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Abstract
This paper presents F4F (Framework For Frameworks), a
system for effective taint analysis of framework-based web
applications. Most modern web applications utilize one or
more web frameworks, which provide useful abstractions
for common functionality. Due to extensive use of reflec-
tive language constructs in framework implementations, ex-
isting static taint analyses are often ineffective when applied
to framework-based applications. While previous work has
included ad hoc support for certain framework constructs,
adding support for a large number of frameworks in this
manner does not scale from an engineering standpoint.

F4F employs an initial analysis pass in which both appli-
cation code and configuration files are processed to generate
a specification of framework-related behaviors. A taint anal-
ysis engine can leverage these specifications to perform a
much deeper, more precise analysis of framework-based ap-
plications. Our specification language has only a small num-
ber of simple but powerful constructs, easing analysis engine
integration. With this architecture, new frameworks can be
handled with no changes to the core analysis engine, yield-
ing significant engineering benefits.

We implemented specification generators for several web
frameworks and added F4F support to a state-of-the-art
taint-analysis engine. In an experimental evaluation, the
taint analysis enhanced with F4F discovered 525 new issues
across nine benchmarks, a harmonic mean of 2.10X more
issues per benchmark. Furthermore, manual inspection of a
subset of the new issues showed that many were exploitable
or reflected bad security practice.

[Copyright notice will appear here once ’preprint’ option is removed.]

Categories and Subject Descriptors D.2.4 [Software Engi-
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Engineering]: Testing and Debugging

General Terms Languages, Security

1. Introduction
Taint analysis has emerged as a useful technique for dis-
covering security vulnerabilities in web applications [13–
15, 18, 20]. Security taint analysis is an information-flow
analysis that automatically detects flows of untrusted data
into security-sensitive computations (integrity violations)
or flows of private data into computations that expose in-
formation to public observers (confidentiality violations).
Information-flow security vulnerabilities account for six of
the top ten security vulnerabilities according to the Open
Web Application Security Project (OWASP).1 Previous
work has shown that taint analysis can effectively expose
such vulnerabilities in real-world web applications [13, 14,
18, 20].

Most modern web applications are built using one or
more sophisticated web application frameworks. These
frameworks are special software libraries that simplify web
application development by providing higher-level abstrac-
tions for common tasks. For example, many frameworks
provide automatic population of user-defined data structures
with HTTP request data and mechanisms to ease mixing of
static HTML and dynamically generated content (see §2 for
further discussion).

Unfortunately, static analysis of web applications is sig-
nificantly hindered by their use of frameworks. Framework
implementations often invoke application code using reflec-
tion, based on information provided in configuration files.
Extensive use of reflection causes well-known difficulties for
static analysis. Real-world bug-finding analyses often ignore
reflective code, but for framework-based web applications
this leads to many false negatives, since the application code
is primarily invoked via reflection. Other techniques model
reflection usage based solely on code analysis [4, 12], but

1 http://owasp.org

1 2011/8/18



this is also ineffective for our target applications, as the con-
figuration file information used by the frameworks cannot be
precisely recovered via code analysis alone. Handling reflec-
tion via code analysis can also cause scalability problems, as
excessively over-approximate reflection handling can lead to
analysis of a large amount of unreachable code. Besides re-
flection, complex string manipulation and data structure us-
age in framework code can also cause static analysis diffi-
culties, to be illustrated in detail in §2.

Some previous analyses have integrated ad hoc handling
of certain web framework features [6, 20], but none provide
a general solution for handling the large number of frame-
works in common use today. Wikipedia lists nearly 100 web
frameworks, including more than 30 for Java alone [23]. Fur-
thermore, individual frameworks can also vary significantly
between versions, necessitating special handling for each
version. Handling each individual framework through modi-
fication of the core static analysis engine does not scale from
an engineering standpoint, since it requires a developer with
significant analysis expertise. Also, some previous work on
framework handling was based on code analysis alone [20],
making framework features heavily dependent on configura-
tion file data impractical to handle.

In this paper, we present Framework for Frameworks
(F4F), a novel solution that augments taint analysis engines
with precise framework support and allows for handling new
frameworks without modifying the core analysis engine.2 In
F4F, a framework analyzer first generates a specification of
an application’s framework-related behavior in a simple lan-
guage called WAFL (for Web Application Framework Lan-
guage). The WAFL specification is generated based on both
lightweight code analyses and information found in other
relevant artifacts such as configuration files. The taint anal-
ysis then uses the WAFL specification to enhance its analy-
sis of the application. This approach has several advantages
over previous work:

• By utilizing configuration file data, F4F can yield a far
more precise and complete handling of framework se-
mantics than previous approaches. Additionally, config-
uration file data can enhance the usefulness of the issues
reported by analysis, e.g., by enabling the association of
each issue with the URLs that cause the corresponding
code to run.
• With F4F, the analysis engine need only understand

WAFL specifications, not the details of handled web
frameworks, making the engine design cleaner. Further-
more, WAFL was carefully designed to make adding F4F
support to an existing taint analysis straightforward.
• WAFL specification generators can be written by de-

velopers unversed in the details of the analysis engine,

2 Although many of our techniques could be generalized to other analyses,
in this paper we focus concretely on how to use F4F for taint analysis, due
to its importance for web application security.

greatly easing the process of handling new frameworks.
The specifications could even be generated by a user of
the analysis tool, for example to handle a custom frame-
work not available to the tool developers.
• For analysis of languages such as Java and C#, handling

of reflection in the analysis engine can be much less con-
servative, as much of the relevant behavior is present in
the WAFL specification.3 This less conservative reflec-
tion handling can lead to scalability improvements and
reduced false positives.

We have implemented WAFL specification generators for
several frameworks and added WAFL support to a state-of-
the-art taint analysis. In practice, we found that lightweight
intraprocedural analyses and configuration file processing
sufficed for generating specifications of the framework-
related behaviors we encountered. Furthermore, we were
able to add WAFL support to the taint analysis with very
minimal changes to its code. In an experimental evalua-
tion, we compared the effectiveness of the taint analysis
on several applications with and without F4F. F4F made a
significant impact: the analysis found 525 more issues with
framework support enabled across our nine benchmarks, a
harmonic mean of 2.10X more issues per benchmark. Fur-
thermore, manual inspection of a subset of the new issues
showed that many were exploitable or reflected bad security
practice. We have also added F4F support to a version of Ra-
tional AppScan Source Edition,4 a commercial taint-analysis
product.

This paper makes the following contributions:

• We define WAFL, a simple specification language for
expressing framework-related behaviors of web applica-
tions.
• We describe automatic WAFL generators for several pop-

ular Java web frameworks.
• We describe a non-intrusive technique for enhancing an

existing taint analysis engine to support WAFL specifica-
tions.
• We present an experimental evaluation showing that

framework support enabled hundreds of new issues to
be reported across a suite of benchmarks.

The remainder of this paper is organized as follows. First,
we present a detailed motivating example in §2, showing the
difficulty of analyzing framework-based web applications
and how F4F aids this analysis. We then describe WAFL,
our specification language, in §3. In §4, we describe the
WAFL generators we have built thus far and what analyses
were required in these generators. §5 explains how we added
support for WAFL to a state-of-the-art taint analysis engine.

3 This could compromise soundness, but we know of no practical security
analysis tool that is sound for Java in the presence of reflection, native
methods, and dynamic class loading.
4 http://www.ibm.com/software/rational/products/appscan/source/
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§6 presents our experimental evaluation of F4F on a range
of web applications. Finally, §7 discusses related work, and
§8 concludes and discusses future work.

2. Motivating Example
In this section, we give some brief background on taint
analysis and Java web frameworks, and then we illustrate
how F4F can improve taint analysis of framework-based
applications via a detailed example.

