
TAJ: Effective Taint Analysis of Web Applications

Omer Tripp Marco Pistoia Stephen Fink Manu Sridharan Omri Weisman

IBM Software Group IBM T. J. Watson Research Center IBM Software Group

omert@il.ibm.com {pistoia,sjfink,msridhar}@us.ibm.com weisman@il.ibm.com

Abstract
Taint analysis, a form of information-flow analysis, establishes
whether values from untrusted methods and parameters may flow
into security-sensitive operations. Taint analysis can detect many
common vulnerabilities in Web applications, and so has attracted
much attention from both the research community and industry.
However, most static taint-analysis tools do not address criti-
cal requirements for an industrial-strength tool. Specifically, an
industrial-strength tool must scale to large industrial Web applica-
tions, model essential Web-application code artifacts, and generate
consumable reports for a wide range of attack vectors.

We have designed and implemented a static Taint Analysis for
Java (TAJ) that meets the requirements of industry-level applica-
tions. TAJ can analyze applications of virtually any size, as it em-
ploys a set of techniques designed to produce useful answers given
limited time and space. TAJ addresses a wide variety of attack vec-
tors, with techniques to handle reflective calls, flow through con-
tainers, nested taint, and issues in generating useful reports. This
paper provides a description of the algorithms comprising TAJ,
evaluates TAJ against production-level benchmarks, and compares
it with alternative solutions.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms Static Analysis, Web Applications, Security

Keywords Security, Static Analysis, Taint Analysis, Information
Flow, Integrity, Web Applications

1. Introduction
Information-flow violations [8] comprise the most serious security
vulnerabilities in today’s Web applications. In fact, according to
the Open Web Application Security Project (OWASP) [26], they
constitute the top six security problems. Automatically detecting
such vulnerabilities in real-world Web applications may be difficult
due to their size and complexity. Manual code inspection is often
ineffective for such complex programs, and security testing may
remain inconclusive due to insufficient coverage.

This paper proposes a static-analysis solution that detects four
of the aforementioned top six security vulnerabilities [26]:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

• Cross-site scripting (XSS) attacks (the most common vulnera-
bility) may occur when a Web application accepts data originat-
ing from a user and sends it to another user’s browser without
first validating or encoding it. For example, suppose an attacker
embeds malicious JavaScript code into his or her profile on a
social Web site. If the site fails to validate such input, that code
may execute in the browser of any other user who visits that
profile.

• Injection flaws (the second most frequent vulnerability) arise
when a Web application accepts input from a user and sends it
to an interpreter as part of a command or query, without first
validating it. Via this vulnerability, an attacker can trick the
interpreter into executing unintended commands or changing
data. The most common attack of this type is Structured Query
Language injection (SQLi).

• Malicious file executions (the third most common vulnerability)
happen when a Web application improperly trusts input files or
uses unverified user data in stream functions, thereby allowing
hostile content to be executed on the server.

• Information leakage and improper error-handling attacks (the
sixth most common vulnerability) take place when a Web ap-
plication leaks information about its own configuration, mech-
anisms, and internal problems. Attackers use this weakness to
steal sensitive data or refine their attacks.

Each of these vulnerabilities can be cast as a problem in which
tainted information from an untrusted “source” propagates, through
data and/or control flow, to a high-integrity “sink” without being
properly endorsed (i.e., corrected or validated) by a “sanitizer”.

To address these vulnerabilities, the research community has fo-
cused much attention on static analysis for information-flow secu-
rity of Web applications. Unfortunately, many of the published ap-
proaches do not immediately apply to industrial Web applications.
Many existing solutions require use of complex, non-standard type
systems, which are unlikely to enjoy broad adoption [36; 24; 30].
Other solutions, based on precise program slicing [16], have not
been shown to be sufficiently scalable [31; 13].

In this paper, we present Taint Analysis for Java (TAJ), a tool
designed to be precise enough to produce a low false-positive rate,
yet scalable enough to allow the analysis of large applications. TAJ
incorporates a number of techniques to produce useful results on
extremely large applications, even when constrained to a given time
or memory budget. Furthermore, TAJ supports many complex fea-
tures of Java Platform, Enterprise Edition (Java EE) Web applica-
tions that were often omitted from discussion in previous work.

In addition to a general overview of TAJ, this paper makes the
following specific contributions:

• Hybrid thin slicing. We present a novel thin-slicing algo-
rithm [33] that combines flow-insensitive data-flow propaga-
tion through the heap with flow- and context-sensitive data-flow
propagation through local variables.

• An effective model for static analysis of Web applications.
TAJ models reflective calls, tainted flows through containers,
detection of taint in the internal state of objects, the JavaServer
Pages (JSP), Enterprise JavaBeans (EJB), the Struts and Spring
frameworks, and many other challenging features that have
largely been ignored in the literature but are essential for ef-
fective analysis of Web applications.

• A set of bounded analysis techniques. When applications are
extremely large and the end user still requires the analysis
to terminate in a short time or stay below a given memory-
consumption level, TAJ supports a prioritization policy that
focuses the analysis on portions of the Web application that are
likely to participate in taint propagation.

• Implementation and evaluation. We have implemented TAJ
on top of the T. J. Watson Libraries for Analysis (WALA) [35]
and shipped it as part of a commercial product [17]. We present
implementation details of TAJ and experimental results ob-
tained by running TAJ on industrial codes. These results in-
clude comparisons between our techniques and alternative ap-
proaches.

The remainder of this paper proceeds as follows: Section 2 presents
a code sample demonstrating the challenges faced by taint analysis.
Section 3 details the TAJ framework and underlying algorithms.
In Section 4, we discuss code-modeling techniques to boost the
accuracy and scalability of TAJ, and in Section 5, we present a
technique that reduces the number of redundant reports presented
to the user. Techniques for bounded analysis appear in Section 6.
TAJ is evaluated in Section 7. Related work is described in Section
8. We conclude and discuss future work in Section 9.

2. Motivating Example
The example in Figure 1 shows some of the challenges faced by
static taint-analysis tools.1 Designed for expository purposes, the
example shows a Java Web application reading untrusted data from
servlet parameters. The example also shows some manipulation of
data via reflection, which often occurs in the implementation of
Web frameworks such as Struts or Spring. Since a practical tool
cannot anticipate all Web frameworks that customer code may rely
on, the tool is often forced to analyzed framework implementata-
tions directly, including reflective calls.

In the code sample, the tainted strings t1 and t2 get their val-
ues from the calls to getParameter at lines 13 and 14, respec-
tively. Next, a series of reflective calls acquire a reference to class
Motivating at line 18, gain access to method id at lines 19-26,
and invoke it at lines 31-36. Specifically, id is invoked (reflectively)
three times: first with a tainted argument (the value corresponding
to key "fName" in map m) at lines 31-32, then with a sanitized
argument (the value corresponding to key "lName", sanitized by
a call to URLEncoder.encode) at lines 33-34, and finally with a
non-tainted argument (the value corresponding to key "date") at
lines 35-36.

Since only the first call to id involves a tainted value, string
s1—which flows into the constructor of object i1 at line 37—
is tainted, whereas s2 and s3—which flow to the constructors of
objects i2 and i3 at lines 38 and 39, respectively—are not. Method
println is considered an XSS sink because it renders the string
value of its input to the screen. Thus, the call to println with
argument i1 at line 40 poses a security issue. The other two calls
to println—at lines 41 and 42—are benign.

