
Multi-agent Q-learning and regression trees for automated pricingdecisionsManu Sridharan msridhar@mit.eduDept. of Electrical Engineering and Computer Science, MIT 38-401, Cambridge MA 02139 USAGerald Tesauro tesauro@watson.ibm.comIBM Thomas J. Watson Research Center, 30 Saw Mill River Rd., Hawthorne, NY 10532 USAAbstractWe study the use of single-agent and multi-agent Q-learning to learn seller pricing strate-gies in three di�erent two-seller models ofagent economies, using a simple regressiontree approximation scheme to represent theQ-functions. Our results are highly encour-aging { regression trees match the trainingtimes and policy performance of lookup tableQ-learning, while o�ering signi�cant advan-tages in storage size and amount of trainingdata required, and better expected scaling tolarge numbers of agents. Clear advantagesare seen over neural networks, which yield in-ferior policies and require much longer train-ing times. Our work is among the �rst todemonstrate success in combining Q-learningwith regression trees. Also, with regressiontrees, Q-learning appears much more feasibleas a practical approach to learning strategiesin large multi-agent economies.1. IntroductionReinforcement learning in multi-agent environments isa challenging forefront of machine learning researchthat could have immense practical bene�t in manyreal-world problems. Many application domains areenvisioned in which teams of software agents cooperateto achieve a global objective. We also foresee signif-cant applications for self-interested agents, for exam-ple, in electronic marketplaces, where economic soft-ware agents can interact with humans and/or otheragents to maximize their own individual pro�ts.This paper investigates the use of ReinforcementLearning in multi-agent economies. Speci�cally, westudy the use of Q-learning (Watkins, 1989) to learnpricing strategies in a competitive marketplace. Q-

learning is an algorithm for learning to estimate thelong-term expected reward for a given state-actionpair. It has the nice properties that it does not needa model of the environment, and it can be used foron-line learning. With a lookup table representing theQ-function, the learning procedure is guaranteed toconverge to the optimal value function and optimalpolicy.The are two main challenges in using Q-learning inmulti-agent systems. First, most of the existing con-vergence proofs only apply to single-agent, stationaryMarkov Decision Problems. (Important �rst steps inanalyzing the two-agent case have been reported in(Littman, 1994) and (Hu and Wellman, 1998).) How-ever, when multiple agents simultaneously adapt, eachagent provides an e�ectively non-stationary environ-ment for the other agents. Hence it is unknown in gen-eral whether any global convergence will be obtainedin this case, and if so, whether such solutions are opti-mal. Second, we expect that large multi-agent systemswill have states spaces that are too large for lookup ta-bles to be feasible, and hence some sort of function ap-proximation scheme seems necessary to represent theQ-function.The present work combines single-agent and multi-agent Q-learning with tree-based function approxima-tion in a model two-seller economy. The sellers alter-nately take turns setting prices, taking into accountthe other seller's current price. After the price hasbeen set, the consumers choose either seller 1's prod-uct or seller 2's product, based on the current pricepair. This leads to an instantaneous reward or pro�tgiven to the sellers. We assume that both sellers havefull knowledge of the expected consumer response forany price pair, and moreover have full knowledge ofboth reward functions.Q-learning is one of a variety of ways of endow-ing agents with \foresight," i.e. an ability to antic-