2.1 Taint Analysis
Security bugs in web applications can often be discovered
by taint analysis. Web-application vulnerabilities are often
due to either flow of untrusted information into a security-
sensitive operation (integrity violations), or flow of con-
fidential information into publicly-observable parts of the
application (confidentiality violations). Taint analysis is an
information-flow analysis that models both integrity and
confidentiality violations in a natural way. The client speci-
fies a set of security rules, where a rule is a triple comprised
of sources, sinks and sanitizers. Sources introduce untrusted
or confidential data into the application. Sinks represent
either security-sensitive operations (for integrity rules) or
release points (for confidentiality rules). Finally, sanitizers
represent operations that endorse the data, either by declas-
sifying it or by modifying it to make it benign. Given a rule
r, taint analysis tries to find data-flow paths in an applica-
tion from sources of r to sinks of r that do not pass through
a sanitizer of r—any such path is an indication of a potential
security vulnerability. For a more detailed discussion of taint
analysis, see previous work, e.g., [13, 20].

2.2 Java Web Frameworks
Java EE Java Platform, Enterprise Edition (Java EE, for-
merly J2EE) [10] is the framework upon which most Java
web applications and web frameworks are built. At its core,
a typical web application accepts a request from a client,
performs some computation (possibly interacting with a
database), and sends a response back to the client (usually
HTML and JavaScript). The goal of a web framework is
to provide abstractions that ease programming the more te-
dious, error-prone parts of this process. Java EE provides
several such abstractions, two of which are particularly im-
portant from a security perspective: servlets and Java Server
Pages (JSPs).

In a Java EE application, the logic for each web page re-
sides in a servlet class, typically in a method with a signature
like the following:

void doGet(HttpServletRequest req, HttpServletResponse resp);

Given a client request, Java EE invokes doGet() on an
appropriate servlet to generate the response. The Http-
ServletRequest and HttpServletResponse parameters re-
spectively give typed interfaces to the request and response

(a friendlier interface than raw network data). A deploy-
ment descriptor configuration file describes which servlet
the framework should invoke for each URL, saving the de-
veloper from writing custom dispatch code. Also, servlets
may use the session state abstraction provided by Java EE to
store data across multiple client requests, e.g., to maintain a
shopping cart in an e-commerce application.

Java Server Pages (JSPs) [11] ease the process of sending
an HTML response to a client. In a servlet, HTML can be
sent to the client by passing strings to a java.io.Writer
object obtained from the HttpServletRequest, a rather low-
level API. In contrast, in a JSP file, one writes the desired
HTML directly, using special syntax to execute Java code
and include its output in the HTML. The Java EE framework
compiles JSPs to Java code that sends the contents of the JSP
to the client when executed. A servlet can “invoke” a JSP
by forwarding to the JSP’s URL, passing data by storing it
in the session state or in the HttpServletRequest object. In
this manner, a developer can obtain some separation between
the logic of handling a request (done in the servlet) and the
rendering of the response (done in the JSP).

The Struts Framework Apache Struts5 is a framework
built atop Java EE, with higher-level abstractions to fur-
ther ease web development. Like many other web frame-
works, Struts encourages a model-view-controller (MVC)
design [5], yielding a clean separation between the core logic
for handling a request (the controller), the rendering of the
response (the view), and how state is communicated between
the two (the model). At runtime, Struts connects the model,
view, and controller components based on settings in a con-
figuration file (to be illustrated in §2.3).

The top graph in Figure 1 shows the flow of server-side
code that occurs when a Struts application processes a re-
quest. Initially, the request is handled by internal Struts code
(the first shaded node), which (1) parses the request URL
to determine which controller should be invoked and (2)
populates a form object of some user-defined type (speci-
fied in a configuration file) with data from the request. The
term “form object” stems from the common case of request
data including values entered into a web form. Struts’s auto-
matic form object population saves the developer from writ-
ing code to extract each piece of form data from the request,
perform type conversions, etc. After form object population,
Struts invokes the controller (the first oval, a sub-class of
the Struts Action class), which reads the form object and
performs necessary database interactions and business logic.
The controller returns a view name, which Struts uses to for-
ward to the appropriate view, again based on configuration
file information (the second shaded node); this indirection
enables the view technology to be changed without modify-
ing the controller code. Finally, the view (often a JSP) ren-
ders the final response.

5 http://struts.apache.org/1.x/
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Figure 1. Request-to-response flow when using the Struts framework (top) and an illustration of an XSS vulnerability in the
example of Figures 2 and 3 (bottom). Shaded rectangles indicate functionality within Struts, while ovals indicate application
code. The bottom graph gives program names for the malicious data in the exploit, vertically aligned with their corresponding
Struts phase in the top graph.

1 class UserForm extends ActionForm {
2 private String firstName, lastName;
3 public String getFirstName() { return firstName; }
4 public void setFirstName(String firstName) {
5 this.firstName = firstName;
6 }
7 public String getLastName() { return lastName; }
8 public void setLastName(String lastName) {
9 this.lastName = lastName;

10 }
11 }
12 class UserAction extends Action {
13 public ActionForward execute(ActionMapping mapping,
14 ActionForm form, ...) {
15 UserForm userForm = (UserForm) form;
16 request.setAttribute("user", userForm);
17 ActionForward fwd = mapping.findForward("showuser");

18 return fwd;
19 }
20 }
21 class ShowUser_jsp {
22 public void _jspService(...) {
23 ...; String s = evaluateEL("${user.firstName}");
24 out.write("<p>" + s + "</p>"); ...
25 }
26 }
27 / /ShowUser. jsp
28 <p>${user.firstName}</p>

Figure 2. Code for our example.

Figure 1 elides the flow of the request and session state,
which Struts retains from Java EE. In Struts (and many Java
web frameworks), the Java EE HttpServletRequest and
HttpServletResponse objects are essentially global vari-
ables that may be read or mutated by any module. In partic-
ular, an attribute map associated with these objects is often
used to pass the model data from the controller to the view.
Tracing data flow through these objects and through the Java
EE session state is often critical to finding security vulnera-
bilities.

2.3 Running Example
Figures 2 and 3 respectively show the application code and
configuration information for a Struts-based application to
be used as a running example. As we present this example,

1 <form-beans>
2 <form-bean name="userForm" type="UserForm"/>
3 </form-beans>
4 <action-mappings>
5 <action name="userForm"
6 path="/user"
7 type="UserAction"
8 validate="false">
9 <forward name="showuser"

10 path="/pages/ShowUser.jsp"
11 redirect="false"/>
12 </action>
13 </action-mappings>

Figure 3. Relevant portion of the Struts XML configuration
file for our example.

we shall highlight features that cause difficulties for static
analyses, motivating F4F.

Lines 2, 5, and 7 in Figure 3 indicate that the controller
class UserAction should be invoked with a form object of
type UserForm. This data flow corresponds to the second
edge of the top graph in Figure 1. Struts implements this
functionality by using reflection to instantiate the classes
named in the configuration file and invoke the appropriate
controller method. This reflection is very difficult to model
using static code analysis alone, as the relevant type names
are only present in the configuration file.

Struts automatically populates UserForm objects with
(tainted) HTTP request data based on the Java bean naming
convention [3]. Java beans have properties defined by the
presence of appropriately-named “getter” and “setter” in-
stance methods. For our example, objects of type UserForm
have properties firstName and lastName, based on the
methods getFirstName(), setFirstName(), etc. in Fig-
ure 2. When initializing a UserForm object, Struts invokes
the object’s setFirstName() and setLastName() methods
with the HTTP request parameters firstName and lastName,
respectively. This initialization is again accomplished via re-
flection, making precise modeling of the data flow via pure
static code analysis challenging.

