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Abstract—Call graph construction is a crucial prerequisite for
a wide range of static analysis applications. State-of-the-art
methods minimize precise but expensive pointer tracking by
falling back to so-called “type analysis” which scales well to
large programs such as the Linux kernel. In this paper, we
undertake an in-depth evaluation and analysis of type-based
methods that reveal new insights into flaws due to their ad-
hoc nature. First, we find that in a number of cases, the
soundness claims of recent type-based methods do not hold,
resulting in missing indirect call targets. Second, we find the
analysis is overly conservative in multiple aspects, leading to
a large number of false indirect call targets. Based on these
insights, we make the observation that such type-based methods
can be converted into a hybrid pointer analysis framework
that unifies the traditional pointer tracking methods and type-
based methods. Based on such a framework, we develop a
practical indirect call analysis that addresses both soundness
and precision limitations. Our results demonstrate a remarkable
level of soundness and precision improvements. KallGraph
simultaneously improves precision and soundness by pruning
up to 90% of indirect call targets and eliminating hundreds to
thousands of missed indirect calls. Finally, KallGraph is fully
parallelizable and can complete the analysis of Linux kernels
in times ranging from tens of minutes to a few hours.

1. Introduction

Call graphs maintain the relationship between caller and
callee functions. They are widely used in inter-procedural
program analysis for a variety of purposes [1–15].

Constructing call graphs is challenging because of indi-
rect calls, which, in C programs, occur through dereferencing
a function pointer. Classic points-to analysis can identify
indirect call targets by tracking how a function address flows
to a dereferenced function pointer. However, this approach is
unscalable for large programs such as the Linux kernel [16].

This leads to the development of type-based indirect call
analysis, offering superior scalability with decent precision
and soundness [17, 18]. The most straightforward method
along this direction is called function signature analysis
(FSA) [17], which matches indirect calls and address-taken
functions that share the same signature, i.e., return type and
parameter types. However, this method is highly imprecise

when resolving an indirect call with a common signature. To
refine FSA, multi-layer type-based analysis (MLTA) [18] was
proposed to refine the analysis results based on “type contexts”
of indirect calls and function address-taken sites, i.e., match-
ing the struct types a function pointer from which a function
pointer is retrieved with the structure types into which a
function address is stored. This method requires computing
partial data flows (to track pointer propagation) and allows
many indirect call targets to be pruned successfully. More
recently, TyPM [11], KELP [19], TFA [20], SMLTA [21]
were proposed as improved successors of MLTA.

In this paper, we conduct an in-depth evaluation and
analysis of the state-of-the-art type-based methods and have
two major observations: (1) MLTA’s soundness claim does
not hold due to flaws at the design level, and its precision
is still limited due to conservative design regarding type
handling; (2) Most of these limitations/flaws are not resolved
by its successors [11, 19–21], causing still imprecise and
unsound results. To address this, we map the MLTA algorithm
that does partly data-flow and type-based analysis into a
recent hybrid pointer analysis framework that unifies the
two analyses. Through the framework, we develop a sound,
precise, and scalable indirect call analysis, dubbed KallGraph,
that revamps the current type-based analysis in a principled
and systematic manner. Through extensive evaluation, we
show that KallGraph outperforms state-of-the-art methods
in both soundness and precision: (1) correcting thousands of
false negative indirect call results of MLTA and its successors
in large programs such as Linux kernels (with a subset of
them verified by dynamic execution), (2) eliminating 75%
to 90% of indirect call targets compared to MLTA, and over
60% compared to MLTA’s successors. Finally, KallGraph is
highly parallelizable, making it scalable for practical uses,
i.e., tens of minutes to a few hours in our experiments.

In summary, we make the following contributions:

• An in-depth study revealing fundamental and previously
unknown limitations in state-of-the-art type-based indirect
call analysis, regarding both soundness and precision.

• An insight into the connection between existing type-based
methods and a grounded hybrid pointer analysis, effec-
tively addresses both soundness and precision limitations.

• A fully working and open-sourced indirect call analysis,



called KallGraph1, based on the hybrid pointer analysis.
The solution works well on large-scale programs such as
the Linux kernel.

• A comprehensive evaluation demonstrating how KallGraph
outperforms the existing methods with detailed data and
case studies, which establishes a new standard.

2. Indirect Call Analysis

At a high level, there are two categories of approaches to
resolve indirect calls (icall in short), points-to analysis and
type-based methods. The points-to analysis treats the indirect
call analysis as resolving the points-to set of the function
pointer operand of the icall instruction. It keeps track of
the object allocations and pointer propagation and resolves
points-to set for pointers recursively. This makes it more
precise but also resource-intensive. For example, two classic
pointer analyses, Andersen’s [22] and Steensgaard’s [23]
are both implemented in SVF [24, 25]. According to our
experiments, when analyzing the Linux kernel, the former
easily times out, while the latter spends 2 days generating
an over-approximated result (§7.1). Other recent points-to
analyses [26, 27] also fail to generate call graphs in days
for large-scale programs such as the Linux kernel.

In contrast, instead of tracking the flow from address-
taken functions to indirect calls, type-based methods bypass
such tracking by conservatively assuming the function point-
ers “may” point to a target function simply because their
types “match.” Here we introduce a few type-based methods:
Function Signature Analysis (FSA). Traditionally, FSA [17]
is widely used to resolve icalls for many applications such
as CFI [1, 14, 28–30]. Given an icall, FSA considers
all address-taken functions with the same signature (i.e.,
return type and parameter types) as targets. For example,
Figure 1 shows icall at line 27 with type rwptr. FSA
considers m1_read(), m1_write() and m2_read() as
potential targets since they are address-taken and with the
same type. This method is highly scalable because it is linear
— only needs to check signatures across icall instructions
and address-taken functions. It is also sound when type
information is available and correct [31], including the source
and destination types in type casts. However, it suffers high
imprecision due to the over-approximation where false icall
targets are included, e.g., m1_read() and m2_read().
Multi-Layer Type Analysis (MLTA) [18] has become the
de facto standard of indirect call analysis for many applica-
tions [2, 9, 12, 13, 32–36] targeting large-scale programs. It
refines the FSA call graph through “type contexts” on top
of the function signature. For the same example in Figure 1,
MLTA will look at how the icall’s function pointer is
retrieved from struct fields and which function addresses
are stored in the same fields. For example, MLTA sees that
icall is retrieved from ops1->write. This means that
m1_read() and m2_read() are no longer possible icall
targets because they are never stored in the same struct

1. https://github.com/seclab-ucr/KallGraph

1 typedef int (*rwptr)(char*);
2 void* gops = NULL;
3
4 // module1.h
5 struct M1 { rwptr read; rwptr write; } m1_ops;
6 int m1_read(char* str){ ... }
7 int m1_write(char* str){ ... }
8 void m1_init(){
9 m1_ops.read = m1_read; // struct M1, fd1

10 m1_ops.write = m1_write; // struct M1, fd2
11 gops = (void*) &m1_ops;
12 }
13
14 // module2.h
15 struct M2 { rwptr read; } m2_ops;
16 int m2_read(char* str){ ... }
17 void m2_init(){
18 m2_ops.read = m2_read; // struct M2, fd1
19 }
20
21 // module3.c
22 #include "module1.h"
23 struct M1* getops(){ return gops; }
24 int m3_exec(){
25 struct M1* ops = getops();
26 rwptr icall = ops->write;
27 return icall("/file"); // m1_write()
28 }

Figure 1. Code Snippet of Sample Indirect Calls

layer, denoted as {struct M1, 2} (2nd field of struct
M1). Such refinement precision can be improved if there
are additional “struct layers”, hence the name of “multi-
layer type analysis” (MLTA). For instance, a three-layer type
context of icall may look like “a->b->icall”, potentially
allowing further refinement (by a) of targets.

However, it is not always possible to perform such
refinements in MLTA. If we look at the type struct M1
again which has an important statement in line 11, we will
see a “type escape” where struct M1* is cast to void*.
Unfortunately, void* is an unsupported type in MLTA,
forcing it to fall back to FSA conservatively. This means that
icall is still considered to call m1_read(), m1_write(),
and m2_read(), as shown in Figure 2. MLTA reasons that
void* pointers may subsequently be used in arbitrary ways,
e.g., to be cast into many other types (more details in §3).

More recently, TyPM [11], KELP [19], TFA [20], and
SMLTA [21] have been proposed to improve MLTA.
TyPM uses an additional dependence analysis to refine which
types (e.g., struct layers in MLTA) could be accessed in
which modules (i.e., source files). As shown in Figure 1,
TyPM will figure out that there is no dependence relationship
between module2.h and module3.c. Thus struct M2
defined in module2.h will not be accessed in module3.c,
and m2_read() will not be an icall target of icall. But
TyPM cannot remove m1_write() from the MLTA result,
as it is defined in module1.h, which was indeed dependent
by module3.c. With such an additional refinement based on
the module dependence analysis, TyPM is shown to eliminate
40% indirect call targets of MLTA for the Linux kernel.
KELP refines MLTA by dividing icalls into two categories:
simple and complex. A simple icall means its target functions
are propagated through short and simple paths from address-
taken sites and can be handled through a “regional” (i.e., not
whole-program) points-to analysis. A complex icall means
the propagation is more complex to track (e.g., through many
higher struct layers). For complex icalls, KELP falls back to
MLTA. Similar to TyPM, KELP is shown to eliminate about
40% indirect call targets of MLTA. This is likely due to the
fact that only 35% of icalls are simple.

https://github.com/seclab-ucr/KallGraph
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Figure 2. Type Escape of MLTA

TFA enhances MLTA by incorporating an inter-procedural,
flow- and field-insensitive pointer analysis. Although TFA
and KELP appear similar, their purposes diverge. KELP
applies pointer analysis to a subset of “simple” indirect calls
end-to-end, while TFA leverages pointer analysis to enhance
type analysis performance, allowing more struct layers to be
available. As a result, TFA claims to eliminate about 50%
of the indirect call targets produced by MLTA.
SMLTA addresses several implementation-level issues in
MLTA. While MLTA’s design intends to refine indirect calls
layer by layer (referred to as “multi-layer”), its implementa-
tion lacks precise maintenance of these layer relationships,
causing potential precision issues. SMLTA identifies this
problem and introduces a “strong multi-layer” approach,
ensuring strict dependency between struct layers from lower
to higher layers. As a result, SMLTA reduces MLTA’s indirect
call targets by approximately 30%.