ipate long-term consequences of actions. Foresightwas found in previous work (Tesauro and Kephart,1999a,b) to improve pro�tability, and to damp out oreliminate the pathological behavior of unending cyclic\price wars," in which long episodes of repeated under-cutting amongst the sellers alternate with large jumpsin price. Such price wars were found to be rampantin prior studies of agent economy models (Kephart,Hanson and Sairamesh, 1998; Sairamesh and Kephart,1998) when agents use \myopically optimal" or \my-optimal" pricing algorithms that optimize immediatereward, but do not anticipate any longer-term conse-quences. Q-learning in particular is a principled wayto obtain deep lookahead, since the Q-function rep-resents the cumulative discounted reward looking in-�nitely far ahead in time. In contrast, the prior workof (Tesauro and Kephart, 1999a) was based on shallow�nite lookahead.Q-learning with lookup tables was previously stud-ied in (Tesauro and Kephart, 1999b). A single Q-learner playing against a myoptimal opponent alwaysconverged to an optimal policy. In the more inter-esting case of two agents simultaneously Q-learningagainst each other, convergence was again obtained inall three models, at least for small-to-moderate valuesof the discount parameter. In (Tesauro, 1999), prelim-inary studies of Q-learning with neural networks foundreasonably good policies but excessively long trainingtimes. This is a potentially major drawback in an on-line scenario where agents must learn quickly to main-tain pro�tability. The current study of regression treesas an alternate function approximator was motivatedby the goal of improving on the training time of neu-ral networks while generating policies of at least equalquality to those given by a neural network.The remainder of this paper is organized as follows.Section 2 describes the structure and dynamics ofthe model two-seller economy, and presents threeeconomically-based seller pro�t functions which areprone to price wars when agents myopically optimizetheir short-term payo�s. Section 3 describes the imple-mentation of Q-learning in these model economies, andsummarizes previous results of lookup table and neuralnetwork Q-learning. In Section 4, the algorithms usedfor constructing regression trees and adapting themto Q-learning in our study are presented. Section 5presents the results of using Q-learning with regressiontrees and compares these results to those of section3. Finally, section 6 summarizes the main conclusionsand discusses promising directions and challenges forfuture work.

2. Model agent economiesOur models make a number of simplifying assump-tions relative to the likely complexities of real agenteconomies. The economy is restricted to two sellers,competing on the basis of price, who o�er similar oridentical products to a large population of consumeragents. Prices are discretized and lie between a min-imum and maximum price; there are typically � 100possible prices. This renders the state space smallenough to use lookup tables to represent the agents'pricing policies and expected pro�ts. Time is also dis-cretized; at each time step, the consumers comparethe current prices of the sellers, and instantaneouslyand deterministically choose to buy from at most oneseller. Hence at each time step, for each possible pairof prices, there is a deterministic pro�t obtained byeach seller.We also assume that the sellers alternately take turnsadjusting their prices, rather than simultaneously set-ting prices. Alternating-turn dynamics is motivated bytwo considerations: (a) It ensures that there will bea deterministic optimal policy (Littman, 1994), andhence normal Q-learning, which yields deterministicpolicies, can apply. (b) In a realistic many-seller econ-omy, it seems reasonable to assume that the sellers willadjust their prices at di�erent times rather than at thesame time (although probably not in a well-de�ned or-der).The three economic models studied here are describedin detail elsewhere 1. In the �rst model, calledthe \Price-Quality" model (Sairamesh and Kephart,1998), the sellers' products have di�erent values of ascalar \quality" parameter, with higher-quality prod-ucts being perceived as more valuable. At each timestep, the consumers buy the lowest-priced productsubject to constraints of a maximum allowable priceand a minimum allowable quality. The substitutabil-ity of seller products enables direct price competition,and the \vertical" di�erentiation of di�ering qualityvalues leads to asymmetries in the sellers' pro�t func-tions. Such asymmetries can result in unending cyclicprice wars when the sellers employ myoptimal pricingstrategies.The second model, described in (Kephart, Hanson andSairamesh, 1998), is an \Information-Filtering"modelin which the two sellers o�er news articles in partlyoverlapping categories. This model contains a \hor-izontal" di�erentiation of article categories. To the1Descriptions and prior studies of these eco-nomic models are available on the Web at:www.research.ibm.com/infoecon/researchpapers.html.