The UserAction.execute() method—the main logic of
the controller—sets the request attribute "user" to the pro-
vided UserForm object (line 16 of Figure 2). Then, it returns
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the view name "showuser", wrapped in an ActionForward
object (lines 17–18). The configuration in Figure 3 shows
that the view "showuser" is associated with the URL path
/pages/ShowUser.jsp (lines 9 and 10), so Struts forwards
control to this JSP by invoking the ShowUser_jsp._jsp-
Service() method in Figure 2. (Recall from §2.2 that JSPs
are executed via compilation to Java code.) Reflection is
once again used by Struts to achieve the control transfer to
JSP code, based on strings in the configuration file that are
opaque to typical static analyses.

An excerpt of ShowUser.jsp shown on line 28 in Fig-
ure 2 includes a string ${user.firstName} in Java EE’s
Expression Language (EL) [7]. EL expressions ease ac-
cessing the state of Java bean objects stored in Java EE’s
request or session state, and they are evaluated at run-
time by a custom interpreter. In our case, the EL inter-
preter evaluates ${user.firstName} to the result of invok-
ing getFirstName() on the UserForm object stored in the
"user" request attribute at line 16 in Figure 2. Line 23 shows
the call to the EL expression evaluator in the corresponding
generated Java code, and line 24 shows the result being writ-
ten to the response.

Two aspects of the JSP code in our example cause addi-
tional difficulty for code analysis. First, the EL expression
interpreter invoked on line 23 in Figure 2 makes heavy use
of reflection. Second, the use of a request attribute to store
and retrieve the UserForm object (lines 16 and 23) is difficult
to analyze precisely. Request attributes are typically imple-
mented with one or more map data structures, and the analy-
sis must distinguish distinct entries in these maps (where the
key objects are passed across several procedure calls) to pre-
cisely track attribute flow. In our experience, the inability to
distinguish request attributes during taint analysis can lead
to a large number of false positives.

Our example program contains a cross-site scripting
(XSS) security vulnerability [17] whose data flow is rep-
resented in the bottom graph of Figure 1. An XSS vulnera-
bility exists when a web site includes some unvalidated user
data on a web page, allowing, e.g., for an attacker to add
malicious JavaScript code to the page. In our example, say
a user includes malicious data in the “firstName” parameter
of an HTTP request. In populating the form object, Struts
copies this data to the firstName field of a UserForm ob-
ject, which is passed to UserAction.execute(). Then, as
described above, the UserForm object is stored in the "user"
request attribute, and its firstName field (holding the mali-
cious data) is read via evaluation of the ${user.firstName}
EL expression, causing the malicious data to reach the out-
put. The goal of F4F is to enable static analyses to identify
vulnerabilities like this one without needing to precisely an-
alyze all the corresponding reflection usage in framework
implementations.

1 fun entrypoint UserAction_entry(request) {
2 UserForm f = new UserForm();
3 f.setFirstName(request.getParam("firstName"));
4 f.setLastName(request.getParam("lastName"));
5 (new UserAction()).execute(_,f,...);
6 (new ShowUser_jsp())._jspService(...);
7 }
8 global request_user;
9 global session_user;

10 replaceCall setAttribute() 16 {
11 request_user = argToOrigCall(2);
12 }
13 replaceCall evaluateEL() 23 {
14 l = (UserForm)nondet(request_user, session_user);
15 argToOrigCall(-1) = l.getFirstName();
16 }

Figure 4. WAFL specification for our example.

2.4 The F4F Solution
Framework for Frameworks (F4F) employs framework-
specific handlers to automatically generate a specification
of a program’s framework-related behaviors. The Web Ap-
plication Framework Language (WAFL) specification gen-
erated for our running example is shown in Figure 4. We
use Java-like syntax in the figure for readability, but WAFL
specifications also have a language-independent representa-
tion (see §3 for details). We shall show how this specification
exposes the entire XSS vulnerability from our example for
easy discovery by a taint analysis.

The first key element of the specification is a synthetic
method UserAction_entry() (Figure 4, lines 1–7). This
synthetic method models how Struts invokes the code in Fig-
ure 2 based on the configuration in Figure 3: given a request,
it populates a UserForm object with (tainted) request data
(lines 2–4), invokes UserAction.execute() with that object
(line 5), and finally invokes the _jspService() method cor-
responding to the target view name returned by execute()
(line 6) . The synthetic method makes explicit the write of
tainted request parameter data into a UserForm object and
the control transfer to the JSP reading that data. Critically,
the synthetic method reflects information obtained from both
the configuration file and the code—it would be infeasible
to build such a model via code analysis alone. Finally, note
that the synthetic method is marked as an entrypoint, useful
for call graph construction in the core analysis engine.

The other key elements of the WAFL specification are
the call replacements (lines 10–16), indicating call sites that
should be replaced with more analyzable code. For our ex-
ample’s XSS vulnerability, the call replacements help the
taint analysis discover the tainted flow through the "user"
request attribute. The first call replacement says that the
setAttribute() call at line 16 of Figure 2 should be re-
placed with an assignment of actual parameter 2 of the
call (the userForm local; numbering starts from 0) to a
global variable request_user, declared at line 8 of Fig-

5 2011/8/18



location l ::= v | e.f
assignable a ::= l | argToOrigCall(-1)
expression e ::= l | a := e′ | f(e1, e2, . . . )

| taint | nondet(e1, e2, . . . )
| argToOrigCall(i)

global declaration g ::= global (request | session) v
[properties v1, v2, . . .]

synthetic method m ::= fun [entrypoint] f(v1, v2, . . . )
{(var v)∗(e)∗}

call replacement r ::= replaceCall callSiteId e
specification p ::= (g |m | r)∗

Figure 5. A grammar for our specification language WAFL.

ure 4.6 The second call replacement indicates that the
evaluateEL() call at line 23 should be replaced by an as-
signment that copies either request_user.getFirstName()
or session_user.getFirstName() (where the receiver is of
type UserForm) to the variable holding the return value of
the original call, in this case s.7 Together, these call replace-
ments expose the request attribute accesses relevant to the
XSS vulnerability.

As a whole, the WAFL specification in Figure 4 exposes
the entire XSS vulnerability in our example for easy discov-
ery by a taint analysis, exemplifying the utility of F4F. In
our implementation, we also provide URL information to the
taint analysis via the WAFL specification. For our example,
this would enable the analysis to associate the partial URL
/user (from line 6 of Figure 3) with the XSS issue. The URL
corresponding to an issue can be very helpful information,
for example to aid in testing the issue’s exploitability.

3. WAFL
In this section, we present the details of the Web Appli-
cation Framework Language (WAFL), used to specify the
framework-related behaviors of web applications. Along
with describing WAFL’s constructs, we discuss why partic-
ular constructs were included (or excluded) and sketch how
analysis engines can easily incorporate information from
WAFL specifications.

Figure 5 presents a grammar for WAFL. In contrast to
the example in Figure 4, which presented a WAFL specifi-
cation using a Java-like syntax, this grammar uses a simpli-
fied, more language-independent syntax, both for clarity and
to emphasize that WAFL is not specific to Java.8 At the top
level, a WAFL specification consists of a list of global decla-

6 Note that this call replacement does not soundly over-approximate the
full behavior of setAttribute(). In general, our system is designed to
expose key framework behaviors to a typical bug-finding (i.e., unsound)
taint analysis, not to provide specifications that over-approximate program
behavior.
7 EL expressions may implicitly refer to either request or session attributes,
necessitating the two globals; see §4.2.1 for further discussion.
8 Our tool can output similar WAFL specifications in XML format.

rations, synthetic methods, and call replacements, which we
shall discuss in turn.