1 The example is partially inspired by the Refl1 case in Stanford Se-
curiBench Micro [34].

This example illustrates many of the challenges posed by static
taint analysis of real programs. To analyze this code precisely,
the analysis must track flow through reflective calls [19] as well
as through containers (the map m) and object fields (the objects
flowing into println are i1, i2 and i3, rather than s1, s2 and
s3). Static-analysis algorithms that cannot disambiguate the three
calls to invoke on idMethod, as well as the three instances of
Motivating$Internal, will fail to distinguish between the vul-
nerable and benign calls to println. Similar problems would arise
from an inability to distinguish the results of the three calls to
method get on map m, based on the key provided as an argument.

1: public class Motivating {
2: private static class Internal {
3: private String s;
4: public Internal(String s) {
5: this.s = s;
6: }
7: public String toString() {
8: return s;
9: }
10: }
11: protected void doGet(HttpServletRequest req,
12: HttpServletResponse resp) throws IOException {
13: String t1 = req.getParameter("fName");
14: String t2 = req.getParameter("lName");
15: PrintWriter writer = resp.getWriter();
16: Method idMethod = null;
17: try {
18: Class k = Class.forName("Motivating");
19: Method methods[] = k.getMethods();
20: for (int i = 0; i < methods.length; i++) {
21: Method method = methods[i];
22: if (method.getName().equals("id")) {
23: idMethod = method;
24: break;
25: }
26: }
27: Map m = new HashMap();
28: m.put("fName", t1);
29: m.put("lName", t2);
30: m.put("date", new String(Date.getDate()));
31: String s1 = (String) idMethod.invoke(this, new
32: Object[] {m.get("fName")});
33: String s2 = (String) idMethod.invoke(this, new
34: Object[] {URLEncoder.encode(m.get("lName"))});
35: String s3 = (String) idMethod.invoke(this, new
36: Object[] {m.get("date")});
37: Internal i1 = new Internal(s1);
38: Internal i2 = new Internal(s2);
39: Internal i3 = new Internal(s3);
40: writer.println(i1); // BAD
41: writer.println(i2); // OK
42: writer.println(i3); // OK
43: } catch(Exception e) {
44: e.printStackTrace();
45: }
46: }
47: public String id(String string) {
48: return string;
49: }
50: }

Figure 1. Motivating Program

3. Core Taint Analysis
TAJ takes a Web application and its supporting libraries, and checks
it with respect to a set of “security rules”. Each security rule is of
the form (S1, S2, S3), where S1 is a set of “sources”, S2 is a set of

“sanitizers”, and S3 is a set of “sinks”. A source is a method whose
return value is considered tainted, or untrusted.2 A sanitizer is a
method that manipulates its input to produce taint-free output. A
sink is a pair (m, P), where m is a method that performs security-
sensitive computations and P contains those parameters of m that
are vulnerable to attack via tainted data. TAJ statically checks that
no value derived from a source is passed as an input to a sink unless
it first undergoes appropriate sanitization.

TAJ consists of two stages. The first phase performs pointer
analysis and builds a call graph. The second phase runs a novel
slicing algorithm to track tainted data.

3.1 Pointer Analysis and Call-graph Construction
The TAJ architecture supports any preliminary pointer analysis
and call graph construction algorithm. The current implementation
relies on a context-sensitive variant of Andersen’s analysis [1] with
on-the-fly call graph construction.

TAJ employs a custom context-sensitivity policy tuned to ad-
dress precision and performance issues that arise when analyzing
real codes. Most methods are analyzed with one level of object
sensitivity [18; 22], in which the context of a method invocation
consists of the invoked method and the object abstraction represent-
ing the receiver. The policy also includes careful treatment of col-
lections and security-related Application Programming Interfaces
(APIs). In particular:

• Java collection classes are treated with unlimited-depth (up to
recursion) object-sensitivity. This means that all internal objects
of a collection are cloned for each collection instance. As a
result, the contents of Java collections from different allocation
sites are fully disambiguated, eliminating a major source of
pointer-analysis pollution.

• The pointer analysis adds one level of call-string context to
calls to library factory methods. These methods tend to pollute
pointer-flow precision if handled without context sensitivity,
because all the objects created by a factory method share the
same allocation site.

• Taint-specific APIs, such as sources and sinks, are also analyzed
with one level of call-string context. This is necessary due to the
special role these APIs play in taint propagation. In the example
given in Figure 1, this context allows TAJ to disambiguate the
two calls to source method getParameter at lines 13 and 14,
even though they are performed on the same receiver object.

As for other dimensions of precision, the pointer analysis of TAJ
is field-sensitive [29]. Furthermore, it relies on a Static-Single As-
signment (SSA) register-transfer language representation of each
method [6], which gives a measure of flow sensitivity for points-to
sets of local variables [14].

3.2 Hybrid Thin Slicing
Using the preliminary pointer analysis and call graph, the second
phase of TAJ tracks data flow from tainted sources using hybrid
thin slicing, a novel thin-slicing algorithm [33]. Hybrid thin slicing
combines flow-insensitive reasoning about flow through the heap
with flow- and context-sensitive tracking of flow through local
variables.

Thin slicing [33] is a good basis for taint analysis since a thin
slice typically captures the statements most relevant to a tainted
flow. A forward thin slice from a statement t consists of those state-
ments that are data-dependent on t [16], excluding base-pointer de-
pendencies: for a store statement x.f = y, dependencies due to

2 Some methods, such as RandomAccessFile.readFully in package
java.io, receive parameters by reference and taint their internal state. TAJ
also supports the specification of such methods as sources.

uses of the base pointer x are ignored; loads are handled similarly.
Thin slices are typically much smaller and more understandable
than program slices. Note that in [33], the term “thin slice” refers
to a backward thin slice, in which data dependencies are consid-
ered in the opposite direction, while here we use this term to mean
a forward thin slice.

Thin slices do not include control dependencies, and hence
TAJ does not track the corresponding indirect information flow.
Experience shows that attacks based on control dependence are rare
and complex, and thus less important than direct vulnerabilities.

Hybrid thin slicing combines aspects of the previously proposed
context-sensitive (CS) and context-insensitive (CI) thin slicing al-
gorithms [33], achieving a better tradeoff between scalability and
precision for taint analysis. Like CS thin slicing, hybrid thin slicing
tracks flow through local variables with flow and context sensitiv-
ity. However, unlike CS thin slicing, the hybrid technique does not
track heap data dependencies via additional method parameters and
return values, as this treatment is a scalability bottleneck [33]. This
handling of heap dependencies by CS thin slicing is also unsound
for multi-threaded programs since it is partially flow-sensitive, and
many of our target Web applications are multi-threaded. Instead,
hybrid thin slicing tracks heap data dependencies via direct edges
from stores to loads. Such edges are added based on the prelim-
inary pointer analysis, as in CI thin slicing. As we shall show in
Section 7, the hybrid approach yields better scalability than CS thin
slicing and better precision than CI thin slicing (with better perfor-
mance than CI in some cases).

Hybrid thin slicing performs a demand-driven traversal over a
special System Dependence Graph (SDG) [16] called the Hybrid
SDG (HSDG). Nodes in an HSDG correspond to load and store
statements in the program, as well as call statements representing
source and sink methods.

An HSDG has two types of edges representing data dependence:
“direct edges” and “summary edges”. A direct edge connects a
store to a load and represents a data dependence computed by a
preliminary pointer analysis (as in CI thin slicing [33]). A sum-
mary edge can connect s to t if t is transitively data-dependent on
s purely via flow through local variables; flow through the heap
is excluded. Summary edges are obtained on demand by comput-
ing context-sensitive reachability over a no-heap SDG—an SDG
that elides all control- and data-dependence edges reflecting flow
through heap locations. Note that the no-heap SDG includes no
successor edges for sanitizer return and sink call statements, since
we need not track flow beyond these statements.