3. In-depth Analysis of SOTA Methods

In this section, we comprehensively analyze and eval-
uate the design of these state-of-the-art (SOTA) methods,
identifying fundamental and previously unknown limitations
that prevent them from being more precise and sound. Since
TyPM, KELP, TFA, and SMLTA are recent successors of
MLTA, we focus more on MLTA, as most of its imprecision
and unsoundness are also inherited by its successors.
MLTA refines icall targets based on multi-layer struct type
contexts. Its algorithm contains three components and is
supported by three corresponding type refinement rules [18]:
(1) target resolving rule: collect higher struct layers for icalls,
i.e., from which structs the function pointers are retrieved.
(2) type confinement rule: collect higher struct layers for
function addresses, i.e., which structs they get stored into.
(3) type propagation rule: match the collected struct layers
from both ends. Roughly speaking, if the struct layers of the
two ends are compatible, the function is considered a target.

Correspondingly, there are two important requirements
in order to make this idea work well:
(1) MLTA successfully and comprehensively finds the struct
layers around both address-taken function end and icall end.
(2) The identified struct layers are supported for refinement.

Through an in-depth analysis, unfortunately, we identify
several fundamental limitations in both precision and sound-
ness of MLTA (and its successors). For example, the first
requirement is often not met due to two reasons:
① Imprecision in the Target Resolving Rule — Conser-
vative fallback behavior when struct layers for icalls are
missing. To retain scalability, MLTA chooses to find higher

1 int a_read(char*){ ... }
2 int b_read(char*){ ... }
3 int c_read(char*){ ... }
4 int f_read(char*){ ... }
5
6 typedef int (*rwptr)(char*);
7 struct A { rwptr read = a_read; } aops;
8 struct B { rwptr read; } bops;
9 struct C { rwptr read = c_read; } cops;

10 struct E { rwptr read; };
11 struct F { rwptr read; };
12
13 rwptr intra(rwptr arg){
14 rwptr icall1 = arg;
15 icall1("/file"); // a_read()
16 return b_read; // &b_read --> bops.read
17 }
18 void unsound_confinement(){
19 // {struct A, 1} --> arg
20 bops.read = intra(aops.read);
21 }
22 void call_from_b(struct B* b){
23 rwptr icall2 = b->read;
24 icall2("/file"); // b_read()
25 }
26 void imprecise_cast(){
27 rwptr icall3 = aops.read;
28 icall3("/file"); // a_read()
29 }
30 void c_to_a(struct C* c){ // C cast to A
31 struct A* a = (struct A*) c;
32 rwptr icall4 = a->read; // {struct A, 1}
33 icall4("/file"); // a_read() or c_read()
34 }
35 void unsound_cast(struct E* e){ // E cast to F
36 struct F* f = (struct F*) e;
37 f->read = f_read; // f_read() stores to F
38 rwptr icall5 = e->read; // use by E
39 icall5("/file"); // f_read()
40 }

Figure 3. An Example Illustrating Limitations of MLTA

struct layers intra-procedurally. However, if no struct layers
are found for a given icall, MLTA will fall back to FSA, even
though the struct layers may be available if searched inter-
procedurally. As shown in Figure 3, intra-procedural analysis
cannot figure out icall1 comes from aops.read (i.e., the
first field of struct A, or {struct A, 1} in short) in line
20. This means that MLTA will fall back to FSA for icall1,
resulting in false icall targets such as b_read(), c_read(),
and f_read(). Only KELP and TFA realized this limitation
and tried to address it by integrating inter-procedural pointer
analysis. However, since the applied pointer analyses are
limited in scope, they can still fall back to FSA (see “complex
icall” in KELP [19] and “fall back strategies” in TFA [20]).
This means they can only partially resolve this limitation,
leaving the imprecision still (§7.1).

② Unsoundness in the Type Confinement Rule — Incorrect
handling of address-taken functions with missing struct
layers. Unlike the fallback behavior when MLTA fails to find
structs for icalls, MLTA’s type confinement rule does not
consider fallback when it fails to find structs for address-taken
functions — leading to a problematic asymmetry. MLTA
omits such functions from being targets of any icalls, as
long as struct layers are found for those icalls. For example,
we see that b_read() is returned from intra() in line 16
to unsound_confinement() in line 20, and subsequently
stored to bops.read. However, due to the intra-procedural
limitation, MLTA fails to find this struct layer. It erroneously
decides it should not be icall2’s target because b_read()
does not have a layer and icall2 does. Interestingly, none of
the MLTA successors realizes such a significant asymmetry.
As a result, according to our experiment on open-sourced
successors (i.e., TyPM and SMLTA), they inherited all the
related unsound cases (missed icall targets) from MLTA.



Next, even if we assume MLTA finds the higher struct
layers successfully and completely on both ends, the second
requirement is also often not met due to two reasons:
③ Imprecision in the Type Propagation Rule — Con-
servative handling of type cast and type escape. MLTA
conservatively handles type casts by maintaining global cast
relationships at the type level, in a type propagation map. The
associated type propagation rule has two kinds of imprecision.
First, as mentioned in §2, when MLTA considers a destination
type to be unsupported, e.g., void*, it simply considers the
source type escaped and ineligible for type refinement; this
effectively leads to a fallback to FSA. Second, even if the
type is supported, it can still lead to imprecision. Considering
icall3 in Figure 3, MLTA will find it is from {struct A,
1} (line 27). Because of the cast instruction from struct C
to struct A in line 31, MLTA conservatively considers all
struct A instances to be aliases of struct C instances.
Thus, not only a_read() but also c_read() are considered
targets of icall3. However, c_read() is clearly a false
target because the cast instruction does not impact icall3
in line 27. icall4, on the other hand, is indeed affected by
the cast instruction, and therefore it is correct to consider
both a_read() and c_read() as targets. All of the MLTA
successors inherited this imprecision since they handled the
type cast similarly at the type level.
④ Unsoundness in the Type Propagation Rule — Inclusion-
based handling of type casts. To handle type cast, MLTA
maintains a global type propagation map that collects cast
relationships between types in an inclusion manner [18],
i.e., a directional relationship. Specifically, given a type
cast instruction, the type propagation rule considers only
destination type instances to be aliases of the source type
instances. However, the converse should also be true; other-
wise, it is not sound. Let us focus on icall5 in Figure 3.
MLTA identifies that icall5 originates from {struct E,
1}. Unfortunately, despite the type cast from struct E*
to struct F*, MLTA does not treat e as an alias of f by
its inclusion rule, while only considers the opposite to be
true. This means that f_read() will be incorrectly missed
as a potential icall target of icall5. This unsound design
persists in all MLTA successors.
⑤ General Limitations and Flaws — In addition to the
abovementioned design-level limitations, after our empirical
experiments and careful analysis, we find SOTA methods
introduce more false negatives in several ways: (1) TyPM,
KELP, and TFA depend on an initial call graph generated
by MLTA, establishing an unreliable foundational premise.
(2) Their implementation underestimates the complexity of
raw LLVM IR. They usually overlook complex instructions
containing embedded operators, such as BitCastOperator.
Additionally, certain instructions are mishandled; for instance,
Phi and Select instructions are treated with “must” logic
instead of “may”, leading to soundness issues. (3) There is
a tendency to aggressively use highly optimized LLVM IRs
of target programs, neglecting common pitfalls associated
with these “broken” IRs (e.g., type information eliminated by
compiler optimizations). While this approach may improve

a_read()

c_read()

icall3

icall1struct A, 1

struct A, 1

struct A, 1

struct A, 1

struct C, 1

✓

✓

✗
intra-procedural

b_read() icall2struct B, 1struct B, 1 ✓✓

f_read() icall5struct E, 1struct F, 1✓ ✓✗
unsound rule for 
type propagation

Unsound rule for 
function confinement

stop and fall back to FSA✗✓over-approximation due to C cast to A ✗miss and unsound
find struct layer struct layer matchstruct type cast

icall4

✗

✓
✓ ✓

✓✓
✓

MLTA ResultGroundTruth
callee(icall1) = {a_read, b_read, c_read, f_read}
callee(icall2) = { }, false-negatives = {b_read}
callee(icall3) = {a_read, c_read}
callee(icall4) = {a_read, c_read}
callee(icall5) = { }, false-negatives = {f_read}

callee(icall1) = {a_read}
callee(icall2) = {b_read}
callee(icall3) = {a_read}
callee(icall4) = {a_read, c_read}
callee(icall5) = {f_read}

Figure 4. Unsound and Imprecise MLTA.

precision and scalability on optimized IRs, it compromises
soundness, rendering the results unreliable for applications
that require sound guarantees, such as control flow integrity.

4. Problem Formulation and Insights

We observe the limitations of the type-based methods
fundamentally stem from the coarse-grained and unsound
tracking and matching of types. We reformulate the method-
ology that MLTA aims to develop but has not achieved.

The basic intuition we distill behind MLTA is once an
address-taken function flows into a struct field, the program
must access the same type of struct field(s) to retrieve the
value (e.g., a function pointer) before using it to make an
indirect call. In particular, we observe that MLTA attempts
to perform some limited data-flow analysis (i.e., traditional
points-to in an intra-procedural fashion) as well as the type-
based methods. Based on this intuition, we outline three
steps that are needed to support a working algorithm.
① Given a function address, compute the struct fields it may
propagate into via a thorough on-demand points-to analysis.
② Find the aliases of the same or compatible struct fields.
③ Trace those aliases and continue the points-to analysis to
see whether the struct fields will be eventually evaluated to
indirect calls, i.e., function pointer dereference.

While this process is conceptually reasonable, its realiza-
tion matters significantly to the outcome in terms of precision,
scalability, and soundness. Let us revisit the example in
Figure 3. To aid our understanding, we visualize the program
in a data-flow graph shown in Figure 4. In the graph, we
illustrate how the three steps are carried out. On the left, we
have four address-taken functions and on the right, we have
five icalls. In between, there are struct layers (only one layer
in this example). The solid lines represent the on-demand
points-to analysis that should be carried out in the first and
third steps. The dotted lines represent the type refinement,
in the second step, to match aliases based on struct layers.
Finally, we list the ground truth and MLTA results for each
icall at the bottom.

For a_read(), it first propagates into a node of type
{struct A, 1}, by considering all the nodes of type
{struct A, 1} aliases, through them, icall3 and icall4
can be reached. However, a_read() is unable to reach
icall1. Because the MLTA’s intra-procedural analysis will



fail to link {struct A, 1} with icall1. More interest-
ingly, MLTA “accidentally” infers a_read() to be a target
of icall1 because it falls back to FSA regarding icall1,
which introduces three false targets at the same time.

For b_read(), it is a false target of icall1 again due
to the fallback of icall1. It should have been considered a
target of icall2, but we see a missing link from {struct
B, 1} to icall2 due to MLTA’s unsound type confinement.

c_read() is correctly recognized as a target of icall4.
However, MLTA also falsely reports that c_read() is a
target of icall1 and icall3. The former is because of the
fallback again. And the latter is due to the imprecise type
propagation rule where a false link from {struct C,1} to
{struct A,1} is created.

f_read() is missed by MLTA as a target of icall5,
since the unsound inclusion-based type propagation rule will
miss the link from {struct F,1} to {struct E,1}.

