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ABSTRACT
We present a points-to analysis technique suitable for en-
vironments with small time and memory budgets, such as
just-in-time (JIT) compilers and interactive development en-
vironments (IDEs). Our technique is demand-driven, per-
forming only the work necessary to answer each query (a
request for a variable’s points-to information) issued by a
client. In cases where even the demand-driven approach ex-
ceeds the time budget for a query, we employ early termina-
tion, i.e., stopping the analysis prematurely and returning
an over-approximated result to the client. Our technique
improves on previous demand-driven points-to analysis al-
gorithms [17, 33] by achieving much higher precision under
small time budgets and early termination.

We formulate Andersen’s analysis [5] for Java as a CFL-
reachability problem [33]. This formulation shows that An-
dersen’s analysis for Java is a balanced-parentheses prob-
lem, an insight that enables our new techniques. We ex-
ploit the balanced parentheses structure to approximate An-
dersen’s analysis by regularizing the CFL-reachability prob-
lem, yielding an asymptotically cheaper algorithm. We also
show how to regain most of the precision lost in the regular
approximation as needed through refinement. Our evalua-
tion shows that our regularization and refinement approach
achieves nearly the precision of field-sensitive Andersen’s
analysis in time budgets as small as 2ms per query. Our
technique can yield speedups of up to 16x over computing
an exhaustive Andersen’s analysis for some clients, with lit-
tle to no precision loss.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Optimiza-
tion; D.2.6 [Software Engineering]: Programming Envi-
ronments—Interactive Environments
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1. INTRODUCTION
Motivation Points-to analysis is an increasingly impor-

tant prerequisite for analysis and optimization of object-
oriented programs, since mainstream languages like Java
and C# encourage pervasive use of pointers. Accordingly,
much recent work has focused on creating scalable and pre-
cise points-to analyses [7,10,12,18,25,26,29–31,36,37,39,44,
45]. While impressive progress has been made, certain anal-
ysis environments with the following properties still cannot
use existing algorithms:

Extreme resource constraints The environment needs
the points-to analysis to run in a fraction of a second
and consume very little memory.

Changing code The code being analyzed can change, and
the points-to analysis must be able to quickly recom-
pute its results after such a change.

One such environment is a just-in-time (JIT) compiler, the
optimizer of choice for modern object-oriented languages.
JIT optimization could benefit greatly from precise points-
to information, for example by handling virtual calls more
precisely. Many virtual calls in Java programs only have
one possible call target, and precise points-to analysis is
often necessary to find the target [26, 31]. Knowing this
target allows a JIT compiler to inline the call, which in
turn facilitates other optimizations. A JIT compiler has
extreme resource constraints since any time and space over-
head of compilation is counted against the running applica-
tion. Code analyzed by a JIT compiler can change due to
dynamic class loading.

Interactive development environments (IDEs), which in-
creasingly incorporate sophisticated analyses to aid in pro-
gram development, are another environment in need of bet-
ter points-to analysis. Precise points-to information would
be useful in an IDE both for program understanding and
possibly for enabling new automatic refactorings [15]. IDEs



have extreme resource constraints, as they run while the de-
veloper is interacting with the tool, and changing code, since
the developer is editing the target program.

To handle extreme resource constraints and changing
code, a points-to analysis must ideally run in a fraction of
a second and consume a very small amount of memory, and
efficiently handle changes in the analyzed program. The
most scalable recent analyzers for Java [26, 45] can take
tens of seconds and tens of megabytes of memory to com-
pute flow-insensitive context-insensitive Andersen’s points-
to analysis [5], and therefore are not suitable for use with
extreme resource constraints. While recent work on incre-
mental points-to analysis is promising [21, 24], building a
high-performance points-to analysis that maintains preci-
sion and efficiency with arbitrary code changes is still an
open problem.

Both JIT compilers and IDEs tend to only care about
points-to information for a small subset of variables in the
program: those in frequently-executing code for a JIT com-
piler, and those in the code being inspected by the developer
for an IDE. This behavior naturally leads to the considera-
tion of demand-driven points-to analysis algorithms, which
perform only the work necessary to find points-to informa-
tion for a set of variables specified by a client (the client’s
queries). Most points-to analysis algorithms are exhaustive,
computing points-to information for all variables in the pro-
gram1.

While demand-driven algorithms seem promising, doing
only the necessary work for a query may still be too ex-
pensive for our target environments. We have found that
a demand version of field-sensitive Andersen’s analysis for
Java (adapted from an algorithm for C [17]) can take sev-
eral seconds to find points-to information for a single vari-
able, too long for an environment with extreme resource con-
straints. Our technique for handling such cases is early ter-
mination, in which, after some resource budget is exhausted,
the points-to analysis prematurely terminates and returns a
sound, easily computed, but possibly very imprecise result
to the client. For example, when terminated early, a points-
to analysis could say that a queried variable can point to all
possible heap objects.

While using early termination can lead to a loss of pre-
cision, the severity of this loss depends on the client of
the analysis, as suggested in [17]. If queries that require
long running times to complete typically return results that
are not useful to the client, then early termination of such
queries do not lead to precision loss. For example, if a client
issues a query to determine if a virtual call can be resolved
to a single target, and the result from running the query
to completion indicates multiple possible targets, the result
from early termination is no worse for the client.

We found when applying existing demand-driven algo-
rithms [17, 33] to Java, early termination and small time
budgets lead to a large precision loss for our clients, as many
queries that would have produced useful results if run to
completion were terminated early. The key contribution of
our work is a new demand-driven points-to analysis tech-

1Some pointer analyses can a be viewed as answering queries
on demand after performing some preprocessing work on the
entire program, e.g. [10, 12]. Given our extreme resource
constraints, we restrict our definition of demand-driven al-
gorithms to techniques that only examine the statements
required for a particular query [17,22].

nique that retains nearly all of its precision when used with
early termination.

Our Approach Our goal was to develop a demand-driven
version of flow-insensitive, context-insensitive, field-sensitive
Andersen’s analysis, as presented in previous work [7, 26,
37, 44, 45]. Our technique was developed through insights
gained from formulating this analysis as a context-free lan-
guage reachability (CFL-reachability) problem [33], an ex-
tended form of graph reachability in which legal paths must
be labelled with a string in a specified context-free lan-
guage. To perform points-to analysis with CFL-reachability,
a graph representation of the program is constructed, with
nodes representing variables and objects and edges repre-
senting statements relevant to points-to analysis. Determin-
ing whether a variable x can point to an object o requires
finding a path p between x and o’s nodes in the graph, such
that p’s label is in a context-free language that ensures the
corresponding program statements can cause x to point to
o.

Our CFL-reachability formulation of Andersen’s analysis
for Java exposed a key difference with a similar formula-
tion for C [33], namely that the Java analysis is a balanced-
parentheses problem, similar to other program analysis prob-
lems formulated in CFL-reachability [33, 34]. Performing
field-sensitive Andersen’s analysis in CFL-reachability re-
quires a context-free language that ensures that on any path
between x and o indicating that x can point to o, field write
edges (open parentheses) and field read edges (closed paren-
theses) are balanced.

To obtain precise results under a tight time budget, our
points-to analysis technique uses approximation and refine-
ment, both of which exploit the balanced-parentheses struc-
ture of Andersen’s analysis for Java. Our approximation is
based on regularizing the CFL-reachability problem of en-
suring that field access parentheses are balanced. By assum-
ing that an appropriate path always exists from the source
of an open parenthesis edge to the target of a matching
closed parenthesis edge on the same field, we can approxi-
mate field-sensitive Andersen’s analysis with regular reach-
ability, which is asymptotically less expensive than CFL-
reachability. The RegularPT algorithm computes this regu-
lar reachability using simple depth-first search. Our regu-
larization corresponds to a field-based handling of field ac-
cesses, which previous work has shown to have nearly the
same precision as a field-sensitive handling [26,28]. Our ex-
periments show that RegularPT can achieve nearly 90% of
the precision of field-sensitive Andersen’s analysis for our
clients, with a time budget of only 2ms per query.

In cases where an answer to a query using regular reach-
ability is insufficiently precise for a client’s needs, we can
iteratively refine our approximation to regain precision. We
refine by checking for the existence of a connecting path be-
tween parenthesis edges that our regularization assumed was
present. The connecting paths are discovered using approxi-
mate regular reachability, and may therefore require further
refinement, leading to an iterative refinement process that
can regain nearly all the precision lost through approxima-
tion. The RefinedRegularPT algorithm extends RegularPT
to perform this iterative refinement. Given a time budget
of 20ms per query, our evaluation shows that RefinedRegu-
larPT is up to 3.8% more precise than RegularPT (relative
to field-sensitive Andersen’s) and still achieves much higher
precision than previous techniques.



Contributions Our main contributions are:

• Balanced Parentheses: We formulate Andersen’s
analysis for Java as a CFL-reachability problem and
observe that the context-free grammar that governs
the analysis has the balanced parentheses property,
with reads and writes of instance fields as the paren-
theses (Section 2).

• Regular Approximation: We show how to use the
balanced-parentheses property to approximate the An-
dersen’s analysis CFL-reachability problem with reg-
ular reachability, yielding a fast algorithm RegularPT
that essentially performs depth-first search (Section 3).

• Refinement: We give a technique for iteratively re-
fining our regular approximation using recursive reach-
ability queries, and present an algorithm RefinedRegu-
larPT that employs this technique (Section 4).

• Evaluation: We thoroughly evaluate our algorithms,
and show that for our experimental clients they are
precise, retain most of their precision under tight time
budgets and early termination, and yield large per-
formance improvements over available exhaustive and
demand-driven algorithms (Section 5).

2. ANDERSEN’S ANALYSIS
VIA CFL-REACHABILITY

In this section, we present CFL-reachability [33] (Sec-
tion 2.1) and Andersen’s points-to analysis [5] (Section 2.2),
and then give a formulation of Andersen’s analysis for Java
in terms of CFL-reachability (Section 2.3).