TAJ computes the successors of a statement x in the HSDG on
demand, as follows:

• If x = st is a store statement, then precomputed points-to
information is used to connect st to all load statements l such
that the base pointers of st and l are may-aliased.

• Otherwise, a context-sensitive slice is computed from program
point x on the no-heap SDG using the Reps-Horwitz-Sagiv
(RHS) tabulation algorithm [28]. All the statements in the slice
corresponding to store instructions and sink invocations are
registered as the successors of x.

Figure 2 shows an example, which displays the slice computed on
the no-heap SDG corresponding to a load-to-store summary edge
in the HSDG.

To find tainted flows, we compute reachability in the HSDG
from each source-call statement s, adding the necessary direct and
summary edges on demand. The nodes reachable from s represent
the load, store, and sink statements directly data-dependent on s
(ignoring base-pointer data dependencies). Our final output recon-
structs thin slices from s to sensitive sinks via the HSDG and rele-
vant no-heap SDGs.

st4st4

l2l2

l2l2

st4st4
l4l4

st2st2st1st1

l5l5l3l3

l1l1

st3st3

st5st5

c3c3

c4c4

sk1
sk1

r3r3

r7r7

r8r8

r4r4

c2c2

s1s1

s2s2

r2r2

c1c1

c5c5

r5r5

r1r1

sk2sk2

stisti
Store
statement

lili
Load
statement

skiski
Sink-dispatch
statement

Hybrid SDG

Slice in the
no-heap

SDG

Store-to-load
direct edge

Load-to-store or load-
to-sink summary edge
No-heap SDG
edge

cici Call statement

riri Return statement

sisi Other statement

Figure 2. Fragment of the HSDG

Comparison to Refinement-Based Pointer Analysis The hybrid
thin-slicing algorithm can be described in terms of Refinement-
Based Pointer Analysis (RBPA) [32]. Our direct edges from stores
to loads correspond to match edges in RBPA. However, whereas
the initial match edges in RBPA are based solely on field types,
our algorithm computes initial match edges more precisely with
a preliminary pointer analysis. Thus, while RBPA starts with a
relatively imprecise solution and tries to recover precision through
refinement, our approach starts with a relatively precise solution
and does not refine.

A second difference between hybrid thin-slicing and RBPA is
that the latter is forced to collapse strongly-connected call-graph
components discovered during analysis. In contrast, since hybrid
thin slicing does not refine match edges, it can also handle method
recursion on match-edge-free subpaths precisely.

We studied the refinement-based approach and found that it
introduces additional false positives compared to our approach,
which we wished to avoid.

4. Code-modeling Techniques
In this section, we detail modeling techniques used to deal with
code that TAJ either (1) cannot analyze (for example, native code)
or (2) does not analyze directly for efficiency. In Section 4.1, we
describe modeling specific to checking security properties, and in
Section 4.2 we discuss more generally-applicable modeling tech-
niques.

4.1 Security-specific Modeling
This section presents the code-modeling techniques employed by
TAJ to effectively capture taint flows due to objects that carry
tainted data as part of their internal states. It also shows how code
modeling can be used to detect information leakage and improper
error handling, a vulnerability defined in Section 1.

4.1.1 Taint Carriers
TAJ must handle cases where tainted data is passed to a sensitive
sink via the internal state of a parameter, rather than the param-
eter itself. For example, in line 40 of Figure 1, a tainted String
is passed to the println sink method indirectly, wrapped in an
Internal object. This constitutes a security vulnerability which
must be flagged by TAJ.

We use the term taint carrier to refer to an object whose internal
state contains tainted data. TAJ handles taint carriers by reporting
an issue whenever a taint carrier is passed as a sensitive parameter

to a sink. Ideally, specifications would indicate precisely which
access paths of sink parameters must not hold sensitive data, in
which case the analysis could check these access paths directly.
However, in many cases such specifications would be difficult or
impossible to write, e.g., when a sink uses native code or when it
takes a parameter of interface type. To avoid missing issues, we
treat any passing of a taint carrier to a sink as a possible bug.

Our implementation handles taint carriers by using the prelimi-
nary pointer analysis to augment the HSDG with additional edges.
We consider a pointer-analysis solution as a heap graph [10]—a
bipartite graph whose nodes represent abstract objects (henceforth,
instance keys) and abstract pointers (henceforth, pointer keys).
Given pointer key P and instance key I , an edge P → I indi-
cates that P may point to I . An edge I → P indicates that P
represents either a field of an object instance modeled by I , or the
array contents of array instance I . Based on the heap graph, our
algorithm employs the following logic to supplement the HSDG
with data-flow edges from store statements to sink calls:

1. For any store statement st, let pk be the pointer key correspond-
ing to the base pointer for the store. Let Ist be the points-to set
of pk. Similarly, for any sink invocation sk, let Isk denote the
union of the points-to sets for the sensitive formal parameters
of sk.

2. For each sink invocation sk, let I∗
sk be the set of instance keys

reachable in the heap graph from the instance keys in Isk.

3. Add edge st → sk to the HSDG if and only if Ist ∩ I∗
sk �= ∅.

For example, on the code of Figure 1, the taint-carrier-detection
algorithm synthesizes the HSDG edge from the store at line 5
(in the clone of the Internal constructor corresponding to the
allocation at line 37) to the sink call at line 40. With this edge, TAJ
discovers the tainted flow that from line 13 reaches line 40 going
through lines 37 and 5.

Step 2 of this algorithm may introduce false positives due
to pointer analysis imprecision; we address this concern in Sec-
tion 6.2.

4.1.2 Handling Exceptions
TAJ employs special-case modelling for vulnerabilities from ex-
ceptions. Consider, for example, the following block of code,
which exemplifies the (unfortunately) common practice of ren-
dering caught exceptions to the screen:

protected void doGet(HttpServletRequest req,
HttpServletResponse resp) throws IOException {

try {
...

} catch (Exception e) {
resp.getWriter().println(e);

}
}

This code may leak sensitive information concerning the in-
ternal makeup of the application, as the default implementa-
tion of Exception.toString includes the result of the call to
Exception.getMessage in its return value. As mentioned in Sec-
tion 1, exposing this information to unauthorized observers cur-
rently constitutes the sixth most common security vulnerability in
today’s Web applications. To account for this type of flow—where
it is not clear which source should be defined—TAJ synthesizes
code that calls getMessage on a caught Exception object, and
marks this synthetic code as a source of tainted data. Similar tech-
niques model taint flow in certain JSP tags.

4.2 General Models
A basic approach to static analysis would model all available pro-
gram and library code directly. However, to improve performance
and precision, we tune the analysis with various higher-level mod-
els. These models are general purpose and may be useful for other
static analyses.

Our models serve several functions in the analysis. First, code
that cannot affect the flow of taint through the program can be ig-
nored. Second, certain library methods can be summarized, creat-
ing models that provide a succinct yet sound description of the rel-
evant behavior. Finally, models can compensate for cases in Web-
framework clients where data flow is not clear from the code alone.
We next discuss specific examples of how TAJ employs synthetic
models of code.

4.2.1 Code-reduction Techniques
A simple, yet effective, code-reduction optimization is to exclude
benign library classes, packages, and subpackages based on a
whitelist generated by hand.

A more interesting type of modeling can simplify data-flow
propagation by substituting simpler models for library meth-
ods, where the simpler model encodes the behavior with re-
spect to flow of taint. For example, taint analysis does not need
to analyze the complex manipulations in the implementation of
URLEncoder.encode; it suffices to observe that this method re-
turns some string that is sanitized according to the relevant rules.