The above analysis motivates us to seek a more principled
solution for the process outlined here, specifically by adhering
to key design principles in the execution of the three steps:

(1) The on-demand points-to analysis should exhaustively
find available struct layers (instead of only intra-procedurally).
This affects ① and ② issues we pointed out in §3.

(2) When finding the aliases of the struct layers, we
should not view the relationship at the type-level (e.g., type
propagation rule in MLTA), particularly in the presence of
type cast. Instead, we should consider object-level relation-
ships and avoid overly conservative and imprecise heuristics,
such as type escape. This pertains to ③ and ④ in §3.

(3) The points-to analysis should follow a sound imple-
mentation (e.g., Andersen-style analysis). For example, it
should record all struct layers that an address-taken function
propagates into, which is not implemented correctly in MLTA
– this relates to ⑤ in §3.

In summary, we show how the type-based analysis can be
augmented systematically by on-demand points-to analysis.
Note that the end-to-end solution we sketched in this section
is inherently individualized: each address-taken function will
be analyzed separately. Even though such fine-grained and
precise tracking can be costly, the scalability concern is
mitigated by the fact that the solution is highly parallelizable.

5. Design

To realize the principles outlined in §4, we develop
KallGraph, which aims for a sound, precise, and scalable
indirect call analysis that outperforms SOTA methods. In
this section, we present the design of KallGraph.

To incorporate points-to analysis into the type-based
analysis in a proper way, we first examine prior works on
hybrid pointer analysis [13, 37–39], which improve points-to
analysis scalability by selectively applying approximation
strategies, formulated via the context-free-language reacha-
bility (CFL-reachability) framework [40]. Then we map and
shape the hybrid idea to bridge the gap between points-to-
based and type-based indirect call analysis. More specifically,
we build KallGraph based on one of the most recent hybrid
pointer analysis frameworks, Unias [13] (§5.1), making the

connection between hybrid analysis and MLTA (§5.2), and
contributing a few important improvements (§5.3, §5.4, §5.5).

5.1. CFL-Reachability and Unias

CFL-Reachability Analysis. In this technique, a program is
represented as a graph where variables are nodes and instruc-
tions operating on those variables are edges. CFL-reachability
analysis then transforms the program analysis problem into a
context-free language (CFL) graph reachability problem [40].

Consider the following program as an example:
1 struct A{
2 int* fd0;
3 int* fd1;
4 }a;
5 int obj;
6 int* ptr;
7
8 void func1(){
9 a.fd1 = &obj;

10 }
11 void func2(){
12 ptr = a.fd1;
13 }

This program is represented as a graph:

objaddr
Store−−−→ a.fd11

GepA,1←−−−− a
GepA,1−−−−→ a.fd12

Load−−−→ ptr

In the graph, we can see the address of variable obj is
stored in the second field2 (i.e., fd1) of variable a, while
the same field is loaded to variable ptr elsewhere. In other
words, ptr might point to obj. To realize such a points-to
relationship by CFL-Reachability analysis, we can follow
field-sensitive Andersen’s on-demand points-to analysis rules,
which we list a part relevant to the example below:
F→ ( Store I-Alias Load )∗
I-Alias→ ( Gept,i I-Alias Gept,i | ε )∗

Here the Edge and Edge represent forward and back-
ward edges respectively.

To find pointer aliases of obj (i.e., pointers that point to
obj), we can start from its address node (i.e., objaddr), and
parse the production F to reach the pointer alias nodes (i.e.,
objaddr F ptr → objaddr Store GepA,1 GepA,1 Load ptr).
By applying the above two rules, we can easily determine
that the path conforms to the language generated by the
grammar. In other words, this indicates that node ptr can be
reached from node objaddr, i.e., ptr might point to obj.
Unias is a hybrid alias analysis framework [13]. It intro-
duces the notion of type-based shortcut edges, allowing the
graph traversal (during the CFL reachability analysis) to
skip large portions of the graph, trading off precision for
scalability. Instead of relying on the unsound heuristics in
MLTA which can be viewed as effectively creating shortcuts
from the graph traversal perspective, Unias guarantees that
traversing added shortcut edges (instead of the original paths)
preserves soundness compared to a standard Andersen-style
analysis. In particular, Unias incorporated new type-based
CFL reachability rules that are formally reasoned, handling
critical issues such as pointer type casting more precisely
than prior type-based reasoning.

2. A Gept,i instruction represents the field-addressing, i.e., computing
an offset of the i-th field relative to the base of type t. GEP is taken from
the LLVM terminology [41].
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Figure 5. High Level Workflow of KallGraph

Taking the icall2 and b_read() example in Figure 3:

b readaddr
Store−−−→ bops.read

GepB,0←−−−− bops −→ ... −→
b

GepB,0−−−−→ b.read
Load−−−→ icall2

Suppose the path from bops to b is long and overly
expensive to traverse by Andersen’s points-to rules. Unias
can transform the graph by inserting a type-based shortcut
edge to avoid dataflow tracking. In this example, the graph
will be transformed into the following:

b readaddr
Store−−−→ bops.read

Shortcutf−−−−−−−→ b.read
Load−−−→ icall2

Here the Shortcutf represents a shortcut introduced by
directly matching the pair of GepB,0 edges.

By adding a rule from Unias:

I-Alias→ Shortcutf

We can easily derive that icall2 might call b_read().
It is important to note that, starting from the address node

of b_read(), Unias will only reach icall2, since there is
no reachable path to any other icalls in Figure 3. In contrast,
as discussed in §3, MLTA falsely identifies b_read() as a
target of icall1 by falling back to FSA.

Unias can also successfully and precisely resolve the
type cast to void* (i.e., type escape) example in Figure 1:

m1 writeaddr
Store−−−−→ m1 ops.write

GepM1,1←−−−−−− m1 ops
Assign1−−−−−−→

gops
Assign2−−−−−−→ ops

GepM1,1−−−−−−→ ops.write
Load−−−→ icall

Here Assign1 represents the cast instruction at line
11 (i.e., assign the value from &m1_ops to gops), while
Assign2 represents the call instruction at line 25 (i.e., assign
the value from gops to ops).

The graph will be transformed into the following:

m1 writeaddr
Store−−−−→ m1 ops.write

Shortcutc−M1,1−−−−−−−−−−−−→
gops

Assign2−−−−−−→ ops
GepM1,1−−−−−−→ ops.write

Load−−−→ icall

Here the Shortcutc−M1,1 represents a shortcut intro-
duced by a struct M1 cast instruction (i.e., Assign1).

By adding a rule from Unias:

I-Alias→ Shortcutc−t,i I-Alias Gept,i

We can infer that icall might call m1_write. Note that
the Shortcutc−M1,1 started at a field node m1 ops.write,
and ended at an object (i.e., non-field) node gops. This means
that Unias will continue searching for a field node from gops
(i.e., it will find ops.write after traversing the GepM1,1 edge).
We wish to point out that starting from address nodes of
m1_read and m2_read will not reach node icall.

Similarly, for the type cast from struct C to struct A
example in Figure 3, Unias can precisely derive that c_read
will only be a target of icall4 (i.e., excludes the false
icall3 in MLTA). Since the Shortcutc−t,i edge will only
be introduced from node cops.read to node a (i.e., by cast
instruction at line 31), and only icall4 is reachable after
a. Such an object-level cast handling is superior to SOTA
type-based methods.

5.2. From MLTA to Hybrid Pointer Analysis

We are the first to make the observation that the analysis
performed by MLTA is essentially an ad-hoc version of the
hybrid pointer analysis where it conducts a combination of
data flow and type-based analysis. As shown in Figure 5, we
map the hybrid pointer analysis in Unias to the following
three components leveraged by KallGraph which overcomes
the deficiencies of the ad-hoc hybrid analysis in MLTA:
① On-demand inter-procedural points-to analysis performs
exhaustive inter-procedural searches before and after struct
layers (used in both the 1st and 3rd steps). More specifically,
KallGraph follows the on-demand version of Andersen’s
points-to analysis rules, which enable precise points-to anal-
ysis while preserving soundness [22]. We use field-sensitivity
for precision, and inter-procedural analysis for an exhaustive
and complete search. We use flow-insensitivity due to the
multi-entry nature [13] of large-scale programs such as Linux
kernels, and context-insensitivity for scalability.
② Individualized type analysis that enables precise type alias
matching at the object-level (used in the second step). By
pre-processing all the cast instructions, KallGraph will first
store each pair of cast nodes (rather than their types) into
a CastMap, thus considering the cast relationship at object-
level (instead of type-level) [13]. Recalling the c_read()
example discussed in §5.1, the state-of-the-art type-based
reasoning [18] assumes all instances of struct A are aliased
with struct C, leading to an over-approximation. However,
we only need to consider the specific instance of Struct
A* a at line 31 aliased with Struct C*, because it is the
only pointer that has experienced cast related to Struct C.
③ History-aware is a property provided by the nature of
CFL-reachability that enables KallGraph to precisely track
the propagation of the address-taken function before and after
the alias struct layers — it remembers the states accumulated
during the on-demand points-to analysis before taking the
type-based shortcuts, and will continue to match edges
afterward in the subsequent on-demand points-to analysis.

With these components, given the two examples in
Figure 2 and Figure 4, KallGraph handles them precisely and
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Figure 6. Sound and Precise KallGraph.

soundly, as shown in Figure 6. Note that we have changed
those “struct layers” to concrete variables (with their line
numbers as varline) in the figure, showing the substantial
difference between KallGraph’s individualized type analysis
and SOTA methods’ type-level type analyses.

In the rest of this section, we will present the important
improvements of KallGraph beyond Unias.

5.3. Comprehensive CFL-Reachability Rules

Unias claims to handle various pointer arithmetic by
relaxing rules on GEP instructions, which unfortunately still
suffers from real-world false negatives.

The reason is that Unias assumes the GEP instructions
and offsets should always be matched as pairs, i.e., (X, -X).
However, we find two common types of counterexamples
in the Linux kernel: (X, [nothing]) — a GEP without a
matching counterpart, and (X+Y, -Z) where Z == X+Y.

The first case is introduced because LLVM sometimes
uses Gept,0 (i.e., zero offset) as literally Assign. Such a
singleton GEP instruction never needs to be paired with a
counterpart. The second case is commonly seen where two
normal field accesses Gept1,X and Gept2,Y with a negative
arithmetic Gept3,-Z that matches the first two GEPs.