2.1 CFL-reachability
Context-free language reachability (CFL-reachability) is

an extension of traditional graph reachability. We are given
a directed graph G whose edges are labelled with letters
in some alphabet Σ and a context-free language L over Σ.
Each path p in G has a corresponding string s(p) in Σ∗,
constructed by concatenating in order the labels of edges in
p. We say p is an L-path iff s(p) ∈ L. Given nodes v and w
in G, w is L-reachable from v iff there exists an L-path in G
from v to w.

As an example, let Σ be the letters ‘(’ and ‘)’, and L be
the set of strings with balanced parentheses generated by
the grammar S → SS | ( S ) | ε. Consider the following
graph G, adapted from [33]:

There is exactly one L-path p from s to t, with s(p) =
“(())”. We say p is a nonTerm-path if and only if non-
terminal nonTerm generates s(p), and n1 nonTerm n2

means a nonTerm-path from n1 to n2 exists. So, in our
example, we have an S-path from s to t, or s S t. While
node t is L-reachable from node s, node u is not.

CFL-reachability is often used to ensure that some set of
parentheses are properly matched. For example, in inter-
procedural dataflow analysis [34], CFL-reachability is used
for context-sensitivity, with the entry and exit edges of each

1 x = new Obj(); // o1

2 z = new Obj(); // o2

3 w = x;

4 y = x;

5 y.f = z;

6 v = w.f;

Figure 1: A small code example and the points-to
relation computed by Andersen’s analysis.

method invocation as the matched parentheses. We will use
CFL-reachability to match field read and write parentheses
in our points-to analysis. Note that not all analyses for-
mulated in CFL-reachability use the context-free language
to check for matched parentheses, for example Andersen’s
analysis for C [33].

Determining CFL-reachability is computationally more
expensive than standard graph reachability. Consider the
single-source L-path problem, which requires finding all
nodes L-reachable from some source node n. The best known
algorithm solves the single-source L-path problem in worst-
case O(Γ3N3) time [33], where N is the number of nodes in
G and Γ is the size of a normalized grammar for L. In con-
trast, a single-source standard reachability problem can be
solved by depth-first search in O(E) time. Note that when L
is a regular language, the single-source L-path problem can
be solved in O(SE) time, where S is the number of states in
a deterministic finite automaton for L [47]. Our technique
uses regular reachability for points-to analysis through ap-
proximation of a CFL-reachability problem.

2.2 Andersen’s Analysis
Points-to analysis is traditionally presented as the prob-

lem of computing a points-to relation that conservatively
maps each pointer variable to the heap objects it can point
to at runtime. Figure 1 gives a small Java code example and
shows the points-to relation computed by Andersen’s points-
to analysis [5] for the example. Since statically determining
the set of objects that a program will allocate at runtime
is undecidable, dynamic heap objects are modelled with a
finite set of abstract locations. Andersen’s analysis uses a
single abstract location to represent the objects created by
all executions of a single allocation statement (e.g. new in
Java). In Figure 1, abstract locations o1 and o2 respectively
model the objects allocated at lines 1 and 2 of the code.
Typically, the points-to relation is represented with points-
to sets; for each variable x, the points-to set pt(x) contains
all abstract locations o such that (x, o) is in the points-to
relation.

Andersen’s analysis [5] is a subset-based, flow-insensitive,
context-insensitive points-to analysis. A subset-based points-
to analysis models the effects of a statement x = y with
the subset constraint pt(y) ⊆ pt(x), precisely modelling the
copying of values from y to x; other pointer-manipulating
statements are also modelled with subset constraints. Flow-
insensitivity means that the analysis disregards the control-
flow of the program, treating its statements as if they could
execute in any order. Finally, since the analysis is context-
insensitive, it merges information from different calls of a
procedure, rather than reasoning about each call separately.



Figure 2: The graph representation of the code of
Figure 1. The line number of the statement from
Figure 1 corresponding to an edge is indicated in
parentheses. Dashed edges indicate LFT-reachability.

The flows-to relation is the inverse of the points-to rela-
tion; (o, x) is in the flows-to relation iff o ∈ pt(x). For ease
of presentation, our formulation of Andersen’s analysis in
CFL-reachability will focus on how to compute the flows-to
relation rather than points-to.

2.3 CFL-reachability formulation
Our CFL-reachability formulation of Andersen’s analysis

for Java is based on a previous CFL-reachability formula-
tion of Andersen’s analysis for C [33]; our contribution is to
adapt the previous formulation to Java2. We first define a
graph representation G of a Java program P , with nodes for
variables and abstract locations and edges for the different
pointer-manipulating statements of P . Then, we develop
a context-free language LFT (FT for flows-to) with the fol-
lowing property: if a heap object represented by abstract
location o can flow to variable x during the execution of P ,
then x will be LFT-reachable from o in G. Hence, comput-
ing LFT-reachability is equivalent to computing the flows-to
relation.

Figure 2 shows the graph representation of the code of
Figure 1. A dotted edge from o to x in the figure indicates
that x is LFT-reachable from o. We indicate in parentheses
the line number of the statement from Figure 1 correspond-
ing to each edge; these line numbers are not part of the edge
labels.

We include edges for the following types of canonical state-
ments in our graph. A statement x = new Obj() is modelled
with a new edge o → x, where o is the abstract location node
for the statement. We include an assign edge x → y for a
statement y = x. We have a putfield[f] edge x → y for a
statement y.f = x, and a getfield[f] edge x → y for a pro-
gram statement y = x.f; the f in the edge label is the field
being accessed. We define the base variable of a field access
edge to be the variable being dereferenced, the source of a
getfield[f] edge and the target of a putfield[f] edge. Loads and
stores to arrays are modelled by representing all elements of
an array as a field arr, so a read (write) access to any array
element becomes a getfield[arr] (putfield[arr]) statement.

Let us first see how to define LFT given a graph with only

2Our CFL-reachability formulation of Andersen’s analysis
for Java is equivalent to previously presented set constraints
formulations [7, 26, 37, 44, 45]; we elide the details of the
correspondence, which are straightforward.

new and assign edges; in this restricted case, the language
is regular. Let the start symbol of LFT be flowsTo: if we
have o flowsTo x, then x is LFT-reachable from o. A new
statement sets its assigned variable to point to a new heap
object, creating a flowsTo-path from the source of the new
edge to its target, like the one from o1 to x in Figure 2.
An assignment p = q causes p to point to the object that
q points to, so if there is a flowsTo-path from o to q, there
should also be a flowsTo-path from o to p. In Figure 2, the
edges o1 new x and x assign w comprise a flowsTo-path from
o1 to w. We can write a simple regular expression for LFT

over the assign and new terminals:

flowsTo → new ( assign )∗

Now we must reason about field reads and writes. We need
to extend LFT to (conservatively) handle the case where an
object o flows to a variable x by first being written into
a field f of some object o′, and then being read from the
f field of o′ into x. Points-to analyses handle fields with
various degrees of precision. A field-sensitive handling of
fields is defined as follows:

Definition 1. Given o ∈ pt(d), some field write c.f = d,
and some field read a = b.g, a field-sensitive analysis con-
cludes o ∈ pt(a) iff the following conditions hold.

1. Fields f and g correspond to the same memory offset
in an object.

2. b and c are may-aliased, i.e., pt(b) ∩ pt(c) 6= ∅.

For Java programs, the first condition reduces to checking
that f = g, since Java guarantees that each instance field
of an object names a distinct offset3. The second condition
checks for may-aliasing between the base variables b and c
of the field accesses, i.e, that b and c may point to the same
object at runtime. If this condition does not hold, then b
and c always point to different heap objects, and hence the
field write and read cannot induce a flow of objects from d
to a.

As an example, consider statements 5 and 6 in Figure 1,
y.f = z and v = w.f. These statements satisfy condition
1 of Definition 1 since they access the same instance field
f . Furthermore, y and w can both point to o1, and are
therefore may-aliased, satisfying condition 2. So, a field-
sensitive analysis will conclude that these statements can
cause a flow of objects through the f field. For example,
since z can point to o2, statements 5 and 6 imply that v can
also point to o2.

The may-aliasing relation between variables given in Def-
inition 1 cannot be formulated in CFL-reachability with our
graph representation as defined thus far. For example, while
variables w and y from Figure 1 are may-aliased, w is un-
reachable from y in the graph of Figure 2 even by standard
graph reachability. w and y are both LFT-reachable from o1

in the graph, which implies that they are may-aliased. But,
because of the direction of the edges in the graph, we cannot
combine the corresponding flowsTo-paths from o1 to w and
y into a single path from w to y.

To overcome this limitation, we introduce reversed edges,
or barred edges, to the graph [33]. For each edge n1 → n2

labelled t in the graph, we now also have an edge n2 → n1

3This property does not always hold for structure fields in
C because of casts; see [48] for details.



labelled t. Note that in all of our example graphs, we omit
the barred edges for clarity. Given a graph with barred
edges, a reverse path p can be constructed for any path p by
reversing the order of the edges in p and replacing each edge
in p with its inverse, substituting barred edges for standard
edges and vice-versa. In our example from Figure 2, barred
edges allow us to reverse the flowsTo-path from o1 to w,
yielding a flowsTo-path from w to o1. This flowsTo-path
can be combined with the flowsTo-path from o1 to y to
obtain the desired path from w to y.

We characterize paths that show variables to be may-
aliased with the following production:

alias → flowsTo flowsTo

To show that this production for alias captures the may-
aliasing definition in Condition 2 of Definition 1, we must
show that variables b and c are may-aliased iff they are con-
nected by an alias-path; here we argue the forward direc-
tion. If b and c are may-aliased, then by Definition 1 we have
pt(b) ∩ pt(c) 6= ∅. Since the flows-to relation is the inverse
of points-to, this means that there exists some o′ such that
o′ flowsTo b and o′ flowsTo c. Given o′ flowsTo b, we can
construct a reverse flowsTo-path from b to o′ using barred
edges. The flowsTo-path from o′ to c can be appended to
this flowsTo-path to yield the desired alias-path from b to
c.

We are now ready to add field-sensitive handling of fields
to LFT by updating the flowsTo production as follows:

flowsTo → new ( assign | putfield[f ] alias getfield[f ] )∗

This production checks for putfield[f] / getfield[f] statement
pairs that meet the conditions of Definition 1. The LFT

language is no longer regular, but a context-free language of
balanced parentheses, with putfield[f] and getfield[f] as the
parens.