extent that the categories overlap, there can be directprice competition, and to the extent that they di�er,there are asymmetries that again lead to the potentialfor cyclic price wars.The third model is the \Shopbot" model described in(Greenwald and Kephart, 1999), which models the sit-uation on the Internet in which some consumers use ashopbot to compare prices of all sellers o�ering a givenproduct, and select the lowest-priced seller. In thismodel, the sellers' products are identical, and theirpro�t functions are symmetric. Myoptimal pricingleads the sellers to undercut each other until the mini-mum price point is reached. At that point, a new pricewar cycle can be launched, due to asymmetric buyerbehavior, rather than seller asymmetries. Some buyerschoose a random seller rather than bargain-hunt withthe shopbot; this makes it pro�table to abandon thelow-price competition, and instead maximally exploitthe random buyers by charging the maximumpossibleprice.
0

0.2

0.4

0.6

0.8

1

p1

0

0.2

0.4

0.6

0.8

1

p2

0

0.05

0.1

0.15

0.2

0

0.2

0.4

0.6

0.8

1

p1Figure 1. Sample pro�t landscape for seller 1 in Price-Quality model, as a function of seller 1 price p1 and seller2 price p2.An example seller pro�t function, taken from thePrice-Quality model, is plotted in �gure 1. This showsthe instantaneous pro�t for seller 1, U1(p1; p2). Thequality parameters are q1 = 1:0, q2 = 0:9 (i.e. seller1 is the higher-quality seller). The myoptimal policyfor seller 1, p�1(p2), is obtained for each value of p2by sweeping across all values of p1 and choosing thevalue with the highest pro�t. For small p2, the peakpro�t is obtained at p1 = 0:9, whereas for larger p2,there is eventually a discontinuous shift to the otherpeak, which follows the parabolic-shaped ridge alongthe diagonal.The Information-Filtering and Shopbot models also

have similar pro�t landscapes. In all three models,it is the existence of multiple, disconnected peaks inthe landscapes, with varying relative heights depend-ing on the other seller's price, that leads to price warswhen the sellers behave myopically.In these models it is assumed for simplicity that theplayers have essentially perfect information. Theycan model the consumer behavior perfectly, and theyalso have perfect knowledge of each other's costs andpro�t functions. Hence the model is in essence a two-player perfect-information deterministic game, similarto games like chess. The main di�erences are that thepayo�s are not strictly zero-sum, there are no termi-nating nodes in the state space, and payo�s are givento the players at every time step.3. Single and Multi-agent Q-learning3.1 Learning algorithmThe standard procedure for Q-learning is as follows.Let Q(s; a) represent the discounted long-term ex-pected reward (with discount parameter 
) to an agentfor taking action a in state s. (The value of a rewardexpected at n time steps in the future is discounted by
n.) Assume that Q(s; a) is represented by a lookuptable containing a value for every possible state-actionpair, and that the table entries are initialized to ar-bitrary values. Then the procedure for solving forQ(s; a) is to in�nitely repeat the following two-steploop:1. Select a particular state s and a particular actiona, observe the immediate reward r for this state-actionpair, and the resulting state s0.2. Adjust Q(s; a) according to the following equation:�Q(s; a) = �[r + 
maxb Q(s0; b)�Q(s; a)] (1)where � is the learning rate parameter. A variety ofmethods may be used to select state-action pairs instep 1, provided that every state-action pair is visitedsu�ciently often. When � is decreased over time withan appropriate schedule, the above procedure is guar-anteed to converge to the correct values for stationaryMDPs.In our economic models, the distinction between statesand actions is somewhat blurred. It will be assumedthat the \state" for each seller is su�ciently describedby the other seller's last price, and that the \action" isthe current price decision. This should be a su�cientstate description because no other history is neededeither for the determination of immediate reward, or