3.1 Globals
Global declarations are useful for representing possible data
flows across disparate parts of an application. For exam-
ple, our WAFL generators use globals to represent flows
through request or session attributes (see the request_user
and session_user globals in Figure 4). The use of globals to
model data flow across disparate application code can sim-
plify the subsequent taint analysis, since with globals, the
flow can be determined syntactically with good precision.9

Without the globals, the taint analysis may be forced to track
many possible aliases to the same data to discover the flow.
Request and session attributes in Java web applications are
often accessed through many different aliases, and the dif-
ficulty of automatically discovering which request / session
pointer is in scope at some program point partially motivated
our introduction of globals.

Globals can be annotated with either request or session
to respectively indicate whether they are scoped to a single
HTTP request or to a client session. The distinction is useful
since taint analyses often analyze the entrypoint method for
each request separately, necessitating special handling for
session-scoped state that lives across multiple entrypoints.

Finally, it is sometimes useful to associate a set of prop-
erties with a global. We have used properties to model
constructs like dynamic beans, which store internal state
in a map instead of in separate fields (e.g., the Struts
DynaActionForm class, discussed further in §4.2.2). Frame-
work configuration files often specify the exact set of proper-
ties used in these dynamic beans, and exposing them directly
in the WAFL specification saves the taint analysis from hav-
ing to re-discover the properties through code analysis (of-
ten non-trivial due to complex map implementations). We
expect these properties to be especially useful in handling
web frameworks for dynamic languages, which often make
use of maps for storing object state.

3.2 Synthetic Methods
WAFL specifications typically use synthetic methods to
model how a framework invokes application code. A syn-
thetic method consists of a list of local variable declara-
tions followed by a sequence of expressions, whose possible
forms are shown in Figure 5.10 Expressions include standard
assignments, variables / field accesses, and method calls.
A taint expression represents some form of tainted data,
e.g., an HTTP request parameter; the representation of this
expression will vary by programming language. A nondet

9 This assumes a (control-)flow-insensitive model of data flow through
globals, the standard approach for scalable taint analyses.
10 For simplicity, expressions are statements are not distinguished in WAFL.
Also, we elide type information in this presentation for clarity. Our imple-
mentation associates any known type information with variables but elides
downcasts, as they can easily be inserted while processing the specification.
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expression non-deterministically evaluates to the value of
one of its arguments. argToOrigCall expressions are only
relevant for call replacements, to be discussed in §3.3.

It is worth noting what types of expressions are not
present in synthetic methods. There are no standard control
constructs like conditional branches, gotos, loops, etc. Such
constructs are typically not interpreted by taint analyses, and
excluding them eases processing of synthetic methods by
analysis engines. While we elide allocation calls like Java’s
new expressions from WAFL, such calls can easily be added
by the analysis engine if needed (e.g., if call graph reason-
ing is based on points-to analysis); the example in Figure 4
includes such inserted constructor calls. Note that since allo-
cation is elided, method calls in WAFL specifications cannot
use dynamic dispatch and must specify the exact method to
be invoked.

3.3 Call Replacements
Many framework behaviors can be modeled via the versa-
tile call replacement construct. The semantics of call re-
placements are straightforward: a method invocation at a
certain call site, indicated by the callSiteId , should be re-
placed by an expression e. Within the replacement expres-
sion, argToOrigCall expressions can be used to refer to ei-
ther actual parameters at the call site or to the value returned
by the call at that site (written argToOrigCall(-1)). Fig-
ure 4 illustrates a couple of uses of call replacements (for
modeling request attribute accesses and one type of EL ex-
pression); we shall discuss more uses in §4.

Limiting application code modification to call replace-
ments greatly eases integrating WAFL specifications into
analysis engines, while still accommodating the framework
modeling needs we have seen thus far. Handling call replace-
ments is particularly easy for engines that already handle dy-
namic dispatch or higher-order functions; the replacement
code is simply placed in a new method, which is marked
as the sole possible target of the replaced call site. With this
technique, no mutation of the original code is required. Even
in an approach where the call is actually replaced in an in-
termediate representation, the transformation is still simpler
than if arbitrary blocks of code could be replaced (which
could require complex patching of control-flow graphs, sym-
bol tables, etc.).

4. WAFL Generators
Here we discuss our work thus far on WAFL generators for
several Java web application frameworks. First, we present
two example WAFL generators in detail (§4.1), illustrating
the simplicity and lightweight nature of the generators we
have written thus far. Then, we present an overview of our
other WAFL generators (§4.2), and finally discuss lessons
learned in the process of building them (§4.3). While we
have only implemented WAFL generation for a few of the
many Java web frameworks available [23], we expect that

HANDLEACTIONENTRYPOINT(a, m)

1 n← a.name, T ← a.type
2 f ← <form-bean> in config s.t. f.name = n
3 F ← f.type
4 beanProps ← { prop | F.setProp() exists }
5 ADDSTMT(m, ′F f = new F ()′)
6 for each prop in beanProps do
7 ADDSTMT(m,

′f.setProp(req.getParam(”prop”))
′
)

8 ADDSTMT(m, ′T .execute(f, ...)′)
9 for each call ActionMapping.findForward(w)

in T.execute() do
10 for each string constant s flowing to w do
11 r ← <forward> in config s.t. r.name = s
12 ADDSTMT(m, INVOKEJSPENTRY(r.path))

Figure 6. Pseudocode for generating WAFL for Struts Ac-
tion entrypoints.

many other frameworks will be similarly structured to those
discussed below, and hence similar techniques will apply.

4.1 Detailed Examples
Here, we give pseudocode for two WAFL generators, respec-
tively handling a core feature of the Struts framework and
accesses to Java EE request and session attributes (both in-
troduced in §2). These examples typify all our WAFL gener-
ators in that they only require configuration file parsing and
lightweight, local program analyses to successfully model
framework behaviors.

Note that our pseudocode elides error handling; our im-
plementation includes thorough checks for malformed in-
puts. Also, we enclose strings in single quotes, where itali-
cized expressions within the quotes are evaluated before be-
ing concatenated.

Struts Figure 6 gives pseudocode for generating WAFL
synthetic methods to model the semantics of Struts Actions.
Given a parsed <action> declaration a from a Struts con-
figuration file (e.g., lines 5–12 in Figure 3) and a synthetic
method m, the HANDLEACTIONENTRYPOINT procedure
populates m with statements reflecting how Struts interprets
a. First, statements are added to populate a form bean object
with HTTP request data (e.g., lines 2–4 in the WAFL exam-
ple of Figure 4). Bean properties are determined by inspect-
ing the names of setter methods in the bean’s class (line 4),11

and each setter is invoked with the corresponding request pa-
rameter (line 7). Line 8 adds an invocation to the appropriate
execute() method, passing the populated form bean.