The CFL-reachability formulation of Andersen’s analysis
for C in [33] does not have the balanced-parentheses prop-
erty, primarily because unlike Java, C allows the address of
a pointer variable to be taken (using the & operator). Our
algorithms rely on the balanced-parentheses property, and
hence are not immediately applicable to C. A detailed dis-
cussion of points-to analysis for C vs. Java is beyond the
scope of this paper.

Figure 3 gives a context-free grammar for LFT. The ter-
minals are the labels for statement edges and their inverse
edges (e.g. assign and assign). Each flowsTo production
reverses the flowsTo production to its left and inverts the
edges. We use alias in the last flowsTo production where
alias would be expected since the two have identical pro-

ductions: alias → flowsTo flowsTo = flowsTo flowsTo =
flowsTo flowsTo. Note that we can easily write a production
for a points-to non-terminal, pointsTo → flowsTo, showing
that the grammar could be re-written to emphasize pointsTo-
paths rather than flowsTo-paths.

Going back to our example in Figure 2, let us see how to
derive the flowsTo path from o2 to v. First, we derive y
alias w as follows:

y assign x new o1 new x assign w

→ y flowsTo o1 flowsTo w

→ y alias w

With this alias path and statements 5 and 6, we can now

Figure 4: A graph illustrating match edges.

derive o2 flowsTo v:

o2 new z putfield[f ] y alias w getfield[f ] v

→ o2 flowsTo z putfield[f ] y alias w getfield[f ] v

→ o2 flowsTo v

3. REGULAR APPROXIMATION
In this section, we show how to regularize LFT-reachability

by approximating with reachability over a regular language
RFT, taking advantage of LFT’s balanced-parentheses struc-
ture. This regularization is useful because, as discussed in
Section 2.1, reachability over a regular language is asymp-
totically less expensive than CFL-reachability. We give a
simple and efficient demand-driven algorithm RegularPT, es-
sentially depth-first search, for finding points-to informa-
tion based on RFT-reachability. Section 5 will show that
RegularPT achieves most of the precision of LFT-reachability
within a time budget of only 2ms per query.

3.1 Regular Reachability
Recall our field-sensitive production for LFT from Sec-

tion 2.3:

flowsTo → new ( assign | putfield[f ] alias getfield[f ] )∗

The context-free aspect of LFT-reachability is checking
putfield[f] and getfield[f] edges, the balanced parentheses of
LFT, for the field-sensitivity conditions specified in Defini-
tion 1. The most expensive part of field-sensitivity is check-
ing for an alias-path between the base variables of putfield[f]
and getfield[f] edges, since the path may be complex and
must itself have balanced parentheses.

To make determining LFT-reachability less costly, we elim-
inate the search for alias-paths between matched parenthe-
ses by conservatively assuming that such a path always ex-
ists. With this assumption, handling of putfield[f] / getfield[f]
statement pairs reduces to checking that the accessed fields
are identical. We perform this check for identical fields
ahead of time by adding match edges to our graph, from the
source of each putfield[f] edge to the target of each getfield[f]
edge on the same field f . Figure 4 shows an example graph
with all match edges included. Given a graph with all possi-
ble match edges, we can over-approximate LFT-reachability
with regular reachability using language RFT, defined as fol-
lows:

flowsToReg → new ( assign | match )∗

Given graph G, let GR be G with match edges added
from the source of each putfield[f] edge to the target of



flowsTo → new flowsTo → new

flowsTo → flowsTo assign flowsTo → assign flowsTo

flowsTo → flowsTo putfield[f ] alias getfield[f ] flowsTo → getfield[f ] alias putfield[f ] flowsTo

alias → flowsTo flowsTo

Figure 3: A context-free grammar for LFT. The terminals putfield[f ] and getfield[f ], and their barred versions,
are the parentheses of the language.

each getfield[f] edge on the same field f . To show that
RFT-reachability over-approximates LFT-reachability and is
sound, We must show that if x is LFT-reachable from o in
G, then x is RFT-reachable from o in GR. Note that the
flowsToReg production differs from the flowsTo production
only in that “putfield[f] alias getfield[f]” has been replaced
by match. So, the soundness proof reduces to showing that
whenever nodes x and y in G are connected by a path la-
belled putfield[f] alias getfield[f], GR includes a match edge
from x to y. This clearly holds by construction, since we
add match edges between putfield[f] and getfield[f] edges in
GR regardless of whether their base variables are connected
by an alias-path.

Since RFT-reachability over-approximates LFT-reachability,
node x may be RFT-reachable from node o in GR but not
LFT-reachable from o. For example, in Figure 4, v is RFT-
reachable from o2 but not LFT-reachable, since there is no
alias-path from q to p. In general, precision is lost in cases
where an RFT-path includes an invalid match edge m, where
the base variables of the field accesses corresponding to m
are not connected by an alias-path. A points-to analysis
technique that, like RFT-reachability, handles field accesses
by checking only for matching fields is known as a field-based
analysis. This technique has been shown to have precision
relatively close to that of a field-sensitive analysis in previ-
ous work [26,28]. In Section 4, we show how refinement can
be used to recover most of the precision lost by using match
edges.

Since RFT is regular, answering the single-source RFT-
problem is asymptotically cheaper than the single-source
LFT-problem, as discussed in Section 2.1. Note the simplic-
ity of this regular expression for flowsToReg , relative to the
grammar of Figure 3. One consequence of our use of match
edges is that we no longer need to consider both standard
and barred edges when determining RFT-reachability; this
leads to both conceptual simplicity and a simple depth-first
search algorithm.

3.2 RegularPT
Figure 5 gives pseudocode for an algorithm RegularPT,

which determines points-to information on demand using
RFT-reachability. The regularPT procedure takes a node x
and returns the set of all nodes o such that x is RFT-reachable
from o. This returned set is a points-to set for x, since RFT-
reachability over-approximates the flows-to relation. The
doTraversal procedure is a standard worklist-based depth-
first search, traversing incoming assign and match edges to
find reachable new edges and their abstract locations.

The worst-case complexity of RegularPT is O(E + M),
where E is the number of edges in G and M is the num-
ber of match edges in GR. The derivation of this bound is
straightforward, as GR has E + M edges and RegularPT es-

p rocedu re regularPT (x : Node ) : Set o f Node
pointsTo : Set o f Node
marked : Set o f Node
wo rk l i s t : L i s t o f Node
propagate ( source , marked , wo rk l i s t )
w h i l e ( wo rk l i s t i s non−empty ) do

remove w from f r on t o f wo rk l i s t
f o r e a c h NEW edge o −> w do

add o to pointsTo
end
f o r e a c h ASSIGN and MATCH edge y −> w do

propagate (y , marked , wo rk l i s t )
end

end
r e t u r n pointsTo

end
p rocedu re propagate (x : Node ,

marked : Set o f Node ,
wo rk l i s t : Set o f Node )

i f ( x not in marked ) then
add x to marked ; add x to f r on t o f wo rk l i s t

end
end

Figure 5: Pseudocode for the RegularPT algorithm.

sentially performs depth-first search on GR. In real-world
Java programs, E is typically O(N) (where N is the num-
ber of nodes in G), since variables are typically assigned
very few times. While M can be O(N2) in the worst-case,
we have not observed a large number of match edges to be
a scalability bottleneck in practice.

3.3 Improving Precision with Types
The Java type system can be used to improve the precision

of RegularPT in two ways. We say types A and B are incom-
patible if A is not a subtype of B and B is not a subtype of A4.
If variable x has declared type A, and variable y has incom-
patible declared type B, then any flowsToReg-path ending at
x that passes through y can safely be ignored, since the type
system prohibits a flow of objects from y to x. Such flow-
sToReg-paths can exist in the graph because of downcasts.
For example, given statements Object o = a; b = (B)o,
we have a flowsToReg b, even if a and b have incompati-
ble declared types. When answering a query for variable x
with declared type A, RegularPT does not add nodes whose
declared types are incompatible with A to the worklist.

We can also decrease the number of added match edges us-
ing types. It is possible for the base variables of a getfield[f ]
edge and putfield[f ] edge (e.g. nodes v and w in Figure 4) to
have incompatible types, even though the f field is accessed
on both variables. For example, if we have class A with field

4If A is an interface, we must check that all classes imple-
menting A are incompatible.



f , class B extends A, and class C extends A, then B and C

are incompatible in spite of both having field f . When the
base variables of a getfield[f] edge v → y and a putfield[f]
edge z → w have incompatible types, we can safely avoid
adding a match edge from z to y, since there will never be an
alias-path between v and w. Empirically, these type-based
tests considerably improved precision on our benchmarks,
consistent with results in past work on Java points-to anal-
ysis that used similar techniques [26].

4. REFINEMENT
Here we show how a simple refinement technique allows us

to recover most of the precision lost by approximating LFT-
reachability with RFT-reachability. Our evaluation shows
the precision of RFT-reachability to be relatively close to that
of LFT-reachability for the clients we tested (see Section 5).
However, in cases where the precision of RFT-reachability is
insufficient and time constraints are tight, our experiments
show that our refinement technique is more precise than
computing fully field-sensitive LFT-reachability.

In this section, we first describe how a match edge can
be refined to check if it has introduced imprecision rela-
tive to LFT-reachability. We then give an algorithm Refine-
dRegularPT that iteratively refines match edges. In each
iteration, RefinedRegularPT adds precision by refining more
match edges, terminating when either the points-to analysis
client is satisfied or all relevant match edges have been re-
fined. When refining all match edges, RefinedRegularPT can
provide nearly the same precision as LFT-reachability.

4.1 Refining match edges
When match edges introduce imprecision relative to com-

puting LFT-reachability, the match edges can be refined to
recover (most) lost precision. Recall that the soundness of
RFT-reachability relies on the fact that whenever there is a
“putfield[f] alias getfield[f]”-path from x to y in the original
graph G, there is a match edge from x to y in GR. Our
technique refines a match edge m by verifying that no alias-
path exists between the base variables of the corresponding
putfield[f] and getfield[f] edges; if no alias-path exists, m
can be removed from GR without affecting the soundness of
RFT-reachability.