for the calculation of the myoptimal price by the �xed-strategy player. We have also rede�ned r and s0 for thetwo-agent case as follows: let s0 be the state that is ob-tained, starting from s, of one action by the Q-learnerand a response by the opponent. Likewise, r is de�nedas the sum of the two rewards obtained after thosetwo actions. These modi�cations were introduced sothat the state s0 would have the same player to moveas state s. (A possible alternative to this, which hasnot been investigated, is to include the side-to-move asadditional information in the state-space description.)3.2 Results of lookup table learningDetailed results of lookup table-based Q-learning arepresented in (Tesauro and Kephart, 1999b). In brief,single-agent Q-learning in all three models was foundto always yield exact convergence to a stationary op-timal solution (as expected). The resulting Q-derivedpolicies always outperformed a myopic strategy whentested against myopic opposition, and the expectedpro�t increased montonically with 
. In many cases,Q-learning had the side bene�t of also improving themyopic opponent's expected pro�t. This improvementis due to the Q-learner learning to abandon undercut-ting behavior more readily as the price decreases. Theprice-war regime is thus smaller and con�ned to higheraverage prices, leading to a closer approximation tocollusive behavior, with greater expected pro�ts forboth sellers.For simultaneous Q-learning by both sellers, the proce-dure utilized was to alternately adjust a random entryin seller 1's Q-function, followed by a random entryin seller 2's Q-function, using the same formalism pre-sented above. As the Q-functions evolved, the policieswere correspondingly updated so that they optimizedthe agents' current Q-function. In modeling the two-step payo� r to a seller in equation 1, the opponent'scurrent policy was used, as implied by its current Q-function.Simultaneous Q-learning in the Price-Quality modelyielded robust convergence to a unique pair of policies,independent of 
, identical to the solution found byshallow lookahead in (Tesauro and Kephart, 1999a).In the Shopbot model, exact convergence of the Q-functions was only found for 
 < 0:7. For 
 �0:7, there was very good approximate convergence,in which the Q-functions converged to stationary so-lutions to within small random 
uctuations. Di�er-ent solutions were obtained at each value of 
. Forsmall 
, a symmetric solution is generally obtained (inwhich the shapes of p1(p2) and p2(p1) are identical),whereas a broken symmetry solution, similar to the

Price-Quality solution, is obtained at large 
. Therewas a range of 
 values, between 0.1 and 0.2, whereeither a symmetric or asymmetric solution could beobtained, depending on initial conditions. The asym-metric solution seems counter-intuitive because onewould expect that symmetric pro�t functions wouldlead to symmetric policies. Finally, in the Information-Filtering model, simultaneous Q-learning produced ex-act or good approximate convergence for 0 � 
 � 0:5.For larger 
, no convergence was obtained. The Q-derived policies yielded reduced-amplitude price wars,and montonically increasing pro�tability for both sell-ers as a function of 
, up to 
 = 0:5.
0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Q vs. Q; Shopbot Model

Myopic vs. Myopic

γ

A
ve

ra
ge

 p
ro

fit

0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.5

0.6

0.7

0.8

0.9

1.0

1.1
Q vs. Q (γ=0.9)

p1

p 2Figure 2. Results of simultaneous Q-learning with lookuptables in the Shopbot model. (a) Average utility per timestep for seller 1 (solid diamonds) and seller 2 (open dia-monds) vs. discount parameter 
. Dashed line indicatesbaseline myopic vs. myopic expected utility. (b) Cross-plot of Q-derived price curves at 
 = 0:9. Dashed line andarrows indicate a sample price dynamics trajectory.Figure 2 is illustrative of the results of simultaneousQ-learning. The left �gure plots the average pro�t forboth sellers in the Shopbot model. The right �gureplots Q-derived price curves (at 
 = 0:9) of seller 1