To address this, KallGraph redesigns the CFL-
Reachability rules related to Gep edges to enable richer
arithmetic reasoning. Instead of strictly constraining Gep
edges to be paired, KallGraph allows arbitrary Gep edges
to be traversed during the analysis. Meanwhile, KallGraph
maintains an offset stack to track cumulative Gep offsets,
and only checks if the offset is zero at the point of Load or
Store edge. Such a re-design essentially considers all Gep
edges as Assign edges with offsets (in other words, Assign
edge is a Gep edge with offset zero), and will only check
the cumulative offset when necessary. This design unifies the
Gep and Assign edges and will reduce the false negatives
of Unias in the real world.

As a result, for rules 1-12 of Unias (§A), KallGraph
unifies them into the following form:

F→ ( Assign | Gep t,o | Gep t,-o | Store I-Alias Load )∗
F→ ( Assign | Gep t,o | Gep t,-o | Load I-Alias Store )∗
I-Alias→ F I-Alias F | Load I-Alias Load | ε

Algorithm 1: Algorithm of KallGraph

Input : cur (current node, initially the address of a function)
Output : iCalls (result indirect calls)

1 MHS ← ∅; iCalls ← ∅;
2 GoForiCall(cur, state):
3 DependenceChecks(cur, state)
4 if isiCall(cur) && isEmpty(MHS)
5 iCalls.insert(cur)

6 for each cur
Assign−−−−−→ nxt

7 GoForiCall(nxt, Sf)

8 for each cur Store−−−−→ nxt
9 MHS.push(0)

10 GoForiCall(nxt, Sb)
11 MHS.pop()
12 if !isEmpty(MHS)
13 offset = MHS.top

14 for each cur Load−−−→ nxt
15 if offset == 0
16 MHS.pop()
17 GoForiCall(nxt, Sf)
18 MHS.push(0)

19 for each cur
GEPt,i−−−−−→ field

20 offset -= byte({t, i})
21 GoForiCall(field, Sf)
22 offset += byte({t, i})
23 if state == Sb

24 for each cur
Assign←−−−−− nxt

25 GoForiCall(nxt, Sb)

26 for each cur Load←−−− nxt
27 MHS.push(0)
28 GoForiCall(nxt, Sb)
29 MHS.pop()

30 for each cur Store←−−−− nxt
31 if offset == 0
32 MHS.pop()
33 GoForiCall(nxt, Sb)
34 MHS.push(0)

35 for each cur
GEPt,i←−−−−− base

36 offset += byte({t, i})
37 GoForiCall(nxt, Sb)
38 offset -= byte({t, i})

39 for each cur
Shortcutf−−−−−−−→ field

40 GoForiCall(field, Sf)

41 for each cur
Shortcutc−t,i−−−−−−−−−−→ nxt

42 offset += byte({t, i})
43 GoForiCall(nxt, Sb)
44 offset -= byte({t, i})

Taking an example, we might see dataflow as follows:

a
Store−−−→ b

Gepx←−−− c
Gepy←−−− d

Gep-z←−−− e
Load−−−→ f

Here node f should be reached from node a if x + y
== z. But Unias assumes Gep edges are paired and will
stop at node e. Differently, KallGraph will only check if the
cumulative offset is zero when encountering the Load edge,
thus reaching node f successfully.

At a high level, KallGraph (1) consolidates the four
fundamental edges, Store/Load/Assign/Gep into three, (2)
only requires pairing Store and Load edges (i.e., before
and after I-Alias), reflecting the paired nature of memory
reference and dereference. These two principals not only



contribute valuable insights to CFL-reachability rule design
but also unleash better real-world performance.

After applying the new CFL-reachability rules, we present
the algorithm of KallGraph in Algorithm 1.

In brief, finding the icalls for a given address-taken func-
tion func is equivalent to invoking GoForiCall(funcaddr,
Sf), where the funcaddr represents the address node of
func and Sf represents the analysis state is currently in
the production F or the right part of the production I-Alias.
Similarly, Sb represents the state of production F (i.e., the
reverse of F) or the left part of the production I-Alias.

As discussed before, we employ MHS (memory history
stack) as the offset stack that tracks cumulative offsets for
Gep edges. This stack essentially adds the additional offset
check associated with CFL-reachability rules. Given that
Algorithm 1 can be viewed as a depth-first-search (DFS)
algorithm, at lines 15 and 31, the analysis will check if the
stack top offset is zero, if so, the analysis proceeds along the
current path because it finds a matching Store-Load pair.
Otherwise, it stops exploring the current path.

Here the helper function byte({t,i}) is used to evalu-
ate the byte offset given the type and index of a Gept,i. We
will introduce the DependenceChecks() (line 3) in §5.4.

5.4. Boostrapping via an Optimized Fixed-Point
Algorithm

Similar to other static analysis work [8–11, 19, 20], Unias
requires a preliminary call graph generated by MLTA as input,
which results in soundness issues given the unsound nature of
MLTA. Unlike Unias, KallGraph bootstraps from an empty
call graph (i.e., no icalls are resolved initially). Hence, to
handle interdependent icalls (e.g., in Figure 7, resolving
icall2 requires to resolve icall1 first), KallGraph needs
to iteratively conduct the indirect call analysis. Exhaustive
points-to analyses can use on-the-fly call graph construc-
tion [42] to track dependent icalls, but to our best knowledge,
all previous demand-driven analyses rely on a preliminary
call graph. KallGraph is the first on-demand indirect call
analysis with fully on-the-fly reasoning for call targets.

1 int a_read(char*){ ... }
2 int b_read(char*){ ... }
3 typedef int (*rwptr)(char*);
4 void bar(rwptr param){
5 rwptr icall2 = param;
6 icall2("/file"); // a_read()
7 rwptr ret = b_read;
8 return ret;
9 }

10 void foo(){
11 void (*icall1)(rwptr) = bar;
12 rwptr arg = a_read;
13 rwptr fptr = icall1(arg); // bar()
14 icall3 = fptr;
15 icall3("/file"); // b_read()
16 }

Figure 7. Dependent relationship between icalls

A straightforward but expensive way to achieve on-
the-fly reasoning is to exhaustively analyze all address-
taken functions iteration by iteration until a fixed point (no
additional call graph edges are introduced). However, since
KallGraph operates on an on-demand basis, i.e., analyzing

Algorithm 2: Optimized Fixed-Point Algorithm

1 DependenceChecks(cur, state):
2 if isiCallArg(cur) && state == Sf

3 DepiCalls[func].insert(getUseiCall(cur))
4 if isFuncRetVar(cur) && state == Sf

5 DepFuncs[func].insert(getUseFunc(cur))
6 if isiCallRetVar(cur) && state == Sb

7 DepiCalls[func].insert(getUseiCall(cur))
8 if isFuncParam(cur) && state == Sb

9 DepFuncs[func].insert(getUseFunc(cur))

10 iterativeAnalysis(funcs):
11 for each func ∈ funcs
12 GoForiCall(func, Sf)
13 nextIterFuncs ← ∅
14 for each func ∈ funcs
15 for each icall ∈ DepiCalls[func]
16 if hasNewCallees(icall)[]
17 nextIterFuncs.insert(func)
18 for each callee ∈ DepFuncs[func]
19 if hasNewCallers(callee)[]
20 nextIterFuncs.insert(func)
21 if nextIterFuncs.size > 0
22 iterativeAnalysis(nextIterFuncs)

each address-taken function individually, we use a more
efficient approach.

In the first iteration, we have to analyze all address-taken
functions exhaustively. However, in subsequent iterations,
we only need to re-analyze a subset of the address-taken
functions in each iteration. Specifically, if an address-taken
function node n reaches an icall node i during the reachability
analysis, e.g., as a function argument, we will consider n
to be “dependent” on i, and re-analyze the flow of n in the
next iteration if i obtains a new target.

We use an example in Figure 7 to illustrate this. In the
first iteration, by analyzing a_read(), we will observe it is
dependent on icall1 since it gets passed as an argument
to icall1. At that point, we are not aware of icall1’s
target (i.e., bar()). In the second iteration, icall1 is now
resolved to bar(), we will re-analyze a_read() and realize
it is a target of icall2. The same idea goes to b_read(),
which is dependent on function bar as a return value.

The algorithm of the optimized fixed-point is represented
in Algorithm 2. We use DependenceChecks() (line 3
in Algorithm 1) to collect the dependent relationship by
checking the properties of each traversed node (e.g., check
if it is an icall argument node by isiCallArg(node)). As
a result, for the example in Figure 7, we will collect two
dependency maps as follows:
DepiCalls[a_read] = {icall1} DepFuncs[b_read] = {bar}

For the example in Figure 7, at the end of the second
iteration, KallGraph will reach the fixed-point since no new
dependency is introduced (i.e., nextIterFuncs.size == 0).

5.5. Optimized Minimal CastMap

As mentioned in §5.2, KallGraph utilizes a CastMap
inherited from Unias that precisely handles type casting at
the object-level. However, such a “precise” CastMap still
suffers from precision and scalability issues. An important



observation we make is that many type casts only exist
locally. For example, when a struct A object is copied by
memcpy(void* dst, void* src), its pointer will always
be first cast to void*, then passed into memcpy(), later on,
the new object pointer dst will be cast back to struct A*.

If we handle this with the CastMap, given the two casts
(one from struct A* to void* and one from void* to
struct A*), we will have to apply on-demand points-to
analysis to explore the dataflow before/after the src/dst
pointers whenever utilizing shortcuts provided by a struct
A, which already sacrifices the notion of “shortcut” in Unias,
making the analysis both less precise and less scalable. In fact,
in most cases, the cast instructions are introduced “locally” so
they can be safely ignored from CastMap if we can confirm
there is no side effect.

To address this, when building the CastMap, instead
of blindly collecting all cast relationships among nodes,
KallGraph performs an additional “look-ahead” on-demand
points-to analysis for each cast, and will only collect those
non-trivial casts. And those trivial casts will never be stored
in the CastMap which thus is built minimally.

6. Implementation

We implement KallGraph on top of Unias [13] which is
based on LLVM and SVF [24]. KallGraph has 2.1K SLOC,
with 1.8K being changed to Unias. Below we describe several
important aspects of the implementation.
Program Representation. Like Unias, KallGraph leverages
the SVF Pointer-Assignment-Graph (PAG) [43], a widely
used directed graph representation of a program that is
specifically designed for static analysis, constructed by
processing the LLVM IR. The four fundamental edges
Store/Load/Assign/Gep are the ones that PAG abstracts.
Consistent Memory Model. Similar to Unias, for a better
real-world soundness performance, KallGraph uses byte
offset instead of field index to unify Gep offsets among
different struct types. However, the Unias byte offset model
still relies on the SVF flattened index model, which also
assumes Gep edges to be paired as mentioned in §5.3.
To integrate our new Gep related rules, we implement an
accurate byte offset model that evaluates the byte offset given
a Gep edge based on its raw LLVM instruction.