We use RFT-reachability to approximate the search for an
alias-path during refinement. The alias production flowsTo
flowsTo, given in Figure 3, requires using potentially expen-
sive LFT-reachability, as an alias-path cannot contain match
edges. Instead of searching for alias-paths, we refine a match
edge by looking for aliasReg-paths, defined with a simple ex-
tension of the RFT grammar (see Section 3.1):

aliasReg → flowsToReg flowsToReg

flowsToReg → ( assign | match )∗ new

Finding aliasReg-paths instead of alias-paths during refine-
ment is clearly sound, by an argument similar to the sound-
ness argument for RFT-reachability. An aliasReg-path may
itself contain match edges, and could therefore connect two
nodes that are not connected by an alias-path. However, we
can once again regain precision using refinement, this time
refining the match edges on the aliasReg-path. Our itera-
tive refinement algorithm is based on repeatedly discovering
aliasReg-paths while refining match edges, and then refining
the match edges on those aliasReg-paths.

As an example, let us consider refining the match edge
z → y in Figure 4. To do so, we search for an aliasReg-path
from w to v, and we find one via o2 labelled new new match.
This path includes the match edge w → v, which we can in
turn refine by searching for an aliasReg-path from q to p.
No such path exists, so the match edge w → v can be safely
removed from the graph. This removal eliminates the only
aliasReg-path from w to v, meaning the match edge z → y
can also be safely removed.

4.2 RefinedRegularPT
The RefinedRegularPT algorithm is an extension of the

RegularPT algorithm that performs iterative refinement of
match edges based on the needs of the points-to analysis
client. A client of a points-to analysis typically aims to
perform some transformation or verification of a program
that relies on some pointer-related program property. We
say that a points-to query is positively answered when the
points-to information computed by the analysis allows the
client to prove the relevant program property. The refine-
ment loop of RefinedRegularPT iterates until the given query
is positively answered, or until no further refinement is pos-
sible.

For example, consider a points-to analysis client that tries
to resolve virtual calls for the purpose of inlining. Given a
virtual call x.foo(), this client tries to use points-to infor-
mation for x to show that only one implementation of foo()
can be invoked by this call at runtime, allowing for inlining
of that implementation at the call site. The client issues a
query for the receiver x of the call to foo to RefinedRegu-
larPT, and considers the query positively answered when the
points-to information for x shows that the call to foo has
only one possible target.

Figure 6 gives pseudocode for the RefinedRegularPT algo-
rithm. The refinedRegularPT procedure takes as input a
node x and returns true if the query has been positively
answered, and false otherwise5. The doTraversal proce-
dure is similar in function to the regularPT procedure of
RegularPT (seen in Figure 5), computing a points-to set for
x through a depth-first traversal of the graph; each call to
doTraversal computes a new points-to set. The propagate

procedure is identical to that of Figure 5.
Refining match edges Lines 24-30 of Figure 6 perform

refinement of match edges. The pseudocode checks for an
aliasReg-path between a getfield[f] edge p → w and a
putfield[f] edge y → q by finding points-to sets pt(p) and
pt(q) (lines 24 and 26), and then checking if pt(p)∩pt(q) 6= ∅.
The points-to sets include nodes that are reachable along
flowsToReg-paths from p and q. Therefore, for any o ∈
pt(p) ∩ pt(q), an aliasReg-path from p to q through o can
be constructed. For a given getfield[f] edge p → w, there
may be many putfield[f] edges on the same field, and there-
fore many incoming match edges to w. Instead of refining
each such match edge individually, RefinedRegularPT refines
them together, thereby avoiding redundant computation of
pt(p) for each edge.

We have found an alternate strategy for refining match
edges to be empirically more efficient in certain cases. The
alternate strategy first finds pt(p), but then finds the set
of nodes Q that are reachable along flowsToReg-paths from
nodes in pt(p); if q ∈ Q, an aliasReg-path from p to q clearly

5For positively answered queries, our implementation also
makes the computed points-to set available to the client.



1 g e t f i e l d sToRe f i n e : Set o f GETFIELD[ f ] edges
2 g e t f i e l d s S e e n : Set o f GETFIELD[ f ] edges
3 p rocedu re doTraversa l ( x : Node ) : Set o f Node
4 pointsTo : Set o f Node
5 marked : Set o f Node
6 work l i s t : L i s t o f Node
7 propagate (x , marked , wo rk l i s t )
8 w h i l e ( wo rk l i s t i s non−empty ) do
9 remove w from f r on t o f wo rk l i s t

10 f o r e a c h NEW edge o −> w do
11 add o to pointsTo
12 end
13 f o r e a c h ASSIGN edge y −> w do
14 propagate (y , marked , wo rk l i s t )
15 end
16 f o r e a c h GETFIELD[ f ] edge e = p −> w do
17 i f ( e ! in g e t f i e l d sToRe f i n e )
18 add e to g e t f i e l d s S e e n
19 f o r e a c h PUTFIELD[ f ] edge y −> q do
20 propagate (y , marked , wo rk l i s t )
21 end
22 e l s e
23 remove e from ge t f i e l d sToRe f i n e
24 ptOfP = doTraversa l (p)
25 f o r e a c h PUTFIELD[ f ] edge y −> q do
26 ptOfQ = doTraversa l ( q )
27 i f ( ptOfP i n t e r s e c t s ptOfQ)
28 propagate (y , marked , wo rk l i s t )
29 end
30 end
31 add e to g e t f i e l d sToRe f i n e
32 end
33 end
34 end
35 r e t u r n pointsTo
36 end
37 p rocedu re ref inedRegularPT (x : Node ) : bool
38 c l e a r g e t f i e l d sToRe f i n e
39 w h i l e t r u e do
40 c l e a r g e t f i e l d s S e e n
41 pointsTo := doTraversa l ( x )
42 i f ( pos i t ive lyAnswered ( pointsTo ) )
43 r e t u r n t r u e
44 e l s e
45 i f ( g e t f i e l d s S e e n
46 conta ined in g e t f i e l d sToRe f i n e )
47 r e t u r n f a l s e
48 e l s e
49 add g e t f i e l d s S e e n
50 to g e t f i e l d sToRe f i n e
51 end
52 end
53 end
54 end

Figure 6: Pseudocode for the RefinedRegularPT algo-
rithm.

exists. We observed that in practice this alternate strategy
traverses fewer nodes when there are more than two match-
ing putfield[f] edges for a getfield[f] edge, since it does not
compute a points-to set for the target of each putfield[f] edge.
Our implementation employs the appropriate strategy based
on the number of matching putfield[f] edges.

Choosing match edges to refine RefinedRegularPT fo-
cuses analysis effort on match edges that have already been
shown to possibly cause imprecision. RefinedRegularPT first
tries to answer a query on some variable x without any

refinement, just using RFT-reachability. Consider the case
where the points-to set for x found using RFT-reachability
cannot positively answer the query. Let K be the set of
match edges on any RFT-path from some abstract location
o to x. If using RFT-reachability to find x’s points-to set
is less precise than LFT-reachability, then K must contain
at least one invalid match edge (i.e., a match edge with no
corresponding alias-path). In its next pass, RefinedRegu-
larPT only refines match edges in K, aiming to positively
answer the query with this small amount of refinement; we
have found this amount of refinement to often be sufficient
in practice. Proving that some match edge in K is invalid
may however require refinement of match edges outside of
K, leading to an iterative refinement process.

In the pseudocode of Figure 6, we maintain a set
getfieldsToRefine, containing the getfield[f] edges whose
corresponding match edges should be refined, and a set
getfieldsSeen, containing getfield[f] edges whose match
edges were traversed but not refined in the current itera-
tion of the algorithm. getfieldsToRefine is maintained
across iterations of the algorithm, while getfieldsSeen is
cleared on each iteration (line 40). If the points-to result
computed by an iteration of the algorithm is sufficient for a
positively answered query, we terminate and return true

(lines 42-43); the positivelyAnswered procedure is pro-
vided by the client. Otherwise, we add the getfield[f] edges in
getfieldsSeen to getfieldsToRefine (lines 49-50), and be-
gin a new iteration. When we cannot add any new getfield[f]
edges to getfieldsToRefine, we give up on positively an-
swering the query and return false (lines 45-47).

While refining match edges corresponding to a getfield[f]
edge e, we remove e from getfieldsToRefine (lines 23 and
31 of Figure 6). To see why, consider refining a match edge
m for a getfield[next] edge e = x → x, corresponding to the
statement x = x.next. The recursive call to doTraversal

at line 24 will pass x as its argument, and if e remained in
getfieldsToRefine, RefinedRegularPT would again try to
refine m, leading to an infinite loop.

Removing a getfield[f] edge from getfieldsToRefine dur-
ing refinement of a corresponding match edge m can lead to
imprecision. With the getfield[f] edge removed, RefinedReg-
ularPT may find aliasReg-paths during refinement of m that
include m itself, as m will not be refined again when encoun-
tered. If all aliasReg-paths discovered during refinement of
m include m, then m is still invalid, as m cannot be used to
justify its own existence. However, in such cases RefinedReg-
ularPT is unable to show that m is invalid, losing precision
relative to a fully field-sensitive analysis. In general, if Re-
finedRegularPT refines all match edges, it may compute a
less precise result than LFT-reachability in cases where GR

contains cyclic paths that include field dereferences, e.g. the
cyclic getfield[next] edge x → x for x = x.next. We have
not found the precision loss due to this aspect of our algo-
rithm to be significant in practice.

In the worst-case, a single iteration of RefinedRegularPT
may require O(MME) time, with E and M defined as in
Section 3.2. This worst case occurs when all match edges are
being refined, and refining one match edge requires refining
M − 1 other match edges, each of which requires refining
M − 2 match edges, and so on. We have not encountered
this worst-case behavior in practice, and since we envision
clients using strict time budgets and early termination with
our algorithms, it is not a practical concern.