and seller 2 against each other. The system dynamicscan be obtained by alternately applying the two pric-ing policies. This can be done by an iterative graphi-cal construction, in which for any given starting point,one �rst holds p2 constant and moves horizontally tothe p1(p2) curve, and then one holds p1 constant andmoves vertically to the p2(p1) curve. For these partic-ular curves, the graphical construction leads to a veryshort cyclic price war, indicated by the dashed line.The price-war behavior begins at the price pair (1, 1),lasts only a couple of steps, and then drops to p2 � 0:8.At this point seller 1 resets its price to p1 = 1:0 andthe cycle repeats. The price war amplitude is dimin-ished compared to myopic vs. myopic play, where along price war would persist all the way to a minimumprice point � 0:58.3.3 Di�culties of neural network trainingSome preliminary results of combining Q-learning withneural networks were reported in (Tesauro, 1999). Theneural nets typically appeared to reach peak pro�tabil-ity in a few hundred sweeps through the training cases(corresponding to a few hours of CPU time). Thepolicies were reasonably good at this point, and qual-itatively similar to the lookup table policies, but thequality of approximation of the Q-function was poor,as indicated by large Bellman error. With much fur-ther training (out to several days of CPU time), theBellman error improved signi�cantly, but there wasno improvement in policy pro�tability. It is possi-ble that, with enough additional training, further im-provements in pro�tability might be found, but it ap-peared that the required training times would be pro-hibitively long.4. Q-learning with regression treesOur regression tree algorithm employs the simplestconceivable heuristics: we use axis-parallel splits, se-lect splits that minimize variance, and approximatethe function by constant values in the leaf nodes. Abrief description appears below; more details can befound in (Breiman et al., 1984).The trees are constructed in a \batch" mode using a�xed set of training cases. Each training case has d in-put attribute values, and an associated function valuewhich may be adjusted during training. Given a train-ing set N , a regression tree is constructed recursivelyas follows: First, the average a and the variance v ofthe function values of the cases are calculated. If jN j isless than a given threshold or if v is su�ciently small,the algorithm terminates, returning a leaf node whichapproximates the function by the constant a. Other-

wise, the best axis-parallel split of the cases is foundby examining all possible splits on each attribute. Thebest split is de�ned as follows: consider a split that di-vides N into sets N1 and N2, with respective variancesv1 and v2. The split which minimizes the quantityjN1jv1 + jN2jv2 is the best split. A new internal nodede�ned by this split is then created. The training setis separated into two subsets, and two subtrees for thenew node are created recursively. Finally, the algo-rithm returns the node and terminates.We performed some initial investigations of minimalerror-complexity pruning, as described in (Breiman etal., 1984). However, it was found that setting a mini-mum of �ve cases in each leaf node and not using anypruning gave better results. Minimal error-complexitypruning seems ill-suited to our problem, perhaps be-cause the policies generated by using the tree are moreimportant than the accuracy of the tree's approxima-tion of the function. Other pruning algorithms havenot been investigated.In our problem, the training cases consist of randomprice pairs (corresponding to uniform random explo-ration of the state-action space), plus an additional\knowledge-engineered" binary attribute which is setto 1 when the Q-learner's price is less than the op-ponent's price, and 0 otherwise. This helps the treerepresent the critically important \undercutting" dis-continuity present in all three models.The function values for the cases are initialized to theseller's two-step immediate reward for that state andaction (as in Section 3). An initial tree is built fromthese cases. Then, repeated sweeps are performedthrough the set of training cases, in which the casevalues Qi are adjusted according to:�Qi = �[r + 
maxb Q(s0; b)�Qi] (2)where the max-Q value for the successor state is foundusing the current tree. A new tree is built after eachsweep through the training set. The algorithm termi-nates after a �xed number of sweeps. Training runstypically used a �xed learning rate �, which seemed togive good results even though convergence theoremsrequire decreasing � with time.In the case of multiple Q-learners, the tree updatesare performed as follows. First, the sweep through thetraining set of each Q-learner is done, with the mostrecent policy of the other Q-learners (determined fromtheir most recently constructed tree) used to calculatethe immediate reward r. Then, the trees of all theQ-learners are reconstructed. This method promotes