Also, the SVF flattened index model faces some con-
sistency issues when dealing with arrays and structs. For
example, the offset evaluation of “a->b[i]->c” vs. “a->b
+ b[j]->c” should be the same which unfortunately is
not true in SVF. KallGraph also takes care of this in the
accurate byte offset model. As a result, KallGraph is strictly
array-insensitive. For example, given an extremely nested
array and struct access example like a.b[i].c.d[j].e,
the evaluated offset remains consistent no matter whether i
or j is a variable or constant number.
Anonymous Struct. There are many anonymous structs in
LLVM IR, which are introduced by either the source code
or the compiler. KallGraph models them in the form of
{fieldNum, sizeInByte}, where the first element represents

the field number of the anonymous struct, and the second
element represents the struct size in byte. When leveraging
shortcuts for a named struct, we will also look up the anony-
mous structs that share the same fieldNum and sizeInByte.

7. Evaluation

In this section, we conduct an extensive evaluation of
KallGraph to assess its real-world effectiveness. We focus
on the following three standard metrics: (1) precision (§7.1),
(2) soundness (§7.2), and scalability (§7.3).
Experiment Setup. To evaluate KallGraph, we choose 6
large-scale C/C++ target programs where indirect calls are
prevalent: Xen-4.18 (637K LoC), QEMU-8.1.4 (2.05M LoC),
Wine-8.16 (6.13M LoC), Freebsd-14 (15.41M LoC), Linux-
5.15 (20.83M LoC), and Linux-6.5 (24.09M LoC). We use
LLVM-14.0.6 and SVF-2.5. These programs are compiled by
Clang-14.0.6. We use -O0 optimization level IRs following
prior work [18]. The Linux kernels are evaluated with both
defconfig (default configuration) and allyesconfig (en-
ables almost all modules). The experiments are conducted on
a machine with two Intel Xeon Gold 6248 CPUs (40C/80T)
and 1TB of RAM, running Ubuntu 20.04.

As KELP and TFA are not publicly available, we compare
KallGraph against another three SOTA indirect call analy-
sis solutions, MLTA (commit acb8f4), SMLTA (commit
d3a707e), and TyPM (commit ff765f). We also adapt
Andersen’s and Steensgaard’s pointer analyses from SVF [24]
to implement indirect call analysis. However, Andersen’s
analysis exceeds the 72-hour timeout for all programs except
Xen-4.18, indicating its unsuitability for large-scale programs.
Steensgaard’s analysis finishes most of the programs in 72
hours except allyesconfig kernels.

7.1. Precision of KallGraph

In Table 1, the overall results show that KallGraph has
consistently smaller quartiles and average numbers of indirect
call targets (per icall) compared to MLTA and TyPM, mean-
ing KallGraph achieves significant precision improvement in
all target programs. In the best case, KallGraph reduces more
than 90% of icall targets in allyesconfig Linux-5.15.

Interestingly, even though Steensgaard’s analysis is
known to be imprecise, it still produces fewer indirect call
targets on average than MLTA for 2 of the 6 programs
that it manages to analyze successfully. However, for the
remaining 4, it performs significantly worse than MLTA
because its unification-based equivalence classes (ECs) are
easily collapsed in large-scale programs, leading to an
inflation in the number of targets.

SMLTA eliminates considerable indirect call targets on
average compared to MLTA (66.1% and 52.7% pruned for
allyesconfig Linux kernels). It also outperformed TyPM
in 6 out of 8 programs. However, compared to KallGraph,
SMLTA eliminates more targets only for Xen. For all other
programs, especially large-scale programs such as Linux,
KallGraph consistently produces much smaller indirect call
target sets than SMLTA, on average 63% to 73% smaller. We



Table 1. OVERALL RESULTS OF KALLGRAPH AND COMPARISON WITH SOTA METHODS

target program method icall w/ target1 Q2
1 Q2 Q3 Q4(max) average3 mem cpu· hour time4

Xen-4.18
302 IRs

595 icalls

MLTA 537 (90.2%) 1 2 4 77 10.8 1GB 4s 4s
Steensgaard 471 (79.2%) 1 2 3 70 (9.3%↓) 9.8 2GB 1h,17m 1h,17m

SMLTA 164 (27.6%) 0 0 1 53 (85.2%↓) 1.6 1GB 4s 4s
TyPM 525 (88.2%) 1 2 3 68 (14.8%↓) 9.2 1GB 9s 9s

KallGraph 513 (86.2%) 1 2 2 25 (78.7%↓) 2.3 2GB 2m,00s 21s

QEMU-8.1
1,907 IRs

3,069 icalls

MLTA 2,330 (75.9%) 1 2 5 1,256 29.1 2GB 15s 15s
Steensgaard 2,459 (80.1%) 1 2 5 960 (14.1%↓) 24.9 9GB 7h,55m 7h,55m

SMLTA 1,413 (46.0%) 0 0 2 1,252 (47.1%↓) 15.4 2GB 14s 14s
TyPM 2,016 (65.7%) 0 1 4 1,246 (30.6%↓) 20.2 3GB 1m,52s 1m,52s

KallGraph 1,989 (64.8%) 0 1 3 446 (81.4%↓) 5.4 8GB 12m,25s 55s

Wine-8.16
1,574 IRs

16,666 icalls

MLTA 10,514 (63.1%) 0 1 5 2,074 12.7 3GB 52s 52s
Steensgaard 9,883 (59.3%) 0 1 6 916 (40.2%↑) 17.8 17GB 15h,42m 15h,42m

SMLTA 5,176 (31.0%) 0 0 2 592 (19.7%↓) 10.2 3GB 50s 50s
TyPM 10,430 (62.6%) 0 1 4 2,074 (10.2%↓) 11.4 4GB 3m,55s 3m,55s

KallGraph 8,490 (51.1%) 0 1 2 283 (74.8%↓) 3.2 14GB 33m,18s 1m,17s

Freebsd-14
2,381 IRs

11,163 icalls

MLTA 9,961 (89.2%) 1 2 4 1,047 15.8 5GB 37s 37s
Steensgaard 9,039 (81.0%) 1 2 7 890 (20.9%↑) 19.1 30GB 17h,44m 17h,44m

SMLTA 5,981 (53.6%) 0 1 4 1,041 (21.5%↓) 12.4 5GB 39s 39s
TyPM 6,950 (62.2%) 0 2 4 1,022 (39.9%↓) 9.5 8GB 8m,45s 8m,45s

KallGraph 7,202 (64.5%) 0 2 4 236 (79.1%↓) 3.3 22GB 2h,05m 3m,11s

Linux-5.15
defconfig

2,515 IRs
10,344 icalls

MLTA 8,971 (86.7%) 1 2 7 879 22.4 6GB 1m,10s 1m,10s
Steensgaard 9,058 (87.6%) 1 3 9 1413 (86.2%↑) 41.7 34GB 48h,50m 48h,50m

SMLTA 6,693 (64.7%) 0 2 7 874 (37.1%↓) 14.1 6GB 59s 59s
TyPM 8,897 (86.0%) 1 2 6 879 (33.9%↓) 14.8 17GB 12m,56s 12m,56s

KallGraph 8,911 (86.2%) 1 2 4 879 (76.8%↓) 5.2 20GB 7h,44m 8m,09s

Linux-6.5
defconfig

2,654 IRs
10,539 icalls

MLTA 9,003 (85.4%) 1 3 7 917 23.1 6GB 1m,18s 1m,18s
Steensgaard 9,173 (87.0%) 1 3 10 1641 (108.7%↑) 48.2 36GB 55h,12m 55h,12m

SMLTA 6,711 (64.5%) 0 2 7 912 (9.7%↓) 21.1 6GB 1m,10s 1m,10s
TyPM 8,941 (84.8%) 1 3 7 917 (32.0%↓) 15.7 19GB 12m,40s 12m,40s

KallGraph 8,959 (85.0%) 1 2 5 917 (74.9%↓) 5.8 23GB 8h,07m 8m,52s

Linux-5.15
allyesconfig

19,931 IRs
74,056 icalls

MLTA 71,455 (96.5%) 1 3 11 8,906 138.0 55GB 20m,06s 20m,06s
SMLTA 44,828 (60.5%) 0 2 7 7,434 (66.1%↓) 46.8 53GB 12m,20s 12m,20s
TyPM 71,029 (95.9%) 1 3 10 8,871 (48.5%↓) 71.1 311GB 13h,48m 13h,48m

KallGraph 70,744 (95.5%) 1 2 6 4,819 (90.7%↓) 12.8 208GB 242h,03m 3h,37m

Linux-6.5
allyesconfig

22,270 IRs
80,484 icalls

MLTA 77,437 (96.2%) 1 3 12 9,846 137.5 62GB 29m,29s 29m,29s
SMLTA 48,274 (60.0%) 0 1 8 8,321 (52.7%↓) 65.0 59GB 15m,34s 15m,34s
TyPM 76,859 (95.5%) 1 3 11 9,813 (42.4%↓) 79.2 386GB 19h,59m 19h,59m

KallGraph 77,046 (95.7%) 1 2 7 5,197 (87.3%↓) 17.5 246GB 270h,51m 3h,49m
1ratio of indirect calls that have at least one target; 2first quartile, 25% of indirect calls have targets less than this number; 3average

target number of indirect calls, the deduction(↓) and addition(↑) rates are compared to MLTA; 4wall-clock time, using 80 threads;

wish to point out that SMLTA results in a significantly higher
fraction of icalls with empty target sets (see “icall w/ target”
in Table 1). The issue is particularly prominent in various
Linux kernel configurations, where SMLTA identifies targets
for only 60% to 64.7% of indirect calls (iCalls), compared
to over 85% achieved by other methods. In §7.2, we will
evaluate the false negatives produced by SMLTA.

We now look at the distribution of the icalls by the
number of targets. From the quartile results of Q1, Q2, Q3,
and Q4 in Table 1, we can see that KallGraph are consistently
equal or better at Q2 (median), Q3 (75th percentile), and Q4
(maximum), with fewer icall targets than prior methods. The
difference is especially stark. For example, the indirect call
with the largest target set (Q4) in allyesconfig Linux-6.5
includes 5,197 targets for KallGraph, compared to over 8,000
for prior solutions. This is likely due to the fact that existing
methods would fall back to FSA for the difficult cases, and
therefore resulting in imprecision for those icalls.

To understand the distribution in more detail, we visualize
the results as a continuous spectrum of allyesconfig
Linux-6.5 in Figure 8. The X-axis represents the size range
of icall target sets in the log scale. The numbers are grouped
into half-open intervals based on the number of icall targets.
The Y-axis represents either the number of icalls (on the left
associated with bars) or the cumulative number of the icall
targets (on the right associated with solid lines).

Generally speaking, KallGraph finds more icalls that have
targets less than 24=16, while TyPM and MLTA identify
significantly more icalls with target sizes between [26, ∞).