5. EVALUATION
We evaluate the behavior of RegularPT and RefinedRegu-

larPT with two clients and several benchmarks. Our evalua-
tion validates the following experimental hypotheses about
the algorithms:

The algorithms are precise We show that RegularPT
has precision close to that of field-sensitive Andersen’s
analysis. It resolves more than 89% of the virtual calls
that field-sensitive Andersen’s analysis can across our
benchmarks, and more than 96% of those virtual calls
that are not in dead code. RefinedRegularPT provides
more precision than RegularPT, resolving nearly all of
the virtual calls in live code that field-sensitive An-
dersen’s can. We also show that an intraprocedural
version of RegularPT resolves far fewer calls, indicat-
ing that our results cannot be obtained with purely
intraprocedural analysis.

Precision retained under early termination We show
that RegularPT and RefinedRegularPT retain almost all
their precision when run with small time budgets and
early termination. For nearly all benchmarks, the two
algorithms can resolve 90% of the virtual calls that
field-sensitive Andersen’s can within a 50 node traver-
sal limit (2ms / query). We show that an adaptation of
a previously presented demand-driven algorithm [17]
that uses full field-sensitivity does not perform nearly
as well within a small budget. RegularPT and Refine-
dRegularPT also answer all virtual call and aliasing
queries in hot methods of the SPEC benchmarks as
precisely as field-sensitive Andersen’s analysis, requir-
ing less than 108 nodes of traversal per query.

The algorithms meet our performance goals Since
our algorithms perform well with small time budgets,
timeouts can be used to ensure good performance while
maintaining precise results. For example, we can an-
swer all virtual call queries in hot methods of the javac
benchmark 16x faster than exhaustive field-based An-
dersen’s analysis and 34x faster than exhaustive field-
sensitive Andersen’s analysis. The memory consump-
tion of RegularPT and RefinedRegularPT is also much
less than that of an exhaustive algorithm.

5.1 Experimental Configuration
Implementation We implement our analyses using the

Soot 2.2.1 [42] and SPARK [26] frameworks. We re-use the
pointer assignment graph built by SPARK, thereby leverag-
ing their existing analyses for determining reachable code.
To handle method calls, we configure SPARK to build a con-
servative call graph using a class-hierarchy analysis [6, 11].
For each method m, we have a node for each formal param-
eter of m of reference type, and if necessary a node ret m
for its return value (return statements in m are modelled
with an assign edge to ret m). We model a call of method
m with assign edges from each actual parameter to the ap-
propriate formal parameter node and from the ret m node
to the appropriate variable at the caller.

Our strategy for handling native methods and reflection
is as follows. For native methods in the libraries, we use
models provided by Soot. Soot also builds a call graph
that soundly handles many reflection calls, assuming that
all code is present for analysis. For example, a call to

Algorithm Description
RegularPT See Section 3.2

RefinedRegularPT See Section 4.2
FullFS Adaptation of algorithm in [17];

See Appendix A
ExhaustiveFB Exhaustive field-based

Andersen’s from SPARK [26]
ExhaustiveFS Exhaustive field-sensitive

Andersen’s from SPARK [26]

Table 1: Descriptions of points-to analysis algo-
rithms used in our experiments.

Class.newInstance() is modelled by adding edges to all
constructors in the program with no arguments. To be con-
servative, native methods in application code and reflective
calls whose targets cannot be soundly determined are han-
dled by telling the client that the query cannot be positively
answered.

To compare against the state-of-the-art, we also imple-
mented a demand-driven algorithm FullFS that uses the same
techniques as the algorithm in [17], but works for Java
pointer constructs. The basic idea of the algorithm is to
find points-to sets for only the variables necessary to answer
a top-level points-to query. The points-to sets are found by
iterating over relevant statements, applying inference rules
to introduce new points-to queries for relevant variables and
to propagate abstract locations to queried variables. The
algorithm is similar to exhaustive propagation algorithms
for Java [26,45], except that it only propagates the abstract
locations relevant to the query. We chose to make FullFS
treat fields with full field-sensitivity, thereby computing LFT-
reachability. The C algorithm in [17] is field-sensitive for
the unnamed field accessed by the C * operator, but is field-
based for structure fields. Since the * operator is so fre-
quently used in C programs, full field-sensitivity seemed to
be the analogous handling of Java fields. Details of FullFS
appear in Appendix A.

Table 1 lists all points-to analysis algorithms used in our
experiments. ExhaustiveFB and ExhaustiveFS are efficient
implementations of exhaustive field-based and field-sensitive
Andersen’s analysis respectively, as provided by SPARK [26];
to the best of our knowledge, their speed is competitive
with any published implementation of Andersen’s analysis
for Java.

All experiments are run on a machine with a Pentium
4 Xeon 2.4GHz processor and 2GB RAM, running Redhat
Linux 9. We use the Java 1.4.2 JVM as the underlying VM
for our experiments, but we analyze the 1.3.1 libraries, to be
consistent with [26] and because Soot provides models for
the native methods in the 1.3.1 libraries.

Benchmarks and Clients The characteristics of our
benchmarks are presented in Table 2. We use the SPEC
JVM98 benchmark suite, two benchmarks from the Ashes
suite [1], soot and sablecc, and jedit [2], an open-source
text editor. Subsets of these benchmarks were also utilized
in previous Java pointer analysis studies [26,28,37,44,45].

The “# Methods” column reports the number of methods
found reachable by SPARK’s class-hierarchy analysis (these
numbers differ from those in [26] due to improvements in the
handling of reflection in Soot 2.2.1). “# Vars” is the number
of variables (locals or static fields) in the program, and “#



Benchmark # Methods # Vars # Stmts
soot 6089 51853 146292

compress 12244 95463 269289
jess 12878 101332 289514

raytrace 12378 96873 271980
db 12249 95665 270571

javac 13385 107753 318411
mpeg 12456 98458 276062
jack 12502 98579 278965

sablecc 14065 110292 352338
jedit 17510 144062 412835

Table 2: Information about our benchmarks.

Stmts” is the number of assignment statements (the num-
ber includes the temporary variables and assignments intro-
duced to make each assignment one of our simple forms).
Our largest benchmark jedit is comparable in size with
the largest benchmarks used in other pointer analysis stud-
ies [7, 45].

We evaluate our analyses using two clients, virtcall and
localalias. virtcall attempts to resolve virtual calls to a sin-
gle target by finding the points-to set of the call’s receiver.
We only consider calls where cheaper type-based techniques
cannot resolve the call. localalias attempts to disambiguate
pairs of local variables in methods that are potentially in-
volve in conflicting field reads / writes. For variables x and
y and field f, we will query x and y if we see writes to both
x.f and y.f or a write (read) of x.f and a read (write) of
y.f. This information can be useful for a variety of opti-
mizations, including eliminating redundant loads and dead
stores [13].

For the SPEC benchmarks, we check virtcall and localalias
queries for the hot methods of each benchmark, those meth-
ods that execute frequently at runtime. We found the hot
methods by running the benchmarks through Jikes RVM [4],
and observing which methods get recompiled with the opti-
mizing compiler (at any optimization level) in its adaptive
optimization system. This experiment reflects the queries
likely to be raised by an optimizing JIT compiler. To simu-
late how inlining may affect our analysis results, we modified
our graph to inline all getter (e.g. Obj getFoo() { return

this.foo; }) and setter methods. This transformation es-
sentially adds context-sensitivity for getter and setter meth-
ods, and possibly makes analysis more difficult for Regu-
larPT, since there are more putfield and getfield statements
and potentially more invalid match edges. We also run the
virtcall client for all virtual calls in the program (including
the Java libraries) with no inlining, to reflect an IDE client
where a developer wishes to navigate to the invoked method
for some virtual call.

For the virtcall client, a query is positively answered (see
Section 4.2) when the points-to analysis shows that the call
has 0 or 1 targets. A virtual call can have 0 targets if it
resides in a method that is included in the initial call graph
but that the points-to analysis can prove is dead. The lo-
calalias client actually raises two points-to queries, as it is
checking if two variables can point to some common object.
Together, these queries are positively answered if they show
that the queried variables cannot be aliased. Handling the
paired queries of localalias in RefinedRegularPT requires mi-
nor modifications to its refinement loop, which we elide.

Benchmark Virt FeasVirt
soot 2812 1051

compress 5428 1801
jess 5540 1861

raytrace 5438 1803
db 5450 1819

javac 6334 1952
mpeg 5451 1800
jack 6022 2370

sablecc 6101 1898
jedit 7480 2612

Table 3: Number of virtual calls unresolvable by
types in each benchmark (the Virt column), and the
number of such calls resolvable by field-sensitive An-
dersen’s (the FeasVirt column).

When measuring the precision of our algorithms, we use
field-sensitive Andersen’s analysis as a “gold standard,” i.e.,
we measure how much of the precision of computing field-
sensitive Andersen’s can be obtained quickly by our demand-
driven algorithms. In the rest of this section, we refer to the
set of queries positively answered by field-sensitive Ander-
sen’s as the feasible queries, since these are the only queries
that our demand algorithms can hope to positively answer.
Table 3 shows the total number of virtual calls in our bench-
mark (excluding those resolvable with types alone), and the
number of those that are feasible queries (virtual calls that
field-sensitive Andersen’s resolved). The exclusion of calls
resolvable with types alone makes the field-sensitive Ander-
sen’s analysis look less precise than in previous work [26],
since we exclude many easy queries. Also note that some
of the calls unresolved by field-sensitive Andersen’s actually
have multiple targets at runtime; these calls are unresolvable
by any analysis without an extra program transformation
such as cloning [45].

Benchmark Hot Virt FeasVirt Alias FeasAlias
compress 7 0 0 0 0

jess 28 9 3 5 0
raytrace 23 4 0 6 4

db 4 5 5 9 0
javac 95 115 30 68 10
mpeg 45 2 0 1 0
jack 22 12 9 3 0

Table 4: Information on virtcall and localalias
queries in hot methods. Hot gives the number of
hot methods. Virt gives the number of virtual calls
in hot methods, and FeasVirt gives the number of
those calls that can be resolved by field-sensitive An-
dersen’s (the number of feasible queries). Alias and
FeasAlias are analogous, but for localalias queries.
We did not collect hot method information for the
other three benchmarks because our experimental
infrastructure did not support it.