consistency of the Q-functions, as all Q-learners haveaccess to equally recent information about other Q-learners.One slightly di�erent algorithm was also examined,which involved building a tree as above, and then fur-ther re�ning the leaf node values. A random newpoint in the space is chosen, and the correspondingleaf node is determined. Let a be the current leafnode estimate of the function, k be the number ofcases that fell in that leaf node during previous train-ing, and f be the function value of the new point.The leaf node's estimate is then updated according to:a0 = (a � k + f)=(k + 1). This process continues for anumber of new points, after which a new tree is builtfrom a newly constructed training set. This algorithmworked well in the case of a single Q-learner, but formultiple Q-learners was not as good at producing sta-ble policies as the batch updating algorithm describedabove.5. ResultsIn the case of single-agent Q-learning, the batch train-ing algorithm converged rapidly, within a few dozeniterations, taking � 1 minute or less of CPU time on afast RS/6000 workstation. This represents a huge im-provement over neural network training, which rangedfrom a few hours to several days of CPU time. Fur-thermore, in all three economic models, regression treelearning was consistently able to match the exact opti-mal policies that were obtained from lookup-table Q-learning. (Again, this is superior to neural nets, whichusually were not able to �nd the optimal policies.)These optimal policies were found with training setsizes that were relatively small fractions of the totalstate space size. Typically we �nd that data sets �20-25% of the state space size in the Price-Qualityand Information-Filtering models, and � 40-50% inthe Shopbot model, are su�cient to generate exact ornear-optimal policies. As shown in �gure 3, the algo-rithm's behavior as a function of training set size isquite good. The policy pro�tability quickly asymp-totes at the level of the lookup table policy, and forsmaller training sets, there is graceful degradation: inmost cases a near-optimal policy is found, however,there is an increasing chance that a poor solution willbe obtained as the training set size is reduced.We can also see in �gure 3 that the trees grow to rea-sonable sizes (much smaller than the correspondinglookup tables) as a function of training set size. Forexample, in the Shopbot model, trees with approxi-mately 300 nodes (or 150 leaf nodes) were able to gen-

28

29

30

31

32

33

34

35

36

37

38

39

0 500 1000 1500 2000 2500

Shopbot Model: Avg. Profit vs Training Set Size

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500

Shopbot Model: Tree Size vs Training Set Size

Figure 3. Results of single-agent Q-learning with regressiontrees in the Shopbot model, 
 = 0:5. (a) Average Q-learnerpro�t per time step as function of training set size. Errorbars represent min and max pro�t over 10 runs with di�er-ent randomly-generated training sets. Lower dashed linerepresents average pro�t in myopic vs. myopic play. Up-per dashed line indicates average pro�t of exact optimalpolicy obtained by lookup table Q-learning. (b) Averagetree size as a function of training set size.erate optimal policies. Trees with approximately 600nodes generated optimal policies in the Price-Qualitymodel, with the higher quality seller as the Q-learner.Most of our results were obtained with the minimumnumber of training cases per leaf node (\Minobjs")set to 5. This lenient criterion resulted in a largenumber of leaf nodes, with relatively good constant-value approximation within each leaf node. We havealso investigated more stringent stopping criteria byincreasing Minobjs. This results in smaller trees, withpotentially cruder function approximation within theleaf nodes. Generally we �nd robust behavior with in-creasing Minobjs, as illustrated in �gure 4. IncreasingMinobjs from 5 to 20 was found to reduce the tree sizeby nearly a factor of 3, with only a slight decrease inpolicy pro�tability.An illustration of the quality of regression tree func-tion approximation compared to an exact lookup ta-ble solution is shown in �gure 5. The tree correctly�ts the diagonal discontinuity along the undercuttingline pQ < pMY (aided greatly by the \knowledge-