This results in more obvious differences in the solid lines,
which represent the cumulative icall targets contributed by
icalls with varying target set sizes. As the solid blue line
shows, 91.3% MLTA targets are contributed by icalls with
more than 28 targets; as a comparison, only 46% KallGraph
targets are affected by them (solid green line). This shows
that the results of MLTA are heavily dominated by those
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Figure 8. Distribution of KallGraph and SOTA Methods. The green bars indicate KallGraph has a greater proportion of icalls with fewer targets. In contrast,
the blue solid line demonstrates that MLTA has icalls with larger target numbers, whereas icalls with fewer than 28 targets contribute only less than 10% to
the cumulated target count.

“imprecise” icalls, likely due to its fallbacks to FSA.
We take the icall that experienced the max targets (9,846

by MLTA) as an example and illustrate its imprecision:
1 //drivers/misc/lis3lv02d/lis3lv02d_i2c.c:134
2 struct lis3lv02d_platform_data *pdata =
3 client->dev.platform_data;
4 ret = pdata->setup_resources();

The struct layer for the icall at line 4 is {struct
lis3lv02d_platform_data, setup_resources}, and
the struct lis3lv02d_platform_data is cast from a
void* field (i.e., dev->platform_data). This type escape
forces MLTA to fall back to FSA (③ in §3), leading to nearly
10,000 potential targets. However, none of them is a true
target, since this icall is defined as an interface to loadable
modules whose source codes are not available in mainline
Linux kernel [44]. As a comparison, KallGraph precisely
handles the cast and correctly reports zero targets.

Since KELP [19] and TFA [20] are not open-sourced.
Judging by the reported results in their papers, they achieve
similar reductions in icall targets compared to TyPM. Specifi-
cally, KELP eliminates 54.2% targets on an unknown version
of Linux kernel, and TFA eliminates 59.0% of targets on
allyesconfig Linux-5.18. For comparison, TyPM and
SMLTA eliminate 48.5% and 66.1% of targets on the
allyesconfig configuration of Linux-5.15, respectively.
Since KallGraph eliminates 90.7% of icall targets in this
Linux kernel version, it roughly translates into eliminating
about 70% of icall targets of KELP and TFA. Note that vari-
ations in Linux kernel versions may account for differences
in results; however, we use these as approximate estimates
for the purpose of comparison.
Evaluation on Optimized IRs. Some applications may
require analysis on optimized IRs. To demonstrate the
generality of KallGraph across different optimization levels,
we evaluated both KallGraph and SOTA methods at the
default optimization level (i.e., -O2) for Linux-5.15 and
Linux-6.5, following the same setup as in Table 1. The
results are summarized in Table 2.

As discussed in §3 (⑤ General Limitations and Flaws),
-O2 IRs may yield seemingly more precise results due to
reduced code size and simplified control flow, but they
also obscure critical program semantics (e.g., more complex

instruction patterns). As a result, they are generally more
difficult to handle and may produce more false negatives [45].
Despite this, the results in Table 2 show that KallGraph
maintains its advantage over SOTA methods, demonstrating
strong generality even on highly optimized IRs. Nevertheless,
we recommend using -O0 IRs when soundness is a priority.
The evaluations in the following sections are therefore
conducted on -O0 IRs.

7.2. False Negative Analysis

We demonstrated that KallGraph effectively prunes a
significant fraction of indirect call targets compared to SOTA
methods. This naturally raises the critical question: does
KallGraph achieve this reduction by excluding valid targets,
thus introducing false negatives (FNs)?

To investigate this, we performed a comprehensive false
negative analysis using the most complex and challenging
Linux-6.5 as a representative target program. Specifically,
we performed both dynamic tracing and manual verification
covering over two thousand icalls.
Dynamic Tracing. To find FNs, one common strategy is to
trace all indirect calls dynamically [11, 18–21]. To maximize
the dynamic coverage, we use the state-of-the-art syscall
fuzzer Syzkaller [46] to perform a 7-day fuzzing with 40
VMs on Linux-6.5, with modified QEMU-4.2.1 for tracing.
Eventually, we collected 937 unique icalls with 981 targets,
which we then compare against the static analysis results.
Static Analysis and Manual Verification. Even though our
fuzzing campaign is extensive, the overall coverage is still
limited (8.9% icalls). To find as many FNs as possible, we
first isolate the differences in results between KallGraph and
SOTA methods, followed by an extensive manual verification
of these discrepancies. Due to the large number of icall
targets, the manual verification starts from icalls instead
of targets. Our manual analysis carefully tracks the struct
layers and regional data flows for each icall, comparing
and contrasting the execution logic of KallGraph and other
methods that leads to the discrepancy, and subsequently check
if possible targets exist. Eventually, our analysis encompasses



Table 2. OVERALL RESULTS ON -O2 IRS

target program method icall w/ target Q1 Q2 Q3 Q4(max) average mem cpu· hour time

Linux-5.15
defconfig

2,515 IRs
9,082 icalls

MLTA 7,643 (84.2%) 1 2 6 879 23.4 5GB 1m,03s 1m,03s
SMLTA 4,726 (52.0%) 0 1 5 873 (37.2%↓) 14.7 5GB 57s 57s
TyPM 7,356 (81.0%) 1 2 6 879 (39.7%↓) 14.1 16GB 11m,29s 11m,29s

KallGraph 6,885 (75.8%) 1 2 4 879 (79.1%↓) 4.9 21GB 8h,11m 8m,55s

Linux-6.5
defconfig

2,654 IRs
9,460 icalls

MLTA 8,037 (85.0%) 1 3 7 958 24.6 6GB 1m,10s 1m,10s
SMLTA 4,913 (51.9%) 0 1 6 952 (4.9%↓) 23.4 6GB 1m,01s 1m,01s
TyPM 7,653 (80.9%) 1 3 7 958 (39.4%↓) 14.9 19GB 14m,13s 14m,13s

KallGraph 7,031 (74.3%) 0 2 4 958 (78.5%↓) 5.3 24GB 8h,53m 9m,45s

Linux-5.15
allyesconfig

19,931 IRs
129,833 icalls

MLTA 116,541 (89.8%) 1 2 8 8,751 93.1 51GB 24m,55s 24m,55s
SMLTA 78,721 (60.6%) 0 2 7 7,266 (42.5%↓) 53.5 52GB 11m,19s 11m,19s
TyPM 114,121 (87.9%) 1 2 7 8,693 (48.9%↓) 47.6 235GB 12h,04m 12h,04m

KallGraph 113,097 (87.1%) 1 2 5 4,190 (81.1%↓) 17.6 146GB 297h,51m 4h,05m

Linux-6.5
allyesconfig

22,270 IRs
140,573 icalls

MLTA 125,941 (89.6%) 1 2 8 9,843 95.4 55GB 28m,31s 28m,31s
SMLTA 87,266 (62.1%) 0 2 7 8,254 (44.9%↓) 52.6 56GB 14m,05s 14m,05s
TyPM 122,511 (87.2%) 1 2 7 9,805 (50.7%↓) 47.0 256GB 14h,21m 14h,21m

KallGraph 121,617 (86.5%) 1 2 5 4,828 (81.2%↓) 17.9 177GB 328h,40m 4h,29m

more than 2,000 icalls and 4,000 targets, requiring over 150
person-hours. To our knowledge, our manual verification is
the most extensive in the space of indirect call analysis.
False Negative Result Summary. As shown in Table 3,
using dynamic tracing, no FNs were identified for KallGraph,
whereas MLTA, TyPM, and SMLTA all exhibited significant
FNs: 18/937=1.9%, 22/937=2.3%, and 163/937=17.4% re-
spectively. Using static analysis and manual verification, we
found only 2 icalls with 9 targets being FNs of KallGraph,
whereas MLTA, TyPM, and SMLTA all exhibited significantly
more FNs in the hundreds of icalls and thousands of icall
targets. For MLTA, we identified 100 FN icalls with 1,703
targets, of which 18 icalls with 18 targets were dynamically
verified. We provide a detailed breakdown of the results in
Table 6 for reproducibility (in the appendix due to space
constraints). TyPM and SMLTA inherited all of MLTA’s FNs
and produced even more. For SMLTA, we only give a lower
bound because there are too many potential FN candidates
to analyze manually. In §7.2.1 and §7.2.2, we will dive into
more details about how these results are produced.

Table 3. OVERALL RESULTS OF FALSE NEGATIVES

MLTA TyPM SMLTA KallGraph

icall target icall target icall target icall target

Dynamic1 18 18 22 22 163 169 0 0
Static2 100 1,703 143 1,822 136+ 1,785+ 2 9
1 FNs identified by dynamic tracing
2 FNs identified by static analysis and manual verification

7.2.1. False Negatives of SOTA Methods. It is important
to note that all successors [11, 19–21] of MLTA claim to
introduce no additional FNs compared to MLTA; however,
as shown in Table 3, such a claim is disproven for TyPM and
SMLTA. In this section, we primarily focus on analyzing
the FNs for MLTA, connecting the results to the root causes
of unsoundness limitations described in §3.

Here we focus on the manual verification due to the
limited coverage of dynamic tracing. To gain a more complete

understanding of FNs, we calculate the discrepancies between
KallGraph and the SOTA methods, as shown in Table 4,
and treat these discrepancies as candidate FNs for the
SOTA methods. For defconfig Linux-6.5 (the first row)
specifically, there are 115 icalls that KallGraph finds at least
one target whereas MLTA finds zero. Upon inspection, we
found that 100 out of 115 (87.0%) icalls corresponding to
1,703 out of 1,778 (95.6%) targets are FNs of MLTA. These
FNs are also inherited by TyPM and SMLTA.

Table 4. DISCREPANCY: CANDIDATE FNS FOR SOTA METHODS

MLTA TyPM SMLTA

icall target icall target icall target

Linux-6.5d 1151 1,7782 172 1,927 1,729 8,907
Linux-6.5a 1,939 13,310 2,490 22,180 21,193 181,380
1 The first two columns: For 115 icalls, KallGraph finds at least one target
for each icall (1,778 targets in total2), while MLTA finds zero target

After thoroughly going through all these 100 FNs, we
provide a breakdown of reasons (also list in Table 6) we
previously laid out in §3 and some case studies:

66 FNs due to the unsound type confinement (②
in §3). For example, for the icall link->doit(), one of
its target neigh_get() is address taken and stored to a
field named doit of struct rtnl_link inside function
rtnl_register. However, with an intra-procedural anal-
ysis, the struct layer cannot be found by MLTA, and the
function is thus mistakenly excluded from the icall target.
1 //net/core/rtnetlink.c:6445
2 err = link->doit(skb, nlh, extack);
3 //net/core/neighbour.c:3876
4 rtnl_register(..., neigh_get, ...);

15 FNs are because of the unsound type cast handling
(④ in §3). For example, global variable icx_uncore_iio
is compiled as an anonymous struct type in LLVM IRs.
Such anonymous type will introduce type casts at its use
sites, which unfortunately is missed by MLTA. Differently,
KallGraph’s individualized type analysis in KallGraph pre-
cisely tracks the exact cast instruction.