Using this insight, TAJ gives special treatment to String op-
erations, which arise frequently in tainted flows, have relatively
simple semantics, but are often difficult to analyze precisely. We
define the family of string carriers to include classes String,
StringBuffer and StringBuilder in package java.lang.
String-carrier instances are handled as if they were primitive values
by inserting appropriate operations into the SSA representation for
each method that manipulates string carriers and modeling their
public APIs. With this treatment, the analysis need not track the
contents of string carriers through the heap during pointer analysis,
and loses no precision.

TAJ also applies special treatment to dictionaries from the stan-
dard libraries. Clearly, the general problem of tracking data flow
through a hash set is difficult. However, we observe that many Web
applications access hash structures with keys that can be resolved
as constants. Exploiting this observation, TAJ applies special logic
to track data flow between statements making read or write access
to hash structures, whenever the key can be statically resolved as a
constant. For example, in the following code, TAJ will determine
that o1 cannot flow to o2 based on the keys used to access s:

HttpSession s;
Object o1;
... // Initialization code here.
s.setAttribute("a", o1);
Object o2 = s.getAttribute("b");

Precise handling of this special case dramatically improves preci-
sion, as this idiom appears often in Web applications.

4.2.2 Approximating the Behavior of Web Frameworks
In many Web applications, precise analysis requires information
that is external to the program’s code (e.g. configuration files).
In these cases, TAJ often uses models that provide a conservative
approximation of possible behavior.

For example, TAJ uses this type of modeling to support the
Apache Struts framework. Struts is an implementation of the Model
View Controller (MVC) pattern, where the controller is configured
based on an eXtensible Markup Language (XML) file, the model
consists of the business logic and the model state (which are repre-

sented by the Action and ActionForm classes respectively), and
the view is a JSP file. The dispatch logic coded into the XML guides
the framework when invoking business-logic elements, in the form
of Action classes, by invoking the execute method on them. This
method takes as a parameter an ActionForm instance, whose fields
are populated by the framework based on user input (and should
thus be considered tainted).

The fact that Action classes are dispatched by the Struts frame-
work is modeled by treating them as entrypoints; the analysis be-
gins at their implementation of execute, and synthesizes an ap-
propriate program state. When ActionForms are passed as argu-
ments in calls to Action.execute, the analysis first checks which
constraints the concrete implementation of execute places on its
ActionForm parameter—in the form of cast operations—and then
simulates the passing of all compatible subtypes of ActionForm
as parameters to execute. For each of these subtypes, the system
generates a synthetic constructor which assigns tainted values to
all its fields (this is done recursively, as fields may be of compound
types).

Another crucial challenge for Java EE applications concerns ac-
counting for EJB calls. Consider an enterprise bean having remote
interface EB2, home interface EB2Home and bean class EB2Bean.
Assume that a method m2 is declared in EB2 and implemented in
EB2Bean. To call m2 remotely, a method m1 in bean EB1Bean would
perform the following:

Context initial = new InitialContext();
Object objRef = initial.lookup("java:comp/env/ejb/EB2");
EB2Home eb2Home = (EB2Home) PortableRemoteObject.narrow(

objRef, EB2Home.class);
EB2 eb2Obj = eb2Home.create();
eb2Obj.m2();

At the bytecode level, the call to eb2Obj.m2 delegates to an im-
plementation generated automatically by the Java EE deployment
tool. The Java EE container consults run-time registries and a back-
ing persistence manager (usually a database) to map the remote m2
method call to the actual method implementation, and then passes
a message to the process hosting the home container for EB2Bean
using Remote Method Invocation over Internet Inter-ORB Proto-
col (RMI-IIOP). The receiving process unmarshalls the RMI-IIOP
message, activates the relevant component through the bean life-
cycle implementation, and finally delegates to a reflective call to
complete the remote invocation.

Analyzing bytecode alone, it would be impossible to resolve this
remote method invocation, since the relevant dispatch tables are en-
coded in the XML deployment descriptor, and read by the container
at run-time. To guarantee soundness, it would then be necessary to
analyze the container code, but given its complexity and size, this
would limit the scalability and precision of the analysis. TAJ does
not analyze the thousands of methods in the container implementa-
tion that perform the remote invocation of m2; instead, it bypasses
the container and recognizes special semantics for the call to m2. To
achieve this result, TAJ consults the deployment descriptor, gener-
ates an analyzable artifact representing the semantics of a call to
m2, and models the call as dispatching to this artifact.3 The simple
semantics there suffice to construct a correct call graph incorpo-
rating the call to m2, independent of the container implementation.
Effectively, TAJ ignores the generated deployed code, and mod-
els the application-level semantics of EJB calls directly, based on
direct analysis of the deployment descriptor. This functionality is
essential for accurate analysis of EJB calls in Java EE, and—to our
knowledge—is not supported by any other static-analysis imple-
mentation.

3 Details on the construction of this analyzable artifact are given in [9].

Our choice to model EJB calls in this way has three advantages.
First, it allows scalability, as the body of code to analyze is dramat-
ically reduced. Second, it enhances precision, as mapping an EJB
remote method to its actual implementation in the corresponding
EJB class without analyzing a container’s RMI-IIOP implementa-
tion minimizes the risk of data-flow pollution. Finally, portability is
accomplished by virtue of the fact that the analysis results are not
dependent on the container implementation.

4.2.3 Reflection APIs and Native Methods
TAJ includes significant machinery to approximate the behavior of
Java reflection APIs, such as Class.forName and Method.invoke.
When the value of an argument to a reflection API can be inferred
(for example, when it is constant), the system synthesizes a relevant
abstraction in place of the reflective call.

Finally, the system relies on hand-coded synthetic models for
native methods in the standard Java library. This is essential not
only for tracking data- and control-flow information, but also
because native calls figure prominently in security-related oper-
ations. For example, Thread.start and the four overloads of
AccessController.doPrivileged are all based on native APIs.
Failure to analyze these methods would render the analysis useless
for many real-world Web vulnerabilities.

5. Eliminating Redundant Reports
Some tainted flows reported by the analysis may be redundant to
a user. The analysis can compute all flows of the form sr � sk,
where sr is a source, sk is a sink, and no sanitizer is present along
the path from sr to sk. However, from a user’s perspective, this
may be too much information, since many of these flows might
redundantly expose a single logical flaw.

We now describe an approach to address this potential redun-
dancy. Considering the insertion of a sanitizer invocation into the
path as a remediation action, we propose an approach whereby
flows are grouped together according to the remediation actions
they map to. TAJ reports one representative per group, rather than
all the flows.

Formally, we define a library call point (LCP) to be the last
statement along a flow from a source to a sink where data flows
from application code (i.e., the project’s source code) to library
code (i.e., libraries referenced by the project). Data can flow from
application to library in one of three ways: (1) a library method
is invoked from application code, (2) a library memory location
is written from application code, or (3) an application memory
location is read from library code.

With this definition at our disposal, we can introduce an equiv-
alence relation ∼, as follows: Let U and V be two flows. Then
U ∼ V , if and only if (1) U |LCP ≡ V |LCP (where X|LCP is
the part of flow X extending from the source to the LCP inclusive),
and (2) U and V require the same remediation action. The equiv-
alence classes induced by ∼ are the sets of flows into which flows
are classified.

For example, considering the call graph illustrated in Figure 3,
we can define U as the flow along path p1 and V as the flow through
p2. We note that nodes n10 and n11 are both sinks with the same
issue type (for example, XSS or SQLi), and so they both require the
same remediation action, or sanitation logic. Since U and V both
transition from application code to library code at the same point
(n4), it follows that U ∼ V .