Table 4 gives data on our queries in hot methods. Al-
though the number of queries raised is small, their impor-
tance is potentially very high since they all occur in hot
methods. For example, if an alias query is positively an-



Benchmark Intra (Live) Reg (Live) RefReg (Live)
soot 18.4 (16.0) 94.1 (98.5) 96.9 (99.8)

compress 26.0 (23.1) 89.1 (96.4) 93.7 (98.9)
jess 25.4 (22.5) 89.4 (96.6) 93.9 (99.0)

raytrace 26.1 (23.1) 89.1 (96.4) 93.7 (98.9)
db 25.7 (22.7) 89.3 (96.5) 93.7 (98.9)

javac 25.3 (22.3) 89.9 (96.7) 94.1 (98.8)
mpeg 26.0 (23.1) 89.1 (96.4) 94.4 (98.9)
jack 27.0 (25.1) 91.8 (97.5) 95.2 (99.2)

sablecc 23.9 (20.6) 89.7 (96.3) 93.9 (98.8)
jedit 21.7 (19.0) 92.7 (99.1) 97.2 (99.9)

Table 5: RegularPT and RefinedRegularPT have nearly
the precision of field-sensitive Andersen’s. The ta-
ble gives the percentage of virtcall queries positively
answered by an intraprocedural field-based analy-
sis (the Intra column), RegularPT (the Reg column),
and RefinedRegularPT with a 5 second time limit per
query (the RefReg column), as a percentage of those
answered positively by field-sensitive Andersen’s.
The parenthesized Live numbers indicate the result
if limited to queries in code that cannot be proven
dead by the points-to analysis.

swered, it may allow for a load to be eliminated in frequently
executing code, which could have a significant impact on
performance.

5.2 Experimental Results
Precision Table 5 shows the results of measuring the

precision of our algorithms for the virtcall client. The ta-
ble shows the percentage of feasible virtcall queries that
an intraprocedural field-based analysis, RegularPT (a field-
based analysis), and RefinedRegularPT also positively an-
swer. RefinedRegularPT can take very long time to answer
some queries, so we time each query out at 5 seconds, well
above the tolerable time budgets of our target clients. Reg-
ularPT positively answers more than 89% of feasible queries
in all cases, and more than 96% if restricted to code that
cannot be proven dead by the analysis (since it contains
a virtual call with 0 targets). These results are consistent
with previous work studying field-based analysis [26,28]. Re-
finedRegularPT can answer nearly all feasible queries. We
show below that nearly all of the precision of RegularPT
and RefinedRegularPT is preserved under early termination
of queries. The purely intraprocedural field-based analysis
does much worse than the RegularPT, showing that virtual
calls that cannot be resolved with the type system usually
cannot be resolved with a purely local analysis.

Figure 7 shows some code adapted from the jedit bench-
mark that illustrates why RegularPT has nearly the preci-
sion of field-sensitive Andersen’s. Consider a query to re-
solve the call to remove() on the propTable variable in
setProperty(); possible targets are in Hashtable or one
of its subclasses. RegularPT handles the query by immedi-
ately traversing across the incoming match edge from the
source of the putfield[properties] edge corresponding to the
field write in the Buffer constructor. It then finds a new
edge from a Hashtable abstract location and resolves the
call to the implementation of remove() in the Hashtable

class.
This pattern of a field being written only once in a con-

class Buffer {

private Hashtable properties;

public Buffer () {

this.properties = new Hashtable ();

}

public void setProperty(String name ,

Object val) {

Hashtable propTable = this.properties;

propTable.remove(name);

...

propTable.put(name ,val);

}

}

Figure 7: A typical example where RegularPT suc-
ceeds, but FullFS does too much work, derived from
code in the jedit benchmark.

structor or other initialization method occurs frequently in
Java programs, and RegularPT handles it well, as it imme-
diately traverses to the write upon encountering any read of
the field. In general, the precision of RegularPT for resolving
virtual calls is less than that of a field-sensitive algorithm
only when the algorithm encounters a field read x = y.f

such that objects of multiple types are written into the f
field (and such types lead to multiple targets for the call),
and not all such objects can be written into y’s f field. Such
polymorphic uses of fields occur relatively rarely, and hence
the precision of RegularPT for resolving virtual calls is close
to that of field-sensitive Andersen’s.

Precision under early termination We evaluated the
precision of RegularPT, RefinedRegularPT, and FullFS under
early termination with varying time budgets, to simulate the
strict time constraints of IDEs and JIT compilers. Recall
from Section 1 that under early termination, if a points-to
analysis exceeds some time budget for answering a query for
variable x, the analysis is terminated and the client is told
that x can point to any location. To simplify implementa-
tion, instead of using actual timeouts to enforce budgets, we
limit the number of nodes that can be traversed by a par-
ticular query. Note that we count a node as traversed each
time it is removed from the worklists seen in Figures 5 and 6;
RefinedRegularPT can visit a node multiple times, and each
visit is counted against the traversal budget.

To study behavior under early termination, we computed
the cumulative distribution of positively answered queries
vs. node traversal budget for each of our clients, bench-
marks, and algorithms. Figure 8 shows the cumulative dis-
tributions for jedit, using the virtcall client to query all
virtual calls in the program and library; the distributions
for other benchmarks look very similar. The vertical axis
is the percentage of feasible queries that were positively an-
swered, and the horizontal axis is the amount of allowed
traversal. Recall from Table 5 that the maximum possible
percentage that RegularPT can reach is 92.7%, and 97.2%
for RefinedRegularPT. FullFS should reach 100% if allowed
enough traversal.

RegularPT and RefinedRegularPT both perform very well
under early termination, retaining most of their precision
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Figure 8: RegularPT and RefinedRegularPT perform
very well under early termination. We give cumu-
lative distribution of percentage of feasible queries
positively answered vs. node traversal budget for
the virtcall client on jedit, for all three algorithms.
The top graph shows the distribution from 0 to 2000
nodes traversed, while the bottom graph focuses on
0 to 100 nodes traversed. The distributions for other
benchmarks look very similar.

even under tight time budgets. Figure 8 shows that even
with a 50 node traversal limit (where queries take 2ms or
less), both algorithms positively answer more than 90% of
feasible queries. RegularPT and RefinedRegularPT behave
similarly since the first iteration of RefinedRegularPT is ex-
actly RegularPT, and it therefore positively answers all
queries that RegularPT does with the same amount of traver-
sal. RegularPT reaches its maximum percentage of 92.7%
with 182 nodes of traversal; for jedit, traversing more than
this amount is pointless for RegularPT. A similar result is
seen across benchmarks, with the largest amount of traver-
sal required to get all positive answers with RegularPT being
259 nodes for javac. Traversing 250 nodes takes under 5ms
with our untuned implementation.

RefinedRegularPT resolves many of the queries that Reg-
ularPT cannot as the traversal limits grow, reaching 96.5%
of feasible queries with a traversal budget of 1250 nodes.
Traversing 1250 nodes takes 20ms or less with our imple-
mentation. ExhaustiveFS (described in Table 1) takes almost
30 seconds to analyze jedit, in which time RefinedRegu-
larPT could answer 1500 queries with a 1250 node budget.
Therefore, RefinedRegularPT could be very useful in an ap-
plication that required more precision than RegularPT and
only needed pointer information for a subset of the program,
perhaps constructing a call graph for part of the libraries to
aid in program understanding.

FullFS does not perform well under early termination. The

Budget Benchmark Reg RefReg FullFS

50
nodes

soot 93.7 93.7 46.6
compress 88.7 89.7 41.6

jess 89.1 89.9 41.0
raytrace 88.8 89.6 41.8

db 88.9 89.7 42.3
javac 88.9 89.3 42.5
mpeg 88.8 89.0 41.7
jack 91.5 92.2 44.2

sablecc 89.4 89.6 41.0
jedit 91.4 91.6 42.1

1250
nodes

soot 94.1 95.9 55.7
compress 89.1 92.9 50.3

jess 89.4 93.2 49.3
raytrace 89.1 93.0 50.5

db 89.3 93.0 50.9
javac 89.9 93.3 51.9
mpeg 89.1 92.9 50.3
jack 91.8 94.6 59.3

sablecc 89.7 92.1 49.9
jedit 92.7 96.4 47.2

Table 6: Precision of the demand-driven algorithms
with traversal budgets of 50 nodes and 1250 nodes.
The columns give the percentage of feasible virtcall
queries positively answered by RegularPT (the Reg
column), RefinedRegularPT (the RefReg column), and
FullFS (the FullFS column).

plateau for FullFS is reached at a 522 node limit, and at this
point it only positively answers 47.2% of feasible queries.
The algorithm requires more than 30000 nodes to positively
answer any more queries, and many queries require several
hundred thousand nodes of traversal, taking more than 10
seconds of analysis time (sometimes longer than the time
required to run ExhaustiveFS).

Table 6 shows the precision of RegularPT, RefinedRegu-
larPT, and FullFS for the virtcall client on all our bench-
marks, with traversal budgets of 50 nodes (2ms per query)
and 1250 nodes (20ms per query). With a 50 node traver-
sal budget, the precision of RegularPT and RefinedRegu-
larPT are almost identical, 88.8-93.7% of field-sensitive An-
dersen’s. A traversal budget of 1250 nodes allows Refine-
dRegularPT to positively answer 1.8-3.8% more queries than
RegularPT, relative to field-sensitive Andersen’s. FullFS can-
not answer more than 59.3% of feasible queries with a 1250
node traversal budget, and as with jedit, a much larger
traversal budget (30000 nodes or more) is required on all
benchmarks to substantially improve this precision, well be-
yond the constraints of our target environments.