Lines 9–12 generate statements modeling the control flow
from controller (the Action) to view in the Struts MVC ar-
chitecture (e.g., line 6 in Figure 4). To discover the possible
view names, an analysis is performed to find string constants

11 We access XML attributes as fields, e.g., f.type on line 3.
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HANDLEONEACCESS(c, a, scope, isReadAccess)

1 stmts ← ∅
2 names ← { ′scope__attr ′ |

string constant attr flows to a }
3 for each name ∈ names do
4 ADDGLOBAL(name, scope)
5 if isReadAccess
6 then stmt ← ′argToOrigCall(−1) := name ′

7 else stmt ← ′name := argToOrigCall(2)′

8 stmts ← stmts ∪ stmt
9 ADDCALLREPLACEMENT(c, ′nondet( stmts )′)

HANDLEATTRIBUTEACCESSES()

1 for each call c = ServletRequest.getAttribute(a) do
2 HANDLEONEACCESS(c, a, REQUEST, TRUE)
3 for each call c = ServletRequest.setAttribute(a, v) do
4 HANDLEONEACCESS(c, a, REQUEST, FALSE)
5 for each call c = HttpSession.getAttribute(a) do
6 HANDLEONEACCESS(c, a, SESSION, TRUE)
7 for each call c = HttpSession.setAttribute(a, v) do
8 HANDLEONEACCESS(c, a, SESSION, FALSE)

Figure 7. Pseudocode for generating WAFL for request /
session attribute accesses.

passed as a parameter to ActionMapping.findForward()
calls within the execute() method (e.g., line 17 in Fig-
ure 2). Our implementation discovers these constants us-
ing intraprocedural def-use chains; we have not seen a need
for more sophisticated techniques. The <forward> element
from the configuration matching each view name is found
(line 11), and a call to the appropriate JSP entrypoint method
is added (line 12).

Request and Session Attributes Figure 7 gives pseu-
docode for generating call replacements to handle Java EE
request and session attribute accesses. The core logic is in
HANDLEONEACCESS, which generates a call replacement
given a call site c, the actual parameter a at c holding the at-
tribute name, a scope scope for the access (either REQUEST
or SESSION), and a boolean isReadAccess indicating if the
access is a read or write. Handling all accesses in the code
is done by scanning for calls to access methods and calling
HANDLEONEACCESS with the right parameters for each
call, shown in HANDLEATTRIBUTEACCESSES.

Recall from §2 that we model request and session at-
tributes as global variables, so attribute accesses become
reads and writes to these globals. Line 2 of HANDLEONE-
ACCESS creates names for the globals, based on the access
scope and the possible attribute names (discovered using the
same intraprocedural flow analysis used for view names in
the Struts example). The subsequent loop declares each pos-
sible global (line 4) and then creates a statement for the
read or write access as appropriate (lines 5–7). (On line 7,
argToOrigCall(2) references the standard parameter posi-

tion of the new attribute value for attribute setter methods.)
Finally, line 9 adds a call replacement that replaces c with a
non-deterministic execution of one of the global access state-
ments.

4.2 Overview of Other WAFL Generators
4.2.1 Java EE, JSP, and EL
Understanding of basic Java EE servlets is essential to any
Java taint analysis, and hence this support is built in to
previous systems [13, 20]. Our WAFL generator provides
deeper support for core Java EE functionality, particularly
in exposing data flow from servlets to JSPs. As discussed
in §2.2, traditional Java EE applications are often structured
in an MVC style: the servlet is the controller, the view is a
JSP, and the model is communicated via request or session
attributes (very similar to the flow of Struts in Figure 1).
Apart from our modeling of attribute accesses (see Figure 7),
we also model explicit forwards to JSPs, discovering the
target URL using our simple intraprocedural flow analysis
(see §4.1), thereby fully capturing the MVC behavior in
these applications.

To handle JSP code that uses the Expression Language
(EL) (e.g., ${user.firstName} in line 28 of Figure 2) we
built a partial interpreter for the expressions. After dis-
covering the contents of an EL expression (again using
our simple local flow analysis), we determine the possi-
ble state that could be accessed by scanning the applica-
tion code for matching getter methods, based on Java bean
naming conventions. (So, for an EL access to firstName,
we look for classes with a method getFirstName().) We
then model the EL evaluation as a WAFL nondet expression
that invokes some matching getter method on an object read
from either a request or session attribute.12 For our exam-
ple from §2, lines 14–15 in Figure 4 give our modeling of
the ${user.firstName} EL expression. While some cases
of the non-deterministic read may be infeasible, taint analy-
sis would only report an issue when a read matches a write
elsewhere in the code, a case likely relevant to the user.

4.2.2 Struts
Struts was presented in detail in §2, where we showed the
WAFL specification for a simple excerpt from a Struts appli-
cation. Here, we discuss some more advanced Struts features
also handled by our generator.

The Struts DynaActionForm class motivated our intro-
duction of properties for global variables in WAFL specifi-
cations (see §3.1). Figure 6 showed how to generate WAFL
to populate a standard Struts form bean, which sub-classes
ActionForm. DynaActionForm objects differ from standard
ActionForms in that their properties are accessed via meth-
ods that take the property name as a parameter, rather
than having a getter and setter method per property (e.g.,

12 EL expressions can also make the scope explicit (e.g., ${request.user}),
in which case we resolve it.
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get("name") rather than getName()). As with ActionForms,
Struts is able to automatically populate a DynaActionForm
with request data, based on a list of property names provided
in the XML <form-bean> declaration. Our WAFL genera-
tor parses these property names and creates a fresh global
with the same properties. The global properties are initial-
ized in the synthetic method for the corresponding Action
entrypoint. Call replacements are used to change generic
DynaActionForm.get() calls to reads of the corresponding
global properties (again employing local String constant
analysis to discover the property being accessed), thereby
fully exposing DynaActionForm data flow to the taint analy-
sis.

We also handle the Tiles framework,13 which is very often
used in conjunction with either the Struts or Spring frame-
works. Tiles is a templating system used to create a common
theme for pages in a web site, based on composing JSPs for
the page header, footer, body, etc. Our WAFL generator an-
alyzes Tiles configuration files and then treats a forward to a
tile as forwarding control to each of the component JSPs.

4.2.3 Spring
Spring14 is the most complex framework handled by our
WAFL generators thus far. Spring provides a very wide va-
riety of features to ease application development, including
a sophisticated MVC architecture and a general dependency
injection mechanism. Furthermore, Spring features are of-
ten highly configurable via XML and method overriding,
making the generation of WAFL for certain Spring features
somewhat non-trivial. Here, we describe how our WAFL
generator handles a few notable Spring features.15

Generating synthetic entrypoint methods that model a
Spring application’s MVC logic (analogous to the methods
generated by Figure 6 for Struts) requires handling many dif-
ferent types of controllers. The basic Spring Controller in-
terface provides a single method (parameter types condensed
for clarity):

ModelAndView handleRequest(Request req, Response resp);

A class directly implementing Controller takes the raw
HTTP request and response as parameters and returns a
ModelAndView object representing the name of the desired
view and the model data to be rendered. However, Spring
provides several abstract Controller implementations that
application code can subclass to obtain more functionality.
For example, to get Struts-style automatic population of a
bean object with HTTP request data, a developer can sub-
class AbstractFormController. Each abstract Controller
implementation in Spring has its own protocol for which of
its methods can or must be overridden in subclasses, what
order methods are invoked in, etc. Hence, we have built sep-

13 http://tiles.apache.org/
14 http://www.springsource.org/
15 Our implementation currently handles versions of Spring up to 2.5.

arate handlers for each of these abstract implementations,
and we choose the most suitable one for each application
controller based on its supertypes. Each handler is compara-
ble in complexity to those described in §4.1, again relying
primarily on configuration file parsing and lightweight code
analysis.

Another notable twist in Spring is its inner beans, which
enable automatic initialization of nested bean data struc-
tures. Say that bean type B has accessor methods for a field
inner of type Inner, and that Inner has accessor methods
for a field name of type String. In automatically populating
a B object with request data, Spring will populate the nested
Inner object as well, equivalent to the following code (as-
suming b points to the B object):
b.getInner().setName(request.getParameter("inner.name"));

Our WAFL generator discovers inner beans by inspecting
bean property types, and it generates statements like the
above in WAFL synthetic methods to fully model their ini-
tialization. Also, our handling of EL expressions (see §4.2.1)
is sufficiently general to handle reads from inner beans via
EL expressions in JSPs.