34

34.5

35

35.5

36

36.5

37

37.5

38

38.5

5 10 20 30 50

Shopbot Model, Avg. Profit vs Minobjs

0

50

100

150

200

250

300

5 10 20 30 50

Shopbot Model, Tree Size vs Minobjs

Figure 4. Results of varying Minobjs, the minimum no. ofcases per leaf node. Single-agent Q-learning with regressiontrees in the Shopbot model, 
 = 0:5, 1500 training cases.(a) Average Q-learner pro�t per time step as function ofMinobjs. Error bars represent min and max pro�t over 10runs with di�erent randomly-generated training sets. (b)Average tree size as a function of Minobjs.engineered" input attribute), and unlike neural net-works, it also correctly �ts the second discontinuityin the small pQ regime. This is important in obtain-ing the optimal policy. Neural nets �t the 
at andsmoothly curving portions of the landscape better, butthis is irrelevant to �nding the optimal policy.The results of multi-agent Q-learning using regres-sion trees were also promising. In the Price-Qualitymodel, results were identical to those generated withlookup tables: robust convergence was found to aself-consistent pair of policies independent of 
. Inthe Information-Filtering model, convergence was ob-tained for 
 up to 0.5, with cumulative pro�ts forboth sellers increasing with higher 
, exactly as inthe lookup table case. Results for the Shopbot modelwere mixed. For 
 up to 0.2, convergence to symmet-ric policies was obtained. Using the leaf-node updat-ing algorithm described brie
y in Section 4, the sameasymmetric solutions were obtained for 
 > 0:2. Usingthe batch training algorithm with large 
, the policiesof the sellers remain symmetric for some time, afterwhich they suddenly become asymmetric and no con-vergence is obtained. Although these results are not

completely understood, they seem to correspond wellwith the lookup table results, where it was also seenthat the symmetric solution for multi-agentQ-learningwas highly unstable.
0.6

0.7

0.8

0.9

1.0

p_MY 0.6

0.7

0.8

0.9

1.0

p_Q

1

1.2

1.4

 

0.6

0.7

0.8

0.9

1.0

p_MY

1

1.2

1.4

0.6

0.7

0.8

0.9

1.0

p_MY 0.6

0.7

0.8

0.9

1.0

p_Q

0.8

1

1.2
 

0.6

0.7

0.8

0.9

1.0

p_MY

0.8

1

1.2

Figure 5. Plot of the Q-function for single-agent Q-learningvs. a myopic opponent in the Shopbot model at 
 = 0:7.p Q is the Q-learner's price and p MY is the myopicplayer's price. (a) Exact optimal Q-function obtained bylookup table Q-learning. (b) Regression tree approxima-tion to the Q-function. The tree was trained on 1500 casesand contained at least 10 cases per leaf node.Training times in the multi-agent case increased, butconvergence was still usually obtained in under 5 min-utes. Partly this was due to having to use a smallervalue of � � 0:1, whereas in the single agent case, itwas often possible to go as high as � � 1 and stillobtain convergence. Tree sizes increased slightly inmulti-agent Q-learning tests, which is reasonable sincethe pro�t landscapes are more complicated. In theShopbot model, trees that generated optimal policiesranged from 350-400 nodes, and trees with approxi-mately 700 nodes generated optimal policies for thehigher-quality seller in the Price-Quality model.