Tables 7 and 8 give results for virtcall and localalias
queries in hot methods; benchmarks with 0 queries are not
listed. For this experiment, we ran RegularPT with a traver-
sal budget of 250 nodes, and FullFS with a traversal budget
of 500 nodes. We gave FullFS a larger budget since in our im-
plementation it seems to process nodes faster, and with these
budgets the time allowed for each query is roughly even for
the two algorithms (about 5ms per query). RegularPT posi-
tively answers all feasible queries in the hot methods; there
is no need to show RefinedRegularPT since its results are ex-
actly the same. FullFS does well on some benchmarks, but



Benchmark FeasVirt Reg FullFS
jess 3 3 2
db 5 5 5

javac 30 30 15
jack 9 9 9

Table 7: Results for virtcall queries in hot methods,
showing that RegularPT positively answers the same
number of queries as field-sensitive Andersen’s. The
FeasVirt column gives the number of feasible queries
(repeated from Table 4), the Reg column the num-
ber resolved by RegularPT with a 250 node traversal
budget, and the FullFS column the number resolved
by FullFS with a 500 node traversal budget.

Benchmark FeasAlias Reg FullFS
raytrace 4 4 4
javac 10 10 1

Table 8: Results for localalias queries in hot meth-
ods, showing RegularPT matching field-sensitive An-
dersen’s. FeasAlias gives the number of queries re-
solved by field-sensitive Andersen’s (repeated from
Table 4). Reg gives the number resolved by Reg-
ularPT, and FullFS the number resolved by FullFS,
with the same traversal budgets used for Table 7.

even with the larger traversal budget, it cannot positively
answer many queries in javac, the largest of the benchmarks
and the one with the most queries. RegularPT traverses 108
nodes or less for all positively answered queries, and there-
fore could have been run with a smaller traversal budget
with no precision penalty.

Our results lead to the slightly counter-intuitive conclu-
sion that within tight time budgets, greater precision can
be obtained with an overall less precise algorithm. Consider
again the example of Figure 7. Answering the virtcall query
on the propTable.remove() call with full field-sensitivity,
as FullFS does, leads to extra work, since the object writ-
ten to the properties field in the constructor of Buffer

will certainly flow to any read of the field, and hence all
match edges involving properties cannot be removed by
refinement. Furthermore, this extra work can increase costs
substantially, as RegularPT only requires traversing 3 nodes
to answer this query. The example reflects a common case,
and illustrates that the greater precision of our algorithms
is due to both the relatively small difference in precision be-
tween field-based and field-sensitive analysis and to the fact
that RegularPT often requires very little traversal to answer
a query.

We inspected several of the feasible virtual call queries
that RefinedRegularPT could not quickly answer by hand,
and found that the reasons for their difficulty were inde-
pendent of field-sensitivity. Some queries involved a param-
eter of a function nested deeply in the libraries that gets
called from many places; avoiding long traversals in these
cases would be difficult, and the likelihood of resolving such
calls to a single target is lower. In other cases, impreci-
sion in the conservative call graph lead to traversals of ex-
cess methods; refining this call graph on-the-fly is possible,
but it’s unclear if the extra work involved would be worth-
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Figure 9: Complete time/precision comparison of
several demand algorithm configurations and ex-
haustive algorithms on virtcall queries. The data
show that RegularPT can get close to the same re-
sults as field-sensitive Andersen’s with much less
cost than running an exhaustive analysis. The x
axis is analysis time in seconds, and the y axis is the
percentage of feasible queries that were positively
answered. For RegularPT and FullFS the data points
left to right are for traversal budgets of 50 nodes,
100 nodes, 200 nodes, and 500 nodes. Times are also
give for ExhaustiveFB and ExhaustiveFS (described in
Table 1). From top to bottom, the graphs show vir-
tual calls in hot methods in javac, all virtual calls in
javac application code, and all virtual calls in jedit

application code. These graphs are representative;
other graphs are very similar.



while with strict time constraints. Context-insensitivity also
causes excessive traversal; when the traversal enters a call
to ArrayList.get(), for example, it exits at all of the many
call sites of the method. It may also be possible to restrict
traversal using context-sensitivity, but again, this will in-
volve extra work that may not be very beneficial with tight
time budgets.

Performance Since we intend to run our demand algo-
rithms with early termination, time performance can be ad-
justed depending on how much precision is necessary for
the client. Figure 9 shows that high precision and perfor-
mance can be obtained with RegularPT through aggressive
early termination. We ran experiments where we measured
the total time required for RegularPT and FullFS to process
all virtcall queries in hot methods and all virtcall queries
in application code (i.e., excluding the Java libraries). The
latter experiment simulates some potential program under-
standing functionality in an IDE where a call graph is built
for the application. We compared these total running times
to the time required to run ExhaustiveFB and ExhaustiveFS,
described in Table 1. We show graphs of running time vs.
percentage of feasible queries resolved for three representa-
tive benchmarks and clients: calls in hot methods in javac,
calls in application code in javac, and calls in application
code in jedit. In all cases, the precision of a field-based
analysis was nearly exactly that of a field-sensitive analy-
sis, so we excluded RefinedRegularPT from the graphs (its
performance is almost identical to that of RegularPT).

RegularPT gives significant speedups over ExhaustiveFB
in all cases without sacrificing precision. For javac vir-
tual calls in hot methods, RegularPT has the same precision
as a field-sensitive analysis with a running time of .46 sec-
onds, a 34x speedup over the 16 seconds for ExhaustiveFB
and a 16x speedup over the 7.4 seconds for ExhaustiveFS.
For virtual calls in application code, speedups over Exhaus-
tiveFS (ExhaustiveFB) range from 3.62x (1.68x) for javac

(the smallest speedup in our benchmarks) to 20.4x (8.8x)
for jedit. FullFS fails to provide nearly the same precision
within the same time budgets given to RegularPT.

The memory consumption of our algorithms is quite rea-
sonable. Given a budget of 250 nodes of traversal, neither
RegularPT nor RefinedRegularPT allocates more than 50
kilobytes of memory across our benchmarks, and our im-
plementation could be more memory efficient. In contrast,
even with an efficient BDD representation, exhaustive field-
sensitive Andersen’s analysis takes 23 MB for javac and 28
MB for jedit [7], since all points-to sets need to be repre-
sented.

Other Factors We have evaluated our algorithms in a
static environment, where all of the benchmark code is avail-
able and the graph representation of pointer assignments is
built up-front. In a JIT compiler or IDE, such representa-
tions may not be readily available. Since our graph repre-
sentation essentially matches the assignment statements in
the program, it can be constructed efficiently. In an IDE,
the representation for a method can simply be rebuilt from
scratch after its code changes; no complex incremental up-
date is required. Such rebuilding can occur in the back-
ground while the user continues working. In a JIT com-
piler, the graph can be constructed immediately from an
intermediate representation. If a method has no interme-
diate representation because it has only been interpreted,
its graph can be constructed at query time, and the cost of

building the graph can be factored into early termination
heuristics.

Because new code may become available after analysis on
our environments (through editing in an IDE or dynamic
class loading in a JIT compiler), analysis results may be-
come invalid. If any analysis results are cached in an IDE,
they can simply be flushed and the corresponding queries
re-run. A JIT compiler presents a greater challenge, since
some (possibly running) code may have already been opti-
mized based on previous analysis results. There are three
ways in which dynamic loading of class C can invalidate the
results of some query q:

1. C provides a new target for some method invocation
that was traversed in answering q. This could affect
analysis results by returning some new value that was
not previously possible, for example.

2. C calls some existing method m whose parameters
were traversed in answering q (since new values could
now be passed into m).

3. C has a putfield to a field f , and a getfield on f was en-
countered when answering q. This new putfield could
lead to new match edges that must be considered.

Since our algorithms traverse a representation close to the
statements of the program, they could potentially keep track
of which statements could be affected by dynamic class load-
ing, and then add appropriate guards to such statements. If
a guard later failed due to dynamic class loading, the op-
timized code could be invalidated, using on-stack replace-
ment [8, 14] if necessary. See [20] for an enumeration of the
issues related to running pointer analysis in a JIT compiler.

6. RELATED WORK
Points-to analysis has been an active area of research for

many years. We limit our discussion to work that shares
one or more of the key features of our work: use of CFL-
reachability, demand-driven algorithms, and analysis of Java.
See [19] for more on past work in points-to analysis and [38]
for a discussion of various analyses for object-oriented pro-
grams.

Our use of CFL-reachability is based on the work of Reps
et al. on developing and utilizing the CFL-reachability frame-
work [33–35]. Our key insight was to recognize that Ander-
sen’s analysis for Java is a balanced-parentheses problem
when expressed in terms of CFL-reachability, a structure
we exploit in both RegularPT and RefinedRegularPT. Our
match edges are related to the summary edges used by the ef-
ficient CFL-reachability algorithm for balanced parentheses
languages [32,34,35]. Summary edges are computed bottom-
up as paths between parentheses are found, while match
edges are added exhaustively and then refined by checking
for paths between parentheses.

CFL-reachability formulations lead directly to demand-
driven algorithms through the use of the magic-sets trans-
formation [32]. The inference rules of FullFS (presented in
Appendix A), an adaptation of the demand-driven algorithm
of Heintze et al. [17], correspond exactly to a magic-sets
transformation of the grammar in Figure 3, rewritten to
find pointsTo-paths. As shown in Section 5, FullFS does not
have our desired performance characteristics under early ter-
mination.



Much work has been done on whole-program points-to
analysis for Java. A variety of points-to analyses are imple-
mented and explored in the SPARK framework [26], based
on Soot [42]. Their incremental worklist algorithm achieves
excellent scalability for Andersen’s analysis on large Java
programs, partially due to an efficient points-to set data
structure and exploitation of declared type information in
the program. Recently, BDDs have been employed to re-
duce the space required for storing points-to sets [7], and
a higher-level language was designed to specify BDD-based
analyses more concisely [27]. Their field-based program rep-
resentation is similar to our graph with conservative match
edges; instead of a match edge, they create a node for each
field, and represent getfields and putfields to assignments
from and to the field node. This representation works well
for exhaustive propagation of points-to sets, but the match
edge representation is more suitable for our refinement tech-
niques.