4.3 Discussion
Our experience with WAFL specifications thus far has con-
vinced us that our architecture is much more effective than
building support for frameworks directly into an analysis
engine. The key to the success of the architecture is that
only lightweight code analyses are required to extract the
relevant information for the specifications.16 If generating
WAFL required sophisticated interprocedural analysis in
practice, then computing the framework behaviors simul-
taneously with the taint analysis could yield performance
benefits by eliminating redundant work (call graph construc-
tion, etc.). However, in our experience, the redundant work
between WAFL generation and the subsequent taint analysis
(essentially just class hierarchy construction) is quite small.
The engineering benefits of separating framework analysis
from the core analysis engine, especially as the number of
supported frameworks grows, clearly outweigh this small
redundancy.

Beyond supporting standard frameworks, our architecture
enables (sophisticated) users of a taint analysis engine to
help the analysis better handle the difficult constructs in
their own applications. In some cases, web applications are
built on a private framework or on a customized version
of some public framework. We believe that in such cases,
a sufficiently-motivated user (e.g., a security auditor tasked
with thoroughly checking an application for vulnerabilities)
could write her own WAFL generator to at least partially
expose the framework behaviors to the security analysis.

We have recently implemented a higher-level API for
generating common WAFL constructs to ease the process

16 Our code analyses are implemented using the Watson Libraries for Anal-
ysis (WALA) [22].
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of writing WAFL generators. A sales engineer used the API
to create a WAFL generator for the Enterprise Java Beans
framework17 in roughly one week, an encouraging initial
success. We are actively studying further techniques for
easing creation of new WAFL generators, e.g., a domain-
specific language for writing the generators.

We have also recently developed a WAFL generator for
the ASP.NET framework18 and confirmed that the gener-
ated specifications increase taint analysis precision for cer-
tain applications. The design of ASP.NET is quite different
from that of most Java EE frameworks—web page compo-
nents are abstracted in a manner similar to GUI controls,
so, e.g., GUI-style event handlers process user form submis-
sions. Hence, our success in modeling ASP.NET constructs
in WAFL shows the flexibility and generality of F4F. A sys-
tematic evaluation of the effectiveness of WAFL generation
for ASP.NET remains as future work.

5. Taint Analysis Integration
In this section, we present a simple technique based on
source code generation for adding WAFL specification sup-
port to a taint analysis engine. We then briefly discuss some
details of the taint analysis engine used in our experimental
evaluation.

5.1 Java Code Generation from WAFL Specifications
As discussed in §3, WAFL was designed to be easy to in-
tegrate into analysis engines. The key features that must be
added to the analysis engine are the following:

• Processing of WAFL synthetic methods, including gen-
eration of an analyzable representation and inclusion of
the methods in the application call graph (as entrypoints
if marked as such).
• Replacement of call sites in application methods with a

representation of the corresponding WAFL call replace-
ment expression.

Here, we present an approach to the above based on gen-
eration of Java source code from WAFL specifications and
minor changes to the underlying analysis engine. This ap-
proach is appealing because the changes to the engine are
minimal, the generated Java code can be made understand-
able for developers, and much of the work can be reused
across analysis engines. For support of multiple languages,
an approach based on modification of the analysis engine’s
intermediate representation (IR) may be more maintainable
if the IR is shared among the languages.

We created a helper tool called WAFL2Java that gen-
erates Java code from WAFL specifications for use with
taint analysis. For each synthetic method in the input WAFL
specification, WAFL2Java generates a corresponding Java
method in a synthetic class whose statements correspond

17 http://www.oracle.com/technetwork/java/javaee/ejb/
18 http://www.asp.net/

to those in the synthetic method. The most interesting case
in this translation is handling method calls. One issue with
calls is that in our implementation, WAFL specifications
may omit values for some actual parameters if they are not
directly relevant to potential tainted flow. The translator can
use default values for these parameters in most cases, but
handling of the receiver argument is slightly tricky, since the
analysis engine may reason that a method call on null must
be unreachable. A general solution to this problem would
involve finding some valid constructor with which to cre-
ate a receiver object for the call. In our implementation, we
exploit the fact that our analysis engine reasons about vir-
tual call targets via local (intraprocedural) type inference, by
making the receiver a fresh local assigned the return value
of another dummy method; this is sufficient to ensure the
invoked method appears in the call graph.

Another tricky situation is when WAFL2Java must gener-
ate an invocation of a default- or protected-scope method m,
which by default cannot be invoked except from the same
package p. WAFL2Java handles this restriction by gener-
ating a fresh public class p.C in the desired package that
contains a public method C.m′ that simply invokes m and
returns its value. Since we are not executing the generated
code, we need not worry about sealed packages preventing
the generation of C.

For the most part, the rest of the translation is straight-
forward. taint expressions are translated to an invocation
of HttpServletRequest.getParameter() (we use the same
technique used for method calls if a request pointer is not
in scope). We translate nondet expressions by generating a
switch on the value of a public static integer field, which
the Java compiler will be unable to simplify. WAFL globals
are translated to static fields, with an appropriate fresh class
generated for the global if it has properties.

WAFL2Java handles WAFL call replacements by gener-
ating a fresh method mc for each call replacement c. The
signature of mc (i.e., its argument and return types) match
the method invoked at the call site to be replaced. The anal-
ysis engine can then model c by treating the original call
site as if it could only dispatch to mc. With this translation,
handling of the WAFL argToOrigCall construct is easy: it
simply becomes an access of the appropriate formal param-
eter of mc, or a return statement for the case of assigning
to argToOrigCall(-1).

In the end, WAFL2Java provides three outputs to the anal-
ysis engine: (1) the synthetic Java code (compiled to byte-
code), (2) a list of methods to be treated as entrypoints, and
(3) a mapping from each replaced application call site to
the generated Java method serving as the replacement target.
The analysis engine simply incorporates the synthetic code
as part of the application being analyzed, and it incorporates
the provided entrypoint methods during call graph construc-
tion. Call replacements are also handled during call graph
construction: dispatch at the replaced call sites is simply
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redirected to the appropriate generated method. With these
simple steps, an analysis engine can fully support WAFL
specifications.

5.2 Taint Analysis Engine
For our evaluation, we added WAFL specification support
to a version of ACTARUS [8] that analyzes Java bytecodes.
ACTARUS is an improved version of TAJ [20], with better
scalability and precision. ACTARUS includes a rich set of
security rules covering all aspects of the web application’s
interaction with its environment (including the file system
and backend databases); addition of framework support does
not modify the rules database used for analysis.

In contrast to TAJ [20], ACTARUS does not attempt to
model the behavior of reflective calls in framework imple-
mentation code. As we analyzed larger programs, we found
that TAJ’s reflection modeling became a scalability bottle-
neck. Furthermore, we found that the reflection modeling in
TAJ could not discover essential framework behaviors with-
out introducing too much imprecision. The goal with AC-
TARUS was to improve scalability by ignoring reflection and
still capture framework behaviors via F4F.

ACTARUS also does not include the built-in framework
support implemented for TAJ [20]. The combination of AC-
TARUS and F4F discovers many more framework-related is-
sues than TAJ, as TAJ did not have support for important
frameworks like Spring and Tiles. We chose to enhance AC-
TARUS with WAFL support (rather than enhancing TAJ) as
it was the best taint analysis available to us (in terms of scal-
ability and precision). We believe that the benefits of F4F
should be largely independent of the details of the analysis
engine, as WAFL specifications can expose many behaviors
that would be difficult for any engine to discover.