If we instead define U as the flow along p3 and V as the flow
through p4, then U and V do not share the same LCP, and thus
belong in different equivalence classes, despite flowing from the
same source to the same sink. The justification for this is that, po-
tentially, the remediation action introduced for U will not remove
the security threat exposed in V (e.g., if a sanitizer is called from

node n3). Similarly, the flows through p4 and p5 are both reported,
although they originate from the same source and pass through the
same LCP, since they end at sinks corresponding to different issue
types, and may therefore require different remediation actions.

n2n2

n9n9n8n8

n4n4n3n3

n1n1

n11n11

n7n7n6n6n5n5

n10n10

Sinks with
same issue

type

Node
with LCP

Application

Library

p1 = (n1, n2, n4, n7, n10)
p2 = (n1, n2, n4, n7, n11)
p3 = (n1, n2, n4, n9)
p4 = (n1, n2, n3, n6, n9)
p5 = (n1, n2, n3, n5, n8)

Figure 3. Call Graph Illustrating the LCP Concept

Our analysis of the example in Figure 3 demonstrates the
twofold advantage of the LCP-based method of classification: (1)
the part of flow X that is under the developer’s control is precisely
X|LCP ,4 and (2) if flow X is a representative of equivalence class
[X]∼, then, once the vulnerability exposed in X is remedied, all
the other flows in [X]∼ will be remedied as well. This compact,
action-oriented report greatly improves user experience.

TAJ uses the following algorithm to generate minimal reports
according to this property:

1. After hybrid thin slicing, a view of the HSDG restricted to state-
ments in the slice is produced. This view is then traversed back-
wards starting from sinks, and LCPs are identified as transitions
from library to application code. This step outputs a relation
mapping sinks to LCPs.

2. For each LCP lcp, the associated sinks are grouped into equiv-
alence classes according to the indicated remediation logic. Let
Slcp be the set of sink-equivalence-class representatives for an
LCP lcp.

3. We identify every source/LCP pair (sr, lcp) for which there
is a data-flow path from sr to lcp, traversing the hybrid thin
slice. For each such pair (sr, lcp), for each sk ∈ Slcp, report
sr � lcp � sk as a potential vulnerability, if so indicated by
the security rules.

6. Bounded Analysis Techniques
When analyzing large applications, a user may decide to constrain
the analysis to a specific time and memory budget. This section
presents a set of techniques for customizing the analysis to produce
satisfactory results within a fixed budget.

6.1 Priority-driven Call-graph Construction
Under a fixed time and memory budget, TAJ may terminate pointer
analysis and call-graph construction early, yielding an underap-
proximate result. The result is underapproximate since the points-
to relation computed by Andersen’s analysis grows monotonically.
While the underapproximate call graph and points-to relation may
not be sound, they are often sufficient for finding many bugs.

When terminated early, the order in which the pointer analysis
adds and solves constraints can have a strong impact on the number
of bugs discovered in taint analysis. TAJ uses priority-driven call-
graph construction to heuristically improve pointer analysis quality

4 Note, however, that X|LCP may transition between application and li-
brary code multiple times, which implies that parts of this sub-flow may not
be accessible to the developer.

within a fixed budget. The priority heuristic favors the analysis of
methods that are more likely to generate and propagate taint. Our
experiments show that it enables the detection of a significantly
larger number of taint vulnerabilities than chaotic iteration when
TAJ runs in a constrained time or memory budget.

Priority-driven call-graph construction forces the pointer anal-
ysis to add constraints first from higher-priority methods—in this
case, those methods likely to be more relevant to taint analysis.
Our pointer analysis iterates between two key phases: (1) con-
straint solving, which computes points-to relationships and notes
newly discovered targets for virtual calls, and (2) constraint adding,
which adds constraints for new methods found to be reachable by
constraint solving.5 Priority-driven call-graph construction changes
phase (2); it assigns a priority to pending methods and ensures that
in each pass, constraints are only added for the highest-priority
method. In this manner, methods more relevant to taint analysis
are processed earlier by the pointer analysis.

More formally, let G = (N, E) be the call graph under con-
struction. We assume that the budget takes the form of a bound on
the number of call graph nodes, i.e., a number maxNodes such that
|N | ≤ maxNodes .

The construction of G is governed by a priority policy Π : N →
N, where smaller numbers mean higher priority. Upon creation of
a new call-graph node n,6 Π uses the following initial-assignment
rule to assign n a priority: if n is a source node, then Π(n) := 0;
otherwise, Π(n) := maxNodes . The idea behind this rule is that
source nodes represent taint generation and so should be given the
lowest priority value (corresponding to the highest importance) in
the construction of G.

Pointer analysis and call-graph construction begins by instan-
tiating call-graph nodes that represent invocations of application
entrypoints and adding them to a priority queue Q. Then—while
Q �= ∅ and the analysis budget has not been met—the following
steps are run in a loop:

1. A node n with the lowest priority value in Q is dequeued.

2. A set Tn ⊆ N is constructed as follows: Tn contains (1) all the
predecessors and successors of n in G, and (2) all the existing
nodes that represent methods containing a load statement that,
according to the pointer analysis, matches a store statement in
the method represented by n (in which case, there will be a
direct edge from the store to the load in the HSDG). Any node
t ∈ Tn with no priority assigned yet is given priority Π(t)
according to the initial-assignment rule.

3. The priorities of all nodes t ∈ Tn are updated according to the
following update rule: Π(t) := min{Π(t), Π(n) + 1}.

4. Nodes in Tn are added to Q if necessary.

5. Any node t ∈ Tn whose priority changed in Step 3 propagates
its priority to all the nodes in Tt. This propagation process runs
to a fixed point.

6. Constraints for n are added to the pointer-analysis-constraint
system, and constraint solving runs to a fixed point.

The reasoning behind steps 2 and 3 above is based on the locality-
of-taint principle, which is an observation to the effect that if
taint flows through a particular code location, then nearby code
locations (those in the Tn set above) are also likely to be relevant
to taint propagation. In Step 2, methods containing load statements
matching the stores in n are considered “near” n due to the possible

5 For context-sensitive analysis, constraints are added separately for each
method clone.
6 A call-graph node represents a method in some calling context, as deter-
mined by the context-sensitivity policy.

corresponding flow through the heap. Step 3 ensures that all nearby
methods for n have a priority close to that of n—since n has
been deemed relevant to taint, nearby methods are also likely to
be relevant.

Another important aspect of the technique is the role played
by Π. Since Π assigns the maximal possible priority as the initial
priority for source nodes, the algorithm favors nodes closer to the
sources of taint. This bias leads to the discovery of more taint-
related bugs in practice.

6.2 Useful Bounds on Analysis Dimensions
The call-graph construction process is not the only aspect of our
algorithm that can be bounded. Limits can also be set on the slic-
ing process, the algorithm searching for nested taint under object
abstractions, and many other components of the framework. The
choice of which dimensions to bound, and how to bound them, is
crucial for an analysis to yield satisfying results under constraints.
In what follows, we discuss bounds we found to be useful when
running TAJ in environments with limited resources.

6.2.1 Slice Size
There are two ways to constrain the size of a slice, when computed
through hybrid thin slicing. One is to limit the number of heap
store-to-load transitions, and another is to cast constraints on the
slice sizes through the no-heap SDG. Our experience suggests that
limiting the number of heap transitions yields better overall results.
The main reason for this is the loss of precision entailed by data
flow through the heap, which relies on a flow-insensitive pointer
analysis. It is straightforward to constrain the size of the slice in
this manner during hybrid thin slicing by keeping track of store-to-
load expansions of the slice.