Some recent work makes promising advances in perform-
ing incremental points-to analysis. Kodumal and Aiken
show how to perform a limited form of incremental analy-
sis in a set constraints solver using backtracking [24]. Their
technique is most effective in cases where code changes are
primarily limited to a small set of source files, which they
show is a typical development pattern. Hirzel et al. present
a points-to analysis implemented in a JIT compiler that
handles all Java language features, which can quickly up-
date its computed results after program changes [21]. Our
approach to handling code changes is to recompute from
scratch points-to queries that are affected by a program
change. In cases where the number of queried variables is
moderate, our approach has the advantages of simplicity,
as no engineering for incrementality is needed, and of not
needing to cache intermediate analysis results, which can
consume significant amounts of memory,

Choi et al. [9] and Whaley and Rinard [46] define flow
and context-sensitive points-to and escape analyses for Java.
Vivien and Rinard extend the analysis in [46] to be incre-
mental [43], focusing analysis effort on code deemed to be
likely to yield profitable results. Their results show that
their incremental analysis obtains most of the effect of an
exhaustive analysis in much less time. Our positive results
for early termination may be explained by similar underly-
ing principles. It is unclear how long their analysis takes to
answer individual queries.

Liang et al. experimented with a variety of points-to
analysis algorithms for Java [28]. They conclude that field-
sensitivity yields little benefit over field-based analysis for
the extra required effort. Our precision results in the
demand-driven setting support this conclusion. Annotated
set constraints are utilized by Rountev et. al. to per-
form field-sensitive Andersen’s analysis for Java [37], and
their analysis seems to scale well. Recently, Kodumal and
Aiken have shown an efficient translation from balanced-
parentheses CFL-reachability problems to set constraints
[23]. Their translation could be applied to our formulation
of Andersen’s analysis to give an alternate set-constraints
based implementation. Whaley and Lam [44] adapt the fast
points-to analysis algorithm of Heintze and Tardieu [18] for
Java, also with good scalability results. Their work adds
field-sensitivity and flow-sensitivity for local variables. Re-
cently, they have utilized BDDs to produce a scalable flow
and context-sensitive exhaustive analysis [45]. BDDs were

also used for exhaustive context-sensitive points-to analysis
in [49]. Our focus on demand-driven algorithms distinguish
the current work from previous efforts.

Analyses other than Andersen’s have been employed to
perform points-to analysis and/or call graph construction
for Java programs. A variety of cheaper analyses for com-
puting call graphs have been proposed, based on analyzing
the class hierarchy [11], reachable code [6], and further effi-
ciently analyzable information [40,41]. O’Callahan presents
a context-sensitive, field-sensitive, unification-based points-
to analysis based on type inference techniques [31]. Mi-
lanova et al. propose object-sensitivity as an alternative to
context-sensitivity for more precisely analyzing features of
object-oriented programs [30]. We plan to explore greater
context and flow-sensitivity in our analyses in the near fu-
ture to help both precision and performance.

A large body of past work aimed to improve the per-
formance of alias analysis for C programs. Cycle elimina-
tion [12] and projection merging [39] dramatically improved
the scalability of set-constraint solvers in doing Andersen’s
analysis; the same set-constraint solver [3] was utilized in
the Java analysis in [37]. Das adds a small amount of direc-
tionality to a unification-based analysis in [10], creating an
analysis with precision close to Andersen’s while remaining
highly scalable; it is not immediately clear how to adapt such
a technique to Java. Heintze and Tardieu present a highly
scalable implementation of Andersen’s analysis in [18], based
on online cycle elimination, an efficient program representa-
tion, and an efficient set data structure. This algorithm was
also successfully applied to Java programs [44].

Guyer and Lin [16] present a client-driven alias analysis
that detects which statements cause imprecision for a given
client, and then analyzes that part of the code with greater
flow- and context-sensitivity; their results are promising. We
could perhaps adapt some of their techniques to add greater
sensitivity to our algorithms.

7. CONCLUSIONS
We have developed novel demand-driven points-to analy-

sis algorithms that yields much higher precision than previ-
ous techniques within small time budgets. The RegularPT
algorithm is very simple to implement and achieves nearly
90% of the precision of field-sensitive Andersen’s analysis
within 2ms per query. Given a slightly larger time bud-
get, RefinedRegularPT improves on the precision of Regu-
larPT and provides much more precision than a fully field-
sensitive approach. Our algorithms are especially suitable
for JIT compilers and IDEs, which have extreme resource
constraints and must handle changes in the analyzed code.
However, the algorithms are generally suitable for any client
that that only requires points-to information for a subset of
program variables. Given the relative ease of implement-
ing the algorithms, they provide a compelling alternative to
engineering an exhaustive points-to analysis for such clients.
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APPENDIX

A. FULLFS DETAILS
Here we give the details of FullFS, an algorithm employing

the techniques used by the demand-driven points-to anal-
ysis algorithm of Heintze et al. [17]. We present inference
rules for FullFS in Figure 10, showing which points-to queries
must be raised, given an initial set of queries and the state-
ments in a particular program. The left column presents the
statement types relevant to Java points-to analysis, and the
right column gives the inference rules that can be instanti-
ated when the corresponding statement is present. We adopt
the notation of [17], where x ↪→ . means that a query has
been raised to find what x points to. So, rule (1) states
that if there is a points-to query for p and a statement
p = new T(), then add p ↪→ oa to the points-to relation (a
is some label for the statement). Rule (3) states that given
statement p = r and a query p ↪→ ., we must add the query
r ↪→ . to see what r points to. Once we discover r ↪→ o1,
rule (4) will add p ↪→ o1.

Handling getfield and putfield statements is more com-
plex. Given a getfield statement p = r.f and a query p ↪→ .,
we must find the values written into the f field of abstract
locations that r can point to. Rule (6) introduces the query
r ↪→ . to find what r points to. Given that r ↪→ o1, in-
troduces the pointed-to-by query . ↪→ o1(fw) to find what
variables point to o1. In [17], there are queries of the form
. ↪→ x for variables x, since there can be pointers to vari-



statement FullFS inference rules

a: p = new T
p ↪→ .

p ↪→ oa
(1)

. ↪→ oa(any)

p ↪→ oa
(2)

p = r
p ↪→ .

r ↪→ .
(3)

p ↪→ . r ↪→ o1

p ↪→ o1
(4)

r ↪→ o1 . ↪→ o1(any)

p ↪→ o1
(5)

p = r.f
p ↪→ .

r ↪→ .
(6)

p ↪→ . r ↪→ o1

. ↪→ o1(fw)
(7)

p ↪→ . r ↪→ o1

o1.f ↪→ o2

p ↪→ o2
(8)

r ↪→ o1 . ↪→ o1(fr)
o1.f ↪→ o2 . ↪→ o2(any)

p ↪→ o2
(9)

p.f = r
p ↪→ o1 . ↪→ o1(fw)

r ↪→ .
(10)

p ↪→ o1 . ↪→ o1(fw)
r ↪→ o2

o1.f ↪→ o2
(11)

r ↪→ o2 . ↪→ o2(any)

p ↪→ .
(12)

r ↪→ o2 . ↪→ o2(any)
p ↪→ o1

o1.f ↪→ o2 . ↪→ o1(fr)
(13)

Figure 10: Inference rules for FullFS.

ables in C through the & operator. In Java, we only have
such pointed-to-by queries for allocation sites. The paren-
thesized fw gives the reason for this query; the form is a
field name f with subscript w for write and r for read. Here,
we are looking for writes to field f , or fw, since the getfield
statement reads from field f . We keep these reasons to avoid
unnecessary work (see below). Rule (8) says that once the
analysis has discovered that r ↪→ o1 and o1.f ↪→ o2, we can
add the fact p ↪→ o2.

Putfield statements p.f = r are handled as follows. If we
have p ↪→ o1 and . ↪→ o1(fw), the statement is relevant since
we must discover what is written into the f field of o1. In
such a case, rule (10) introduces the query r ↪→ ., and once
we find r ↪→ o2, rule (11) adds o1.f ↪→ o2. This latest points-
to fact allows rule (8) to trigger for the appropriate getfield
statements, flowing o2 across the field. Notice that if we did
not have the reason fw and just had pointed-to-by queries

1: x = y.f;

2: w = new T();

3: y = w;

4: z = w;

5: z.f = p;

6: p = new T();

1
x ↪→ .

3

1
x ↪→ .

y ↪→ .

x ↪→ .

y ↪→ .
1

w ↪→ .
3

w ↪→ o2
2

y ↪→ o2

x ↪→ .
···

o2.f ↪→ o6

x ↪→ o6

Figure 11: Example code and partial derivation for
FullFS.

of the form . ↪→ o1, then when we encounter a statement
p.g = r, we would still introduce r ↪→ . to be sound, since a
read from the g field may have been encountered. Keeping
the reason ensures we only do work for relevant field writes.

Rules (2), (5), (9), (12), and (13) concern properly han-
dling the pointed-to-by queries. Rule (2) says that if there
is a pointed-to-by query . ↪→ oa(any) (where (any) means
for any reason), we must add p ↪→ oa; rule (5) similarly han-
dles assignments. Rules (9), (12), and (13) handle the case
when we have . ↪→ o2(any) and o2 is written into a field. For
statement p.f = r, rule (12) adds the query p ↪→ ., since we
must which abstract locations have o2 written into their f
field. When we find such an abstract location o1, rule (13)
adds the fact o1.f ↪→ o2, and introduces the pointed-to-by
query . ↪→ o1(fr) since we are looking for reads of f . Rule
(9) handles the case when we find a statement p = r.f that
reads f from o1, adding the fact p ↪→ o2.

Figure 11 gives some sample code and partial derivation
of the fact x ↪→ o6, assuming x ↪→ . is the initial query.
Uses of inference rules are labelled with the corresponding
statement. Notice that all leaves of the derivation will be
x ↪→ ., as expected.

FullFS runs the two-set algorithm described in [17], adapted
for these inference rules. We maintain a points-to set for
each queried variable, and a second set containing the al-
location sites in the points-to set which are referenced in
pointed-to-by queries. The algorithm iterates over all rele-
vant statements applying inference rules until the sets reach
a fixed point. We re-use SPARK’s hybrid points-to set rep-
resentation [26], use a smart iteration order for the state-
ments, and incrementalize the algorithm, only propagating
newly added abstract locations in each iteration.