19 FNs are due to mishandling of LLVM IRs (⑤ in §3),
even if the struct layers of both icalls and address-taken
functions could be ideally found intra-procedurally, but
MLTA neither identifies nor falls back to FSA. We list the
icall example which has the most targets here:
1 //arch/x86/entry/common.c:112
2 ia32_sys_call_table[unr](regs);
3 //arch/x86/entry/common.c:50
4 sys_call_table[unr](regs);

This icall in line 2 invokes a 32-bit system call from the
ia32_sys_call_table function pointer array. However,
MLTA fails to find any target because it does not handle
arrays properly in its implementation. More importantly,
since there are no struct layers under the context, in the best
case, MLTA could only soundly handle it by falling back to
FSA, which will introduce FPs such as 64-bit system calls
(i.e., targets of sys_call_table) since system calls share
the same signature. As a comparison, KallGraph does not
have this issue since it properly handles arrays (§6) with
SVF PAG, which has already parsed and represented related
instructions into corresponding edges.

For the remaining cases – 15 out of 115 icalls and 78
out of 1,778 targets, we find they are imprecise cases (i.e.,
false positives) of KallGraph. The reason is that KallGraph
follows spurious dataflow introduced by type analysis that
should not have existed, leading to more targets.

In Table 4, we see that TyPM has a moderate increase
in candidate FNs. In the end, we verified that 143 of 172
TyPM icalls and 1,822 of its 1,927 icall targets are verified
to be FNs. In contrast, SMLTA exhibits 1,729 candidate
FNs in icalls and 8,907 icall targets. Unfortunately, it is
impractical to perform manual verification through all these
candidate icalls. Nevertheless, we can confirm that SMLTA
has at least 136 FN icalls because they appear as FNs in
TyPM also. Therefore, we list 136+ as the Static results for
SMLTA in Table 3. It is likely that there are many more
FNs, as suggested by the heightened FNs from the dynamic
tracing results. Upon reviewing the SMLTA source code,
we found that SMLTA’s “strong multi-layer” implementation
underestimates the complexity of analyzing raw LLVM IRs.
It refines icalls too aggressively in scenarios that it should
fall back, resulting in a significant number of FNs.

Finally, note that the breakdown above is for the
defconfig Linux-6.5. As shown in Table 4, if we look
at the allyesconfig Linux-6.5 (the second row), there are
10+ times more potential FNs for SOTA methods.

7.2.2. False Negatives of KallGraph. We have shown how
KallGraph effectively reveals FNs of SOTA methods. In this
section, we look for FNs of KallGraph itself.

Opposite to what we analyzed in Table 4, we examine
icalls where KallGraph identifies no targets, but MLTA finds
at least one (we use MLTA as the baseline here because it
produces the least FNs in SOTA methods). This leads to
a total of 152 icalls. After going through all of them, we
found only 2 icalls corresponding to 9 targets are FNs of
KallGraph, as follows:
1 //drivers/usb/host/ohci-pci.c:251
2 int (*quirk)(struct usb_hcd *ohci);

3 quirk = (void *)quirk_id->driver_data;
4 ret = quirk(hcd); // ohci_quirk_ns()
5 //arch/x86/power/cpu.c:472
6 pm_cpu_match_t fn;
7 fn = (pm_cpu_match_t)m->driver_data;
8 ret = fn(m); // msr_save_cpuid_features()

Both are caused by the fact that the field .driver_data
is a long integer that stores pointers (it gets cast back to the
function pointer in this example). This means that there are
ptrtoint and inttoptr instructions in LLVM IR, which
need to be handled properly so that we understand such
integer fields can be part of a struct layer. Unfortunately, the
SVF PAG [43] maintains the relationship between pointers
and not integers, and thus misses the related edges.

At a high level, this issue could be addressed by ex-
panding the SVF PAG to incorporate nodes and edges for
integer-related operations, which we leave as future work.
Additionally, we discussed an alternative solution in §8.

Despite our best efforts, “unfortunately” dynamic tracing
does not reveal any FNs for KallGraph.

To gain an even more complete understanding of the
false negative performance of KallGraph, we conducted an
additional intensive manual verification. Specifically, we
randomly sampled 2,000 address-taken functions out of
159,601 across 1,471 icalls where KallGraph finds some
targets, but MLTA finds more. We followed the same manual
verification procedure and took more than 100 hours to finish.
In the end, we did not identify any of the address-taken
functions to be FNs (instead they are all FPs of MLTA).

In summary, KallGraph is substantially superior to SOTA
methods regarding false negative performance.

7.3. Scalability of KallGraph

The scalability result is shown in Table 1, where we
list the max memory consumption, CPU hours, and wall-
clock time using 80 threads for each analysis. As mentioned
in §5.4, KallGraph requires an iterative analysis approach. In
our evaluations, the call graph reached a fixed point within
four rounds for all target programs.

As we can see in Table 1, KallGraph does take signifi-
cantly more CPU hours due to its more precise nature. In
the most challenging target of allyesconfig Linux-6.5,
it takes 270 CPU hours. Nevertheless, since KallGraph is
highly parallelizable, with 80 threads, KallGraph finishes
the analysis in less than 4 hours of wall-clock time. When
compared to TyPM, KallGraph finishes the analysis more
quickly (in wall time) and has less memory consumption.

It is worth noting that the high memory usage stems from
the construction of SVF PAG, which is a prerequisite of our
hybrid analysis. Once constructed, KallGraph accesses the
PAG in a read-only manner, consuming less than 30MB of
memory per thread. This lightweight memory consumption,
combined with the highly parallelizable design of KallGraph,
enables faster analysis when more CPU cores are available.
In contrast, SOTA methods typically include one or more pre-
processing phases that construct lookup maps for subsequent
queries. These phases are difficult to parallelize due to inter-
leaved read/write operations and complex data dependencies,
which was also discussed as a limitation in prior work [11].



7.4. Ablation Study

In this section, we present the ablation study regarding
the scalability and precision improvement by Optimized
Fixed-Point Algorithm (§5.4) and Optimized CastMap (§5.5).
There are three configurations, (1) Baseline (naive fixed-point
algorithm + original CastMap), (2) B + F (optimized fixed-
point algorithm + original CastMap), and (3) B + F + C
(optimized fixed-point algorithm + optimized CastMap).

Xen-4.18 QEMU-8.1 Wine-8.16 Freebsd-14

100.0% 100.0% 100.0% 100.0%

71.0%

36.9%
45.1%

39.1%

67.7%

34.4%
44.0%

37.5%

Baseline B + F B + F + C

Linux-5.15d Linux-6.5d Linux-5.15a Linux-6.5a

100.0% 100.0% 100.0% 100.0%

36.1% 36.3% 34.0% 34.3%31.7% 32.0%
27.2% 27.0%

Figure 9. Scalability performance of three configurations. We compare the
CPU hours and normalize the results, with the Baseline set to 100%.

Figure 9 shows the scalability results. We can see the
optimized fixed-point algorithm improves scalability by 29%
to 66% compared to the baseline. The optimized CastMap
provides an additional 3.3% to 7.3% improvement.

Since the optimized fixed-point algorithm does not impact
precision, we report the precision improvement by comparing
the Baseline with B + F + C in Table 5. We can see a marginal
improvement as the optimized CastMap decreases the search
space of potential aliases (some of which are false positives).

Table 5. ABLATION STUDY OF PRECISION IMPROVEMENT

Xen-4.18 QEMU-8.1 Wine-8.16 Freebsd-14

Baseline 2.3 5.5 3.2 3.3
B + F + C 2.3 5.4 3.2 3.3

Linux-5.15d Linux-6.5d Linux-5.15a Linux-6.5a

Baseline 5.4 6.0 13.1 17.8
B + F + C 5.2 5.8 12.8 17.5

Average indirect call target numbers

8. Discussion

Improvement for Soundness. As discussed in §7.2.2,
KallGraph does introduce FNs, which are all due to

implementation-level issues, i.e., ptrtoint and inttoptr
instructions. We believe they can be incorporated into SVF
PAG, which we can then design rules to handle them.
Alternatively, a heuristic patch could “fall back” to FSA when
encountering the ptrtoint instruction (casting a pointer to
an integer) where the pointer’s control is lost. This additional
check can be performed by upcasting SVF PAG nodes to
variables to detect their usage in such instructions.
Improvement for Precision. We can potentially improve
the precision of KallGraph by incorporating context sensitiv-
ity [47, 48]. We can also incorporate heap clone analysis [49]
that can potentially prune certain infeasible aliases. Finally,
we realize that sometimes KallGraph can generate false
targets that are even outside of the FSA results due to on-
demand points-to analysis not verifying types by its points-to
nature. Given that FSA is believed to be the soundest indirect
call analysis, we can easily refine the results of KallGraph
by filtering any targets that are outside of the FSA results.
Improvement for Scalability. Given that our work operates
on a graph, we can apply classic graph pre-processing
techniques on the SVF PAG such as cycle elimination [50].
In addition, we can perform caching of the part of the graph
that has already been traversed, and leverage existing graph
processing frameworks that scale well to extremely large
graphs on a single machine [48, 51].
Downstream Applications. While we do not directly evalu-
ate specific downstream applications, the standard metrics
directly mirror the core requirements of many downstream
use cases. For instance, in control-flow integrity (CFI),
improved soundness (fewer FNs) ensures legitimate control
transfers are preserved, while higher precision (fewer FPs)
reduces the attack surface by avoiding unnecessary target
over-approximation. In bug detection, overly imprecise call
graphs can lead to significant false alarms, and reducing
FPs in bug detection is generally desirable. Exploring these
applications is a promising direction for future work.

9. Related Work

Call Graph Analysis. In addition to MLTA [18], and its
successors [11, 19–21], which we discussed extensively. We
now describe other related work in the space. On-the-fly call
graph construction has been studied and described in many
prior works [18, 52–59]. Broadly, call graph construction
techniques can be divided into points-to-based analysis and
type-based analysis. For points-to-based analysis, some static
program analyses [3, 7, 60] build call graphs on their own,
following a variety of variants of Andersen’s rules, and
are not aiming for soundness. Unification-based points-to
analysis [23, 55] build call graph in a fast but imprecise
way. [56, 57] selectively use points-to analysis to optimize
precision for a subset of icalls and targets. For type-based
analysis, FSA [17, 28] was commonly known and used as
primary call graph analysis for decades. [58] improves type
inference methods to fix type propagation in FSA.
Applications of Call Graphs. The call graph is widely
used in static program analysis. May static bug finding



techniques [5, 10, 12, 15, 59, 61–66] utilize existing call
graph analysis such as MLTA. [63, 65] mentions that its
results can be improved if a more precise call graph exists.
[10] claims it prefers an unsound but precise points-to-based
call graph analysis from [60] since MLTA introduces too
many FPs that bloat strongly-connected (SCC) components
in the call graph in their algorithms. Program hardening
techniques such as control-flow integrity [1, 2, 14] and
compartmentalization [67, 68], generally require indirect call
analysis to generate sound access control rules. Otherwise,
the program may fail unexpectedly due to incorrect access
control policy.