6.2.2 Flow Length
The loss in precision entailed by long series of heap transitions,
along with other over-approximations that are required for sound
analysis (such as the static resolution of reflective and virtual calls),
account for a strong correlation between the length of a reported
flow and its classification as a true positive. Our empirical studies
suggest that the longer a flow is, the less likely it is to be a true
positive. The theoretical justification for this is that the longer
a flow is, the more opportunities the analysis has to err on the
conservative side. Section 7 presents further confirmation for this
claim, in the form of empirical evidence.

6.2.3 Nested-taint Depth
Using the algorithm described in Section 4.1.1 to compute the set
of objects reachable from a given object abstraction, without plac-
ing any restriction on the length of field-dereference sequences, can
lead to an overly conservative analysis. This can happen, for exam-
ple, if a data-structure reference is stored as the field of an object,
thereby bridging between that object and the transitive fields of all
the objects stored in the data structure. While dismissal of long
field-dereference sequences from consideration (by introducing a
bound) is theoretically unsound, our experience suggests that it is
highly unlikely for a sink to consume data that is stored “deep” in-
side the state of its arguments. Empirically, we found 2 levels of
field dereference to be sufficient, as will be discussed in Section 7.

7. Experimental Results
Since TAJ was designed to support a commercial product [17], it
has undergone extensive evaluation on a large set of large industrial
benchmarks. In this section, we present and discuss results from the
main experiments, run on 22 benchmarks.

7.1 Experimental Setup
TAJ is a WALA client [35] written in Java and implemented as an
Eclipse V3.4 plug-in. Its testing environment comprised an IBM
desktop running Microsoft Windows XP Service Pack 3, with a
1.86 GHz Intel Core 2 processor and 3GB of RAM. TAJ was
run on top of Sun Microsystems Java Standard Edition Runtime
Environment (JRE) V1.6.0 06, using 1 GB of heap space.

Algorithm Nested Taint LCPs Modeling Priorities Other Bounds

Unbounded �
Hybrid Prioritized � �

Optimized � � � � �
CS �
CI �

Table 1. Settings Used for the Evaluated Algorithms

Five different algorithms were evaluated: CS thin slicing [33],
CI thin slicing [33], and three variants of hybrid thin slicing—
an unbounded version running to completion, a prioritized ver-
sion running under a call-graph size bound with the priority-driven
scheme, and a fully optimized version running with all the optimiza-
tions and bounds described above. Details concerning the settings
we used are provided in Table 1. A call-graph bound of 20,000
nodes was used for the prioritized and fully optimized versions of
the hybrid algorithm. The fully optimized variant also restricts heap
transitions (during slicing) to 20,000, filters out flows whose length
is greater than 14, and allows no more than 2 field dereferences
when running the taint-carrier detection algorithm.

Table 2 lists information about the applications used for the
evaluation, including supporting libraries. The identifiers A, B, I,
S and ST are used instead of the actual names of the corresponding
applications for anonymity. Together, the 22 benchmarks included
in our experiments capture all the challenges discussed in earlier
sections. Most of the benchmarks make heavy use of Web frame-
works and reflection, and—as confirmed by manual inspection—
all of the selected benchmarks expose non-trivial taint flows. The
larger benchmarks also pose scalability challenges. Some of the ap-
plications in the list have been included in previous studies on taint
analysis [20].

7.2 Discussion
Results concerning the performance of each of the algorithms are
detailed in Table 3. For nine of the applications, we manually
classified the reported issues into true and false positives. The
distribution of reports between these two categories appears in
Figure 4.7

The following trends are apparent from the gathered data:

The unbounded hybrid algorithm offers a compelling tradeoff be-
tween performance and accuracy, when compared to the CI and
CS configurations.
Table 3 presents the running times for all configurations on all
benchmarks. The average running time for the unbounded hybrid
configuration was 1051 seconds, which is a factor of 2.65X slower
than the CI configuration. The CS configuration only completed
on six of the smaller benchmarks. (On the remaining benchmarks,
the CS analysis ran out of memory.) On these six benchmarks, the
average running time for the unbounded hybrid configuration was
19.3 seconds, which is a factor of 29X faster than the CS configura-
tion. Note from Table 1 that all configurations use synthetic models,
which are key to good performance.

7 Empty entries in Table 3, as well as missing columns in Figure 4, represent
instances where the relevant algorithm failed to complete its run on the input
program. The only algorithm for which such cases were registered is CS
thin slicing.

Turning to accuracy, we examine the data breaking down false
positives, as reported in Figure 4. We define the accuracy score
for an analysis as the ratio between the number of true positives
and the number of true and false positives combined, which cor-
responds to the total number of reported issues; a higher accuracy
score indicates better accuracy. The respective accuracy scores of
the unbounded hybrid, CS and CI algorithms are 0.35, 0.54 and
0.22. Note that the CS algorithm completed only on four of the
benchmarks for which we manually evaluated accuracy. On these
four benchmarks, the unbounded hybrid and CI algorithms had ac-
curacy scores of 0.54 and 0.34, respectively. In the worst case (A),
the unbounded hybrid algorithm is only 1.05 times less accurate
than CS.

An interesting observation is that the unbounded hybrid and CI
algorithms agree on the number of true positives for all the nine
benchmarks for which we manually evaluated accuracy, which is
expected given that both these algorithms are sound, while the CS
algorithm has false negatives on BlueBlog, I and SBM; the numbers
of false negatives are 2, 1 and 2, respectively. This reflects the fact
that the CS algorithm is unsound with respect to multi-threaded
applications, as we observed in Section 3.

We conclude that the unbounded hybrid algorithm represents an
attractive tradeoff between performance and accuracy.

The prioritized hybrid algorithm offers superior accuracy and
performance tradeoffs than the CI and unbounded hybrid con-
figurations.
On the 9 benchmarks evaluated manually, the unbounded hybrid
algorithm reports 556 false positives, while the prioritized version
reports only 146 false positives. The 20,000-node call-graph bound
did not lead to any missed true positives on 8 of the 9 benchmarks,
with Webgoat as the only exception. Compared to CI (which is the
most conservative algorithm), the prioritized hybrid algorithm in-
troduces only 1 more false negative on A and 3 more false negatives
on BlueBlog. The prioritized hybrid algorithm runs on average in
215 seconds, a factor of 1.8X faster than CI.

We conclude that the prioritized hybrid algorithm offers a com-
pelling tradeoff between performance gain and accuracy loss com-
pared to the unbounded alternatives.

The fully optimized version of the hybrid algorithm is more ac-
curate than the prioritized variant and more efficient than the CI
algorithm.
Compared to the prioritized hybrid algorithm, the fully optimized
variant introduces only 1 new false negative (on BlueBlog). It
finds, however, 14 more true positives (on Webgoat), and reports
an overall of 74 false positives, compared to 146 false positives re-
ported by the unoptimized prioritized hybrid configuration.

Intuitively, the fully optimized version recovers issues lost by
the prioritized algorithm since the optimizations lead to a more
efficient use of the limited analysis budget. The fully optimized
version generates fewer false positives due mainly to restrictions
on flow lengths and heap transitions in tainted flows.

The average running time of the fully optimized algorithm is
325 seconds, 21% faster than the CI algorithm. Overall, the fully
optimized version is 1.5X slower than the unoptimized hybrid vari-
ant. On 13 out of the 22 benchmarks, the fully optimized algorithm
is faster than the prioritized algorithm; its higher average running
time is mainly due to degraded performance on GridSphere.

Taken together, these trends point to the fully optimized hybrid
algorithm as the most attractive compromise between accuracy and
scalability, among the configurations evaluated.

