and Trent Jaeger.
The taming of the stack: Isolating stack data from mem-
ory errors. In Proceedings of the Network and Dis-
tributed Systems Security Symposium (NDSS), page 17,
2022.

[24] Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung
Lee, and Mathias Payer. Hextype: Efficient detection
of type confusion errors for c++. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2373–2387, 2017.

[25] Albert Kwon, Udit Dhawan, Jonathan M Smith,
Thomas F Knight Jr, and Andre DeHon. Low-fat point-
ers: compact encoding and efficient gate-level implemen-
tation of fat pointers for spatial safety and capability-
based security. In Proceedings of the 2013 ACM
SIGSAC conference on Computer and Communications
Security (CCS), pages 721–732, 2013.

[26] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and
Wenke Lee. Type casting verification: Stopping an
emerging attack vector. In 24th USENIX Security Sym-
posium (USENIX Security 15), pages 81–96, 2015.

[27] Chengbin Pang, Yunlan Du, Bing Mao, and Shanqing
Guo. Mapping to bits: Efficiently detecting type confu-
sion errors. In Proceedings of the 34th Annual Computer
Security Applications Conference, pages 518–528, 2018.

[28] Bjarne Stroustrup. Multiple inheritance for c++. Com-
puting Systems, 2(4):367–395, 1989.

[29] Yulei Sui, Ding Ye, Yu Su, and Jingling Xue. Eliminat-
ing redundant bounds checks in dynamic buffer overflow
detection using weakest preconditions. IEEE Transac-
tions on Reliability, 65(4):1682–1699, 2016.

[30] The Clang Team. Clang Control Flow In-
tegrity. https://clang.llvm.org/docs/
ControlFlowIntegrity.html, 2022.

[31] The Clang Team. UndefinedBehaviorSan-
itizer. https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html, 2022.

[32] Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High system-code security with
low overhead. In 2015 IEEE Symposium on Security
and Privacy, pages 866–879. IEEE, 2015.

[33] Hongfa Xue, Yurong Chen, Fan Yao, Yongbo Li, Tian
Lan, and Guru Venkataramani. Simber: Eliminating re-
dundant memory bound checks via statistical inference.
In ICT Systems Security and Privacy Protection: 32nd
IFIP TC 11 International Conference, SEC 2017, Rome,
Italy, May 29-31, 2017, Proceedings 32, pages 413–426.
Springer, 2017.

[34] Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He,
and Zhendong Su. {SANRAZOR}: Reducing redun-
dant sanitizer checks in {C/C++} programs. In 15th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), pages 479–494, 2021.

16

https://nvd.nist.gov/vuln/detail/CVE-2023-1215
https://nvd.nist.gov/vuln/detail/CVE-2023-1215
https://nvd.nist.gov/vuln/detail/CVE-2023-1235
https://nvd.nist.gov/vuln/detail/CVE-2023-1235
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

	Introduction
	Background and Motivation
	Type Casting in C++
	Type Confusion Sanitizers
	C++ Casting with Custom Run Time Type Information (RTTI)

	Overview of T-Prunify
	Custom Type Check Inference
	Systematic Investigation
	Custom RTTI Identification
	Custom Type Check Identification

	Static Safe Casting Verification
	Implementation
	Evaluation
	Prevalence of custom RTTI
	Coverage
	Accuracy
	Runtime Overhead Reduction

	Limitations and Extensions
	Related Works
	Conclusion