6. ConclusionsWe have studied a simple combination of tree-basedfunction approximation with single-agent and multi-agent Q-learning, and have found highly encouragingresults in three di�erent models of agent economies,each with a di�erent mechanism for generating pricewars. This suggests that the success of the algorithmis not due to speci�c details of any single model, andit is likely to be more generally applicable in agenteconomies.The main contributions of this work are twofold. First,an important open question in Reinforcement Learningresearch is how to combine RL methods such as Q-learning with nonlinear function approximation. Mostof the empirical research on this topic has involvedneural networks. Our work, along with (Wang andDietterich, 1999), is among the �rst to demonstratesuccess in combining Q-learning with regression trees.Our results show clear advantages over the neural netapproach, and thus provide impetus for further studiesof tree-based methods.The second contribution is that with regression trees,Q-learning appears much more feasible as a prac-tical approach to learning strategies in multi-agenteconomies. With lookup tables, Q-learning generallyperformed well in terms of training time and policypro�tability, both in the single-agent and multi-agentcases, but is expected to scale poorly with the numberof agents. Regression trees are expected to o�er muchbetter scaling. We �nd that they train quickly, achievepro�ts equal or very close to the lookup table policies,and o�er signi�cant advantages in terms of tree sizeand amount of training data required.One clearly important direction of future research is toexamine how well regression trees perform in economicmodels with more agents and more realistic details.(Preliminary results indicate that in a three-seller case,regression trees still seem to perform well with a man-ageable increase in the size of the trees.) It also seemslikely that more sophisticated methods for generatingsplits and leaf-node function approximation, such asoblique splits and linear function approximation, couldbe of clear bene�t. It will also be important to resolvehow to adapt our batch training methodology to onlinelearning, which is inherently incremental.Finally, we have observed empirical behavior of multi-agent Q-learning, such as approximate but not ex-act convergence, that has no analog in ordinary Q-learning, where the Bellman equation is known to bea contraction mapping, leading to a unique global at-tractor with zero residual error. The empirical results

here, together with those of (Sandholm and Crites,1995) for Prisoner's Dilemma, suggest that more in-teresting theoretical results may be available in themulti-agent case. Depending on the payo� functionsand on 
, there may be a single global attractor, ormultiple basins of attraction, or no attractor dynam-ics at all. Also, the attractors may be small �nite re-gions or limit cycles rather than points, with non-zeroasymptotic residual error.ReferencesL. Breiman et al., Classi�cation and Regression Trees.Monterey CA: Wadsworth, 1984.A. Greenwald and J. O. Kephart, \Shopbots and price-bots." Proceedings of IJCAI-99, 506-511, 1999.J. Hu and M. P. Wellman, \Multiagent reinforcementlearning: theoretical framework and an algorithm." Pro-ceedings of ICML-98, 1998.J. O. Kephart, J. E. Hanson and J. Sairamesh, \Price-wardynamics in a free-market economy of software agents."Proceedings of ALIFE-VI, Los Angeles, 1998.M. L. Littman, \Markov games as a framework for multi-agent reinforcement learning," Proceedings of the EleventhInternational Conference on Machine Learning, 157{163,Morgan Kaufmann, 1994.J. Sairamesh and J. O. Kephart, \Dynamics of price andquality di�erentiation in information and computationalmarkets." Proceedings of the First International Confer-ence on Information and Computation Economics (ICE-98), 28{36, ACM Press, 1998.T. W. Sandholm and R. H. Crites, \On multiagent Q-Learning in a semi-competitive domain." Proceedings ofIJCAI-95 Workshop on Adaptation and Learning in Mul-tiagent Systems, Montreal, Canada, 71{77, 1995.G. J. Tesauro and J. O. Kephart,\Foresight-based pric-ing algorithms in agent economies." Decision Support Sci-ences, to appear, 1999(a).G. Tesauro and J. O. Kephart,\Pricing in agent economiesusing multi-agent Q-learning." Proceedings of: Workshopon Decision Theoretic and Game Theoretic Agents, Lon-don, England, 5-6 July 1999(b).G. Tesauro, \Pricing in agent economies using neuralnetworks and multi-agent Q-learning." Proceedings of:IJCAI-99 Workshop on Learning About, From and WithOther Agents, Stockholm, Sweden, 2 Aug. 1999.X. Wang and T. G. Dietterich, \E�cient value func-tion approximation using regression trees." Proceedingsof: IJCAI-99 Workshop on Statistical Machine Learningfor Large-Scale Optimization, Stockholm, Sweden, 31 Jul.1999.C. J. C. H. Watkins, \Learning from delayed rewards." Ph.D. thesis, Cambridge University, 1989.