8. Related Work
In this section, we compare TAJ with other work in the area of static
taint analysis. Related work on dynamic taint analysis is discussed

Application Version File Line Class Method
Count Count Count Count

App. Total App. Total

A 1.0 121 746 43 2057 4272 150339
B - 314 1680 246 9252 14552 328941
Blojsom 3.1 225 19984 254 7216 10688 354114
BlueBlog 1.0 32 650 38 1044 7628 269056
Dlog 3.0-BETA-2 240 17229 268 12957 7790 284808
Friki 2.1.1-58 40 2339 35 1133 3848 116480
GestCV 1.0 159 107494 124 5139 13673 473574
Ginp 1.0 121 387 73 2941 8076 277680
GridSphere 2.2.10 698 44767 676 32134 10671 385609
I 1.0 30 281 25 996 4254 149278
JSPWiki 2.6 724 27000 429 13087 9863 335828
Lutece 1.0 1039 3065 467 12398 7606 237137
MVNForum 1.0.2 969 8860 608 19722 8979 315527
PersonalBlog 1.2.6 135 47007 38 1644 4951 157794
Roller 0.9.9 325 4865 251 9786 7200 246390
S - 168 2064 100 10965 6219 393204
SBM 1.08 125 5165 143 6506 8047 283069
SnipSnap 1.0-BETA-1 828 85325 571 17960 12493 455410
SPLC 1.0 106 12447 69 3526 6538 229417
ST - 1451 594 5956 31309 24221 822362
VQWiki 1.0 280 31325 185 6164 4803 152341
Webgoat 5.1-20080213 245 17656 192 14309 6663 254726

Table 2. Statistics on the Applications Used in the Experiments

Application Hybrid CS CI
Unbounded Prioritized Fully Optimized

Issues Time(s) Issues Time(s) Issues Time(s) Issues Time(s) Issues Time(s)
A 54 43 33 54 37 23 51 554 73 88
B 25 1160 7 242 1 217 - - 67 564
Blojsom 238 783 162 222 123 207 - - 504 275
BlueBlog 19 5 19 5 12 6 14 376 30 7
Dlog 21 873 11 243 6 221 - - 168 602
Friki 60 11 60 10 7 9 14 1392 125 11
GestCV 21 2461 20 182 7 209 - - 255 760
Ginp 67 40 67 45 49 28 43 1028 309 75
GridSphere 803 6505 116 735 261 2467 - - 853 1281
I 3 8 3 8 3 8 2 16 17 15
JSPWiki 68 159 67 270 26 118 - - 381 192
Lutece 3 824 2 28 4 59 - - 41 99
MVNForum 260 313 100 228 293 205 - - 374 213
PersonalBlog 454 3708 108 386 48 740 - - 1854 604
Roller 650 1495 87 175 230 268 - - 3171 794
S 395 602 25 398 24 263 - - 697 729
SBM 154 9 154 7 159 6 125 26 161 10
SnipSnap 91 279 89 167 94 153 - - 397 291
SPLC 40 188 37 279 36 116 - - 103 272
ST 731 933 369 207 347 277 - - 1830 565
VQWiki 888 2450 303 383 545 565 - - 2284 784
Webgoat 48 276 27 180 39 193 - - 102 485

Table 3. Experimental Results Comparing between Hybrid Variants and Other Algorithms

in [4]. Works related to our contributions in the area of program
slicing are surveyed in [33] and references therein. Of notable
importance is the fact that while program slicing has been applied
to taint analysis in the past, none of the proposed algorithms has
been shown to scale to applications whose size is comparable to
that of the large benchmarks against which we evaluate TAJ.

The notion of tainted variables as variables in security-sensitive
code where untrusted values can flow became known with the Perl
language. In Perl, using the -T option allows detecting tainted vari-
ables [37]. Typically, the data manipulated by a program can be
tagged with security levels [8], which naturally assume the struc-

ture of a partially ordered set. Under certain conditions, this par-
tially ordered set is a lattice [7]. In the simplest example, this lattice
only contains two elements, indicated by high and low. Given a pro-
gram, the principle of non-interference dictates that low-security
behavior of the program be not affected by any high-security data,
unless that high-security data has been previously verified and
downgraded. [12]. The taint analysis problem described in this pa-
per is an information-flow problem in which high data is the un-
trusted output of a source, low-security operations are those per-
formed by sinks, and untrusted data is downgraded by sanitizers.

0

10

20

30

40

50

60

70

80

Unbounded Prioritized Fully Optimized CS CI

A

0

10

20

30

40

50

60

70

Unbounded Prioritized Fully Optimized CS CI

B

0

5

10

15

20

25

30

Unbounded Prioritized Fully Optimized CS CI

BlueBlog

0

20

40

60

80

100

120

140

Unbounded Prioritized Fully Optimized CS CI

Friki

0

50

100

150

200

250

300

Unbounded Prioritized Fully Optimized CS CI

GestCV

0

2

4

6

8

10

12

14

16

18

Unbounded Prioritized Fully Optimized CS CI

I

0

100

200

300

400

500

600

700

Unbounded Prioritized Fully Optimized CS CI

S

0

20

40

60

80

100

120

140

160

180

Unbounded Prioritized Fully Optimized CS CI

SBM

0

20

40

60

80

100

120

Unbounded Prioritized Fully Optimized CS CI

Webgoat

True Positives False Positives

Figure 4. Classification of Reported Issues into True and False Positives on Key Benchmarks

Volpano, et al. [36] have shown a type-based algorithm that
certifies implicit and explicit flows and also guarantees non-
interference. Shankar, et al. present a taint analysis for C using
a constraint-based type-inference engine based on cqual [30]. To
find format string bugs, cqual uses a type-qualifier system [11]
with two qualifiers: tainted and untainted. The types of values that
can be controlled by an untrusted adversary are qualified as being
tainted, and the rest of the variables are qualified as untainted. A
constraint graph is constructed for a cqual program. If there is a
path from a tainted node to an untainted node in the graph, an error
is flagged. Myers’ Java Information Flow (Jif) [24] uses type-based
static analysis to track information flow. Jif is based on the Decen-
tralized Label Model [25], and considers all memory as a channel
of information, which requires that every variable, field, and pa-
rameter used in the program be statically labeled. Labels can either
be declared or inferred.

Ashcraft and Engler [2] also use taint analysis to detect soft-
ware attacks due to tainted variables. Their approach provides user-
defined sanity checks to untaint potentially tainted variables. Pis-
toia, et al. [27] present a static analysis explicitly designed to de-
tect tainted variables in privilege-asserting code in access-control
systems based on stack inspection. They also perform a backward
call-graph traversal starting at security-sensitive calls until a bound-
ary edge between application code and library code is encountered.

Boundary edges indicate to the user the optimal code locations
where calls to privilege-asserting APIs should be inserted. This is
similar to the LCP algorithm discussed in Section 5.

Snelting, et al. [31] make the observation that Program De-
pendence Graphs (PDGs) and non-interference are related in the
following manner. Consider statements s1 and s2. If dom(s1) ��
dom(s2) then, in a security-correct program, it must be the case
that s1 /∈ backslice(s2). Here, backslice is the function that maps
each statement s to its static backwards slice, consisting of all the
(transitive) predecessors of s along control- and data-dependence
edges in the PDG. Based on this observation, Hammer, et al. [13]
present an algorithm for checking for non-interference: for any out-
put statement s, it must be the case that backslice(s) contains only
statements that have a lower security label than s. Though promis-
ing, their approach has not been shown to scale.