6. Evaluation
6.1 Experimental Methodology
Ideally, a taint analysis enhanced with F4F would have the
following properties when compared to analysis without
F4F:

More discovered vulnerabilities The taint analysis should
find significantly more true-positive (i.e., exploitable) se-
curity vulnerabilities in framework-based applications.

Few additional false positives The taint analysis should
output at most a small number of additional false posi-
tives; otherwise, the additional true-positive issues could
be lost in the noisy output.

Acceptable running time While the running time of the
taint analysis may increase with F4F (since more code /
flows are being analyzed), the slowdown should be pro-
portional to the amount of additional work being done by
the taint analysis. WAFL specification generation should
not be a performance bottleneck.

While experimental measurement of performance over-
head was relatively straightforward, we found that perform-
ing a complete evaluation of the first two desired properties
over a large benchmark suite was impractical. Determining
the exploitability of even a small number of taint analysis
issues is a significant undertaking, especially when the ap-
plication code is unfamiliar. Even running some web appli-
cations can be non-trivial, due to dependencies on particular
databases, servlet containers, etc.; this can make testing ex-
ploitability of issues very difficult. On the other hand, ensur-
ing that any particular issue is truly not exploitable can also
be challenging, as it may require careful reasoning about
possible attack vectors and the behavior of complex valida-
tion code. In our experiments, the taint analysis found hun-
dreds of additional issues with F4F enabled, and determining
the exploitability of all of these issues was beyond our capa-
bility.

In lieu of determining the exploitability of all discovered
issues, we performed a more limited classification that still
provides useful insights into the effectiveness of F4F. We
first manually categorized all new issues discovered with
F4F based on whether they were path-insensitive flows, i.e.,
feasible flows of tainted data ignoring conditional branches.
A path-insensitive flow may not be exploitable, e.g., if a val-
idation check prevents truly dangerous data from reaching
the sensitive sink. However, a path-insensitive flow cannot
be one of several types of false positives, e.g., those due to
infeasible call targets, overwriting of memory locations, or
an overly conservative model of some framework feature.
Furthermore, we believe that most path-insensitive flows are
worthy of manual inspection—even if the flow is a false pos-
itive due to validation, security auditors often prefer to man-
ually check the validation for sufficiency. (Analyses to auto-
matically detect validation and sanitization routines continue
to advance [19], and F4F can aid such analyses by exposing
calls to validation routines performed by frameworks.) We
also categorized a subset of issues discovered only with F4F
based on their exploitability to gain further insight into the
types of vulnerabilities discovered and the causes of false
positives.

All our experiments were run on a Red Hat Enterprise
Linux 4 machine with four Intel Xeon 3.8GHz CPUs (only
one of which was used) and 5GB RAM. We used the Or-
acle Hotspot JVM version 1.6.0_22 running with a 2.8GB
maximum heap.

6.2 Benchmarks
We evaluated F4F on a diverse set of nine subject pro-
grams, eight of which are open source. One proprietary ap-
plication has been anonymized as AppA. The programs in-
clude an online chat system (AjaxChat), systems for manag-
ing articles (StrutsArticle), photos (Photov), documents
(Contineo), and CVs (GestCV), a bulletin board (JBoard), a
job posting application (JUGJobs), and the sample pet store
management system provided with Spring (JPetstore). Ta-
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Benchmark
Benchmark Properties WAFL specification

version Java loc classes config. files JSPs frameworks globals methods replacements
AppA N/A N/A 250 5 69 Spring, Tiles, EL 9 39 21
AjaxChat 0.8.3 4147 29 2 5 Struts, EL 11 9 14
StrutsArticle 1.1 7897 45 3 11 Struts, EL 21 8 18
Photov 2.1 210304 239 4 48 Struts 41 25 106
Contineo 2.2.3 65744 790 5 88 Struts, Tiles 130 134 187
GestCV 1.0.0 11524 127 5 17 Struts, Spring, Tiles, EL 13 8 8
JBoard 0.3 17500 185 16 47 Struts, Tiles, EL 6 12 14
JUGJobs 1.0 4815 30 4 7 Struts, Tiles 11 6 13
JPetstore 2.5.6 25820 116 6 45 Struts, Spring, EL 26 38 27

Table 1. Subject program characteristics. In addition to lines of code and number of classes, we also list the number of
configuration files and JSPs for each program, along with the frameworks used. For the corresponding generated WAFL
specifications, we give the number of globals, synthetic methods, and call replacements.

ble 1 presents the characteristics of our subject programs
and of the WAFL specifications we generate for the pro-
grams. Links to the above applications and the correspond-
ing WAFL specifications generated by F4F are available on-
line at http://bit.ly/F4Fbenchmarks.

Overall, the suite thoroughly exercises our supported
frameworks: eight subjects use Struts, three use Spring, five
use Tiles, and six use EL. Also note that the size of the
WAFL specifications can be substantial (e.g., over 100 syn-
thetic methods and call replacements for Contineo), show-
ing the benefit of automatic WAFL generation.

6.3 Results
Table 2 shows the number of issues, call graph size, and run-
ning time when each of the benchmarks was analyzed with
and without framework support. F4F had a significant im-
pact: The analysis found a total of 525 new issues with F4F, a
harmonic mean of 2.10X more issues per benchmark (rang-
ing from 1.1X–14.9X). Note that our WAFL specification
generator does not yet handle all features of the supported
frameworks, and we have observed several cases where ad-
ditional support (in particular, better modeling of certain JSP
tag libraries) could enable the taint analysis to discover many
more flows.

Precision Of the new issues discovered with frameworks,
nearly all were path-insensitive flows, i.e., feasible flows if
conditional branches were ignored (see §6.1). The few ad-
ditional issues that were false positives even ignoring con-
ditional branches stemmed from either infeasible dynamic
dispatch or over-approximate reasoning about aliasing in the
taint analysis.

Note that F4F caused some issues that were reported
without framework support to be suppressed. Since WAFL
call replacements can replace arbitrary application code,
analysis with F4F can lead to suppression of false positives
(if imprecisely-analyzed code is replaced) or true positives
(if security-relevant code is replaced). There were five sup-
pressed issues in our experiments, of which three were false

positives, caused by overly conservative handling of String-
based maps like session attributes or Struts DynaActionForm
state (see §4.2.2) without F4F modeling. The two suppressed
path-insensitive flows were due to obscure behaviors like a
statement that logged the entire session state; since F4F uses
call replacements to more precisely model accesses of ses-
sion attributes, the session object itself is no longer tainted,
causing the analysis to miss the potential log forging vul-
nerability. These missed flows could easily be addressed by
augmenting our WAFL generators; we did not do so as the
behaviors were obscure.

Table 3 presents a deeper classification of ten path-
insensitive flows discovered only with F4F enabled for each
benchmark. Via manual inspection of the code, we classified
each issue as exploitable, dangerous, safe, or unknown. A
dangerous issue is one in which untrusted data is placed in
a store like the database or session state without validation;
while not exploitable on its own, such behavior is considered
risky from a security perspective.

Only seven of the 90 inspected issues were clearly not ex-
ploitable (i.e., “safe”), due to use of standard validation code
to prevent vulnerabilities or application-specific semantics
that made a particular tainted flow unexploitable. For the
cases with standard validation, the taint analysis could eas-
ily be enhanced to remove the false positives. The issues
categorized “unknown” were cases where we could not be
fully confident in complex validation code in the application.
Better string analyses [19] could hypothetically verify such
code, but for now, security auditors would likely want to in-
spect these issues by hand. Several types of exploitable is-
sues were discovered only with F4F enabled, including SQL
injection, open redirects, and log forging. In summary, our
evaluation indicated that F4F meets the goal of exposing
more vulnerabilities in framework-based applications with-
out introducing too many false positives.