10. Conclusion

This paper presents a systematic and in-depth study
of state-of-the-art indirect call analyses, revealing their
fundamental limitations in soundness and precision, including
those not known in the original papers. Based on the insights,
we formalize a framework that combines on-demand points-
to analysis with type-based analysis. Finally, we developed
KallGraph based on the framework and achieved results that
substantially outperform state-of-the-art methods.
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Appendix A.
Rules of Unias and KallGraph

We provide the original rules of Unias for reference:

F → ( Assign | Store I-Alias Load )∗ (1)

F → ( Assign | Load I-Alias Store )∗ (2)

I-Alias → F I-Alias F (3)

I-Alias → Load I-Alias Load (4)
I-Alias → ε (5)

I-Alias → Gept,i I-Alias Gept,i (6)
I-Alias → Gept,i I-Alias Gept,i (7)

I-Alias → Gept,i I-Alias Gept,i I-Alias (8)

I-Alias → (Gept,v | Gept,v) I-Alias Gept,i (9)

I-Alias → (Gept,v | Gept,v) I-Alias Gept,i I-Alias (10)

I-Alias → (Gept,i | Gept,i) I-Alias Gept,v (11)

I-Alias → (Gept,i | Gept,i) I-Alias Gept,v I-Alias (12)
I-Alias → Shortcutf (13)
I-Alias → Shortcutc−t,i I-Alias Gept,i (14)

Rules (1)–(5) represent the standard on-demand Ander-
sen’s points-to analysis. Rules (6)–(12) extend the analysis
to a field-sensitive variant by incorporating field accesses in
the LLVM IR (i.e., GetElementPtr instructions). Finally,
rules (13)–(14) introduce type-based shortcuts that leverage
struct types and field offsets to optimize the analysis.

After applying comprehensive CFL-Rechability rules
(§5.3), the complete rules for KallGraph are as follows:

F → ( Assign | Gep t,o | Gep t,-o | Store I-Alias Load )∗
(1)

F → ( Assign | Gep t,o | Gep t,-o | Load I-Alias Store )∗
(2)

I-Alias → F I-Alias F | Load I-Alias Load | ε (3)
I-Alias → Shortcutf (4)
I-Alias → Shortcutc−t,o I-Alias Gept,o (5)

We use o instead of i in Gept,o edges to represent using
the byte offsets instead of the field indices (§6).



Table 6. SAMPLE FALSE NEGATIVES OF SOTA METHODS

icall repeat1 FNs R12 R2 R3 sample true targets (italicized targets are dynamically verified)

arch/x86/entry/common.c:112 2 419 " 32-bit syscalls
arch/x86/entry/common.c:50 1 348 " 64-bit syscalls
net/core/rtnetlink.c:6445 2 52 " inet6 rtm newaddr, neigh get, inet rtm newroute
io uring/io uring.c:1867 1 45 " io accept, io recv, io statx
io uring/io uring.c:2221 1 41 " io recvmsg prep, io send zc prep, io fgetxattr prep
net/core/rtnetlink.c:4012 1 29 " inet dump ifaddr, inet dump fib, inet netconf dump devconf
drivers/gpu/drm/drm managed.c:74 1 14 " drmm encoder alloc release, uncore unmap mmio, drm gem init release
drivers/acpi/acpica/evregion.c:292 1 13 " acpi ec space handler, i801 acpi io handler, i2c acpi space handler
kernel/async.c:127 1 13 " do scan async, async suspend late, async suspend
io uring/io uring.c:380 1 11 " io open cleanup, io link cleanup, io xattr cleanup
net/core/skbuff.c:988 1 10 " netlink skb destructor, tpacket destruct skb, unix destruct scm
drivers/acpi/bus.c:1074 1 10 " acpi bus attach, check offline, match any
net/ipv4/icmp.c:834 1 9 " xfrm4 esp err, tunnel64 err, udplite err
kernel/trace/ring buffer.c:1196 1 9 " trace clock global, trace clock local, trace clock jiffies
drivers/gpu/drm/virtio/virtgpu vq.c:235 1 7 " virtio gpu cmd unref cb, virtio gpu cmd capset cb, virtio gpu cmd get edid cb
io uring/io uring.c:1783 1 7 " io send prep async, io readv prep async, io writev prep async
net/ipv6/icmp.c:867 1 7 " udpv6 err, icmpv6 err, tcp v6 err
arch/x86/events/intel/uncore.c:1036 3 6 " icx iio set mapping, skx iio set mapping, icx upi set mapping
kernel/sched/sched.h:2922 2 6 " sugov update shared, sugov update single freq, dbs update util handler
crypto/algapi.c:74 1 6 " crypto aead free instance, crypto kpp free instance, crypto ahash free instance
block/blk-mq-tag.c:362 1 6 " hctx show busy rq, blk mq has request, complete all cmds iter
net/ipv6/ip6 fib.c:2187 1 6 " fib6 age, fib6 ifup, fib6 ifdown
security/keys/proc.c:245 1 6 " user describe, keyring describe
include/linux/skbuff.h:3120 1 6 " tcp wfree, sock wfree, sock rfree
kernel/sched/core.c:6030 1 5 " pick next task rt, pick next task stop, pick next task dl
drivers/input/ff-memless.c:395 1 4 " hid lgff play, lg4ff play, ms play effect
block/blk-mq-tag.c:292 1 4 " blk mq check expired, blk mq handle expired, blk mq rq inflight
lib/klist.c:221 3 4 " klist devices put, klist children put, klist class dev put
kernel/trace/trace events.c:2391 1 4 " kprobe event define fields, eprobe event define fields, uprobe event define fields
drivers/gpu/drm/i915/gt/intel gt pm.c:206 1 4 " reset finish, execlists reset finish, guc reset nop
kernel/workqueue.c:5570 1 4 " acpi processor throttling fn, acpi processor ffh cstate probe cpu, local pci probe
security/keys/keyctl.c:810 1 4 " user read, dns resolver read, keyring read
drivers/gpu/drm/i915/gt/intel gt pm.c:191 1 3 " guc engine reset prepare, reset prepare, execlists reset prepare
mm/mempool.c:355 7 3 " mempool kfree, mempool free slab, mempool free pages
drivers/char/agp/intel-gtt.c:607 1 3 " i810 setup, i830 setup, i9xx setup
drivers/acpi/acpica/nsalloc.c:97 1 3 " acpi scan drop device, acpi bus private data handler, acpi nondev subnode tag
kernel/umh.c:100 1 3 " umh keys init, init linuxrc, umh pipe setup
sound/core/control.c:1986 1 3 " snd hwdep control ioctl, snd pcm control ioctl, snd rawmidi control ioctl
drivers/virtio/virtio ring.c:582 2 2 " vp notify, vp notify with data
io uring/io uring.c:3487 4 2 " arch get unmapped area topdown, arch get unmapped area
drivers/gpu/drm/i915/gt/uc/intel guc.h:435 2 2 " gen11 enable guc interrupts, gen9 enable guc interrupts
sound/core/control compat.c:474 1 2 " snd pcm control ioctl, snd hwdep control ioctl
drivers/gpu/drm/i915/display/intel plane initial.c:316 1 2 " skl get initial plane config, i9xx get initial plane config
security/keys/request key.c:247 1 2 " nfs idmap legacy upcall, call sbin request key
mm/ptdump.c:109 12 1 " effective prot
drivers/base/component.c:166 1 1 " i915 component master match
drivers/acpi/acpica/evgpe.c:717 1 1 " acpi ec gpe handler
kernel/events/uprobes.c:869 1 1 " uprobe perf filter
drivers/char/agp/intel-gtt.c:921 1 1 " i830 check flags
drivers/dma/acpi-dma.c:409 1 1 " acpi dma simple xlate
fs/direct-io.c:647 1 1 " fat get block
drivers/md/dm-region-hash.c:382 1 1 " dispatch bios
drivers/pnp/driver.c:180 2 1 " card suspend
block/blk-rq-qos.c:217 1 1 " iolat acquire inflight
kernel/trace/trace dynevent.c:481 1 1 " trace kprobe run command
fs/ext4/fsmap.c:149 2 1 " ext4 getfsmap format
lib/xarray.c:354 1 1 " workingset update node
include/linux/serio.h:125 1 1 " i8042 kbd write
security/keys/keyctl pkey.c:181 4 1 " query asymmetric key
net/netfilter/nf conntrack netlink.c:1978 2 1 " nf ct ftp from nlattr
drivers/acpi/tables.c:312 1 1 " acpi parse cfmws
fs/fs context.c:290 1 1 " shmem init fs context
kernel/cpu.c:195 1 1 " page writeback cpu online
drivers/i2c/i2c-core-smbus.c:590 1 1 " i801 access
drivers/connector/connector.c:156 1 1 " cn proc mcast ctl
drivers/base/firmware loader/main.c:1162 1 1 " regdb fw cb

sum3 100 66 15 19

1 icalls that follow a similar pattern and share the same FN number, including 2 copies of inline icalls
2 reasons for unsound cases. Note that one case might have multiple reasons, which we take the most obvious and possible one. R1: unsound type
confinement rule (② in §3), R2: unsound type cast handling (④ in §3), R3: weak implementation caused lack of soundness in practice (⑤ in §3)
3 accumulated for ‘repeat’ cases



Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

The paper presents a novel hybrid pointer analysis
framework to improve the precision and soundness of indirect
call analysis in large program. The paper identifies both
precision and soundness issues in current state-of-the-art type-
based methods for icall resolution and presents an approach
that integrates on-demand pointer analysis with type-based
reasoning to refine the callgraph construction. KallGraph,
significantly improves accuracy by pruning up to 90% of false
call targets and recovering missed calls. Because Kallgraph
is extremely parallelizable, it processes the Linux kernel in
a few hours, outperforming the state-of-the-art approaches.

B.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field
• Addresses a Long-Known Issue

B.3. Reasons for Acceptance

1) In depth analysis of the limitations of state-of-the-art
techniques

2) Significant improvement in precision
3) Scales to large applications such as the Linux kernel
4) Open source tool

B.4. Noteworthy Concerns

1) High CPU and memory overhead stemming from its
reliance on the SVF framework.

2) Limited testing of downstream applications
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