Livshits and Lam [20] present an elegant approach for taint
analysis for Java EE applications that is engineered to track taint
flowing through heap-allocated objects. Their analysis requires
prior computation of Whaley and Lam’s flow-insensitive, context-
sensitive may-points-to analysis, based on Binary Decision Di-
agrams (BDDs) [40]. The points-to relation is the same for the
entire program, ignoring the program’s control flow. By contrast,
the PDG-based algorithm in [13] handles heap objects in a flow-
sensitive manner, albeit at a much higher cost. Livshits and Lam’s

taint analysis requires the presence of programmer-supplied de-
scriptors for sources and sinks, as well as for library methods that
handle objects through which taint may flow. This is reminiscent
of our source and sink specification, as well as of our special treat-
ment of string carriers. Their approach does not cover all the attack
vectors addressed by TAJ, and does not deal with challenges such
as flow through containers, nested taint and accurate handling of
Web frameworks, which are essential for precise and comprehen-
sive analysis of industrial applications. Furthermore, it is unclear
whether BDD-based static analysis can scale to large applications
when using object sensitivity [18]. Customization of the BDD-
based approach (e.g. by fixing analysis budget and enhancing the
analysis with a priority-driven scheme) also appears to be problem-
atic.

Wassermann and Su extend Minamide’s string-analysis algo-
rithm [23] to syntactically isolate tainted substrings from untainted
substrings in PHP applications. They label non-terminals in a
Context-Free Grammar (CFG) with annotations reflecting taint-
edness and untaintedness. Their expensive, yet elegant, mechanism
is applied to detect both SQLi [38] and XSS [39] vulnerabilities.

McCamant and Ernst [21] take a quantitative approach in infor-
mation flow: instead of using taint analysis, they cast information-
flow security to a network-flow-capacity problem, and describe a
dynamic technique for measuring the amount of secret data that
leaks to public observers.

9. Conclusion and Future Work
We have presented TAJ, an approach to taint analysis suitable for
industrial applications. An experimental evaluation indicates that
the hybrid algorithm TAJ uses for slice construction is an attrac-
tive compromise between context-sensitive and context-insensitive
thin slicing. We also demonstrated priority heuristics to perform
effective taint analysis in a limited budget, improving performance
without significantly degrading accuracy.

In future research, we intend to introduce modular as well as in-
cremental analysis capabilities into TAJ [5]. Also, we plan to inves-
tigate techniques from demand-driven pointer analysis [15] as an
alternative to the priority heuristics presented here. Since string car-
riers are the most common taint mediators in Web applications, we
are currently in the process of enhancing our analysis with string-
specific taint-detection capabilities, in the spirit of [23]. Finally, we
plan to extend our coverage of security rules, by investigating ways
for statically identifying cross site-request forgery and client-side
vulnerabilities [26].

References
[1] L. O. Andersen. Program Analysis and Specialization for the C

Programming Language. PhD thesis, University of Copenhagen,
Denmark, 1994.

[2] K. Ashcraft and D. Engler. Using Programmer-Written Compiler
Extensions to Catch Security Holes. In S&P 2002.

[3] R. Bodı́k, R. Gupta, and V. Sarkar. ABCD: Eliminating Array Bounds
Checks on Demand. In PLDI 2000.

[4] W. Chang, B. Streiff, and C. Lin. Efficient and Extensible Security
Enforcement Using Dynamic Data Flow Analysis. In CCS 2008.

[5] P. Cousot and R. Cousot. Modular Static Program Analysis. In CC
2002.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph. TOPLAS, 13(4), 1991.

[7] D. E. Denning. A Lattice Model of Secure Information Flow. CACM,
19(5), 1976.

[8] D. E. Denning and P. J. Denning. Certification of Programs for Secure
Information Flow. CACM, 20(7), 1977.

[9] S. Fink, J. Dolby, and L. Colby. Semi-Automatic J2EE Transaction
Configuration. IBM Research Report RC23326, 2004.

[10] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective
Typestate Verification in the Presence of Aliasing. In ISSTA 2006.

[11] J. S. Foster, T. Terauchi, and A. Aiken. Flow-Sensitive Type Qualifiers.
In PLDI 2002.

[12] J. A. Goguen and J. Meseguer. Security Policies and Security Models.
In S&P 1982.

[13] C. Hammer, J. Krinke, and G. Snelting. Information Flow Control for
Java Based on Path Conditions in Dependence Graphs. In ISSSE 2006.

[14] R. Hasti and S. Horwitz. Using Static Single Assignment Form to
Improve Flow-insensitive Pointer Analysis. In PLDI 1998.

[15] N. Heintze and O. Tardieu. Demand-Driven Pointer Analysis. In PLDI
2001.

[16] S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural Slicing Using
Dependence Graphs. In PLDI 1988.

[17] IBM Rational AppScan Developer Edition (AppScan DE), http:
//www.ibm.com/software/awdtools/appscan/developer

[18] O. Lhoták and L. J. Hendren. Context-Sensitive Points-to Analysis: Is
It Worth It? In CC 2006.

[19] B. Livshits, J. Whaley, and M. S. Lam. Reflection Analysis for Java.
In ASPLAS 2005.

[20] V. B. Livshits and M. S. Lam. Finding Security Vulnerabilities in Java
Applications with Static Analysis. In USENIX Security 2005.

[21] S. McCamant and M. D. Ernst. Quantitative Information Flow as
Network Flow Capacity. In PLDI 2008.

[22] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized Object
Sensitivity for Points-to Analysis for Java. TOSEM, 14(1), 2005.

[23] Y. Minamide. Static Approximation of Dynamically Generated Web
Pages. In WWW 2005.

[24] A. C. Myers. JFlow: Practical Mostly-static Information Flow Control.
In POPL 1999.

[25] A. C. Myers and B. Liskov. A Decentralized Model for Information
Flow Control. In SOSP 1997.

[26] OWASP, http://www.owasp.org.

[27] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar. Interprocedural
Analysis for Privileged Code Placement and Tainted Variable Detec-
tion. In ECOOP 2005.

[28] T. Reps, S. Horwitz, and M. Sagiv. Precise Interprocedural Dataflow
Analysis via Graph Reachability. In POPL 1995.

[29] B. G. Ryder. Dimensions of Precision in Reference Analysis of
Object-Oriented Languages. In CC 2003. Invited Paper.

[30] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting Format
String Vulnerabilities with Type Qualifiers. In USENIX Security 2001.

[31] G. Snelting, T. Robschink, and J. Krinke. Efficent Path Conditions
in Dependence Graphs for Software Safety Analysis. TOSEM, 15(4),
2006.

[32] M. Sridharan and R. Bodı́k. Refinement-based Context-sensitive
Points-to Analysis for Java. In PLDI 2006.

[33] M. Sridharan, S. J. Fink, and R. Bodı́k. Thin Slicing. In PLDI 2007.

[34] Stanford SecuriBench Micro, http://suif.stanford.edu/

~livshits/work/securibench-micro.

[35] T. J. Watson Libraries for Analysis (WALA), http://wala.sf.net.

[36] D. Volpano, C. Irvine, and G. Smith. A Sound Type System for Secure
Flow Analysis. JCS, 4(2-3), 1996.

[37] L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly
& Associates, Inc., 3rd edition, 2000.

[38] G. Wassermann and Z. Su. Sound and Precise Analysis of Web
Applications for Injection Vulnerabilities. In PLDI 2007.

[39] G. Wassermann and Z. Su. Static Detection of Cross-site Scripting
Vulnerabilities. In ICSE 2008.

[40] J. Whaley and M. S. Lam. Cloning Based Context-Sensitive Pointer
Alias Analysis Using Binary Decision Diagrams. In PLDI 2004.