Performance When running with framework support, run-
ning time was no more than 2.43X as long as running with-
out framework support, adding no more than 5.5 minutes of
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Benchmark Without F4F With F4F
Issues Excl. (PIF) CG Size Time (s) Issues Excl. (PIF) CG Size Time (s)

AppA 264 0 (0) 3382 2129 301 (1.1X) 37 (28) 3534 2555
AjaxChat 3 1 (1) 461 17 14 (4.7X) 12 (12) 526 30

StrutsArticle 11 0 (0) 771 18 25 (2.3X) 14 (13) 898 35
Photov 104 1 (0) 5304 101 178 (1.7X) 75 (75) 5625 229
Contineo 105 0 (0) 4633 391 228 (2.2X) 123 (123) 5431 573
GestCV 57 2 (1) 2382 622 101 (1.8X) 46 (31) 2606 948
JBoard 34 1 (0) 1832 239 74 (2.2X) 41 (41) 2025 330
JUGJobs 24 0 (0) 511 18 39 (1.6X) 15 (15) 655 32
JPetstore 12 0 (0) 2068 30 179 (14.9X) 167 (167) 2243 73

Table 2. The number of issues reported, call graph size, and running time for each of our benchmarks analyzed with and
without F4F. The “Excl. (PIF)” column gives the number of issues reported exclusively in each configuration, with the number
of path-insensitive flows (defined in §6.1) given in parentheses. The “Issues” column with F4F includes the factor increase over
the number of issues found without F4F. Running time with F4F includes WAFL generation time.

Benchmark Classification
AppA 2 exploitable, 8 unknown

AjaxChat 7 exploitable, 3 safe
StrutsArticle 6 exploitable, 4 dangerous

Photov 4 exploitable, 6 dangerous
Contineo 2 exploitable, 7 dangerous, 1 unknown
GestCV 2 exploitable, 8 unknown
JBoard 10 exploitable
JUGJobs 2 exploitable, 4 dangerous, 4 safe
JPetstore 10 dangerous

Table 3. A deeper classification of a subset of issues discov-
ered only with F4F for each benchmark.

running time (as shown in Table 2). WAFL generation took
an average of 31 seconds to run, ranging from 11–74 sec-
onds, showing that most of the additional execution time
with F4F enabled was spent in the taint analysis. This re-
sult was expected, as more code (indicated by the increased
call graph size) and data flows are analyzed with framework
support enabled. In all cases, the additional running time was
justified by at least a proportionate increase in the number of
security issues reported.

6.4 Threats to Validity
One threat to the validity of our results is that the frameworks
we have supported thus far may not be representative of web
frameworks in general. We have studied the documentation
of many other Java and .NET web frameworks [23], and we
believe that the techniques employed thus far in our specifi-
cation generator would extend to these other frameworks in
a straightforward manner. We have not studied the structure
of frameworks for dynamic languages like PHP in detail, and
it is possible that additional specification constructs / gener-
ation techniques would be needed in those cases.

Another possible threat is that the chosen benchmarks
may not be representative of frameworks-based applications
in general. Our benchmarks represent a variety of real-world
applications that exercise most features of the supported
frameworks. While the degree of benefit may differ for sub-
stantially different applications, we still expect significant
improvement with framework support.

Finally, it is possible that a disproportionate number of
the issues discovered only with framework support are not
exploitable compared to those discovered without the sup-
port, potentially lessening the benefit of reporting the addi-
tional issues. While we were unable to check exploitability
of all the new issues discovered with F4F for our bench-
marks, the results of classifying a subset of the issues (see
Table 3) suggested that in fact most of the additional issues
were worthy of inspection.

7. Related Work
Static analyses have long incorporated specifications for
code that is difficult to analyze; here, we discuss some of
the most closely related work in this space.

Many Java static analysis engines allow for specifica-
tions of the behavior of native methods [16, 21, 22], which
are substituted at any call to such methods. Additionally,
WALA [22] allows for pointer analysis clients to provide
code that generates a new version of a method, possibly
based on analysis information available at a particular call
site. A difference in WAFL is that call replacements enable
particular call sites (rather than all call sites to a method)
to be replaced in a declarative manner; we are unaware of
previous systems with a similar facility.

Jaspan and Aldrich [9] present FUSION, a language for
specifying relationships between objects imposed by frame-
works, and static analyses to enforce FUSION specifica-
tions. Our approaches are complementary: FUSION specifi-
cations are written manually, associated with the framework
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code itself, and focused on typestate-like properties, whereas
WAFL specifications are typically automatically generated,
associated with each framework-based application, and de-
signed to expose security-relevant behaviors. The alias anno-
tations in the PLAID language of Aldrich et al. [1] could also
provide additional support in exposing relevant data flow in
framework code.

Ball et al. [2] use training to automatically obtain a model
of the Windows kernel when applying model checking to the
domain of Windows device drivers. Given kernel procedure
k and set {d1, . . . , dn} of drivers that utilize k, the verifier
is run on each driver linked together with kernel procedure
k. This results in n boolean abstractions, which are joined
into a refined abstraction of procedure k, bk. In future runs
of the verifier, bk is used in place of procedure k, effectively
replacing the C code by a boolean program specification.
The analysis approach taken in F4F is quite different, but
the goal of a better environment model (in our case, the web
framework) is the same.

Livshits et al. [14] take a probabilistic approach for au-
tomatic inference of information-flow specifications. Their
tool, MERLIN, models information-flow paths using proba-
bilistic constraints, and then solves the resulting system to
classify nodes in the program’s information-flow graph as
sources, sinks, sanitizers or regular nodes. This approach
is complementary to ours: combined with F4F, we suspect
that MERLIN could do a significantly better job of inferring
information-flow specifications for framework-based appli-
cations.

The TAJ system for Java taint analysis included some
support for the Struts framework and Enterprise Java Beans
(EJBs) [20, §4.2.2]. That system handled tainted flows from
Struts ActionForm objects, but it did not handle many other
key Struts features like DynaActionForm objects (see §4.2.2)
and forwards to JSPs via ActionForward objects (see Fig-
ure 2). Furthermore, their framework support was imple-
mented by modifying the analysis engine itself, which be-
comes an engineering bottleneck as more frameworks need
to be supported.

Zheng et al.’s Analysis Preserving Language Transforma-
tion (APLT) technique [24] was used to automatically build
Java models for C methods suitable for applying a Java se-
curity analysis. The models constructed by APLT may de-
viate from the original semantics in ways that do not matter
to the client program analysis, for example ignoring array
index values if the static analysis does not track them pre-
cisely. In a similar manner, WAFL specifications may only
provide a partial model of framework behavior, sufficient for
exposing potential security vulnerabilities to the taint anal-
ysis. F4F differs from APLT in its use of call replacements,
the restricted nature of WAFL (APLT could generate arbi-
trary Java code as a specification), and its use of both code
and configuration files to generate specifications.

8. Conclusion and Future Work
We have presented F4F, an architecture for enabling ef-
fective taint analysis of web applications based on frame-
works. F4F exposes framework-related behaviors by gener-
ating specifications that can easily be processed by analy-
sis engines. This architecture enables taint analyses to find
many more framework-related security issues without com-
promising scalability or precision (shown in our evaluation),
and support for analyzing new frameworks can be added
without any modification of the core analysis engine.

In future work we plan to expand the applicability of
our techniques to more static analyses and frameworks in
other domains. In particular, we plan to apply similar tech-
niques to better handle RPC constructs, distributed trans-
action systems, and other configuration-file-based platforms
like Eclipse. We believe that the general approach of lever-
aging all available artifacts for static analyses with a clean
architecture could significantly increase the effectiveness of
the analyses on large-scale, real-world applications.
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