Multi-agent Q-learning and regression trees for automated pricing
decisions

Manu Sridharan

MSRIDHARQMIT.EDU

Dept. of Electrical Engineering and Computer Science, MIT 38-401, Cambridge MA 02139 USA

Gerald Tesauro

TESAUROQWATSON.IBM.COM

IBM Thomas J. Watson Research Center, 30 Saw Mill River Rd., Hawthorne, NY 10532 USA

Abstract

We study the use of single-agent and multi-
agent Q-learning to learn seller pricing strate-
gies in three different two-seller models of
agent economies, using a simple regression
tree approximation scheme to represent the
Q-functions. OQur results are highly encour-
aging — regression trees match the training
times and policy performance of lookup table
Q-learning, while offering significant advan-
tages in storage size and amount of training
data required, and better expected scaling to
large numbers of agents. Clear advantages
are seen over neural networks, which yield in-
ferior policies and require much longer train-
ing times. Our work is among the first to
demonstrate success in combining Q-learning
with regression trees. Also, with regression
trees, Q-learning appears much more feasible
as a practical approach to learning strategies
in large multi-agent economies.

1. Introduction

Reinforcement learning in multi-agent environments is
a challenging forefront of machine learning research
that could have immense practical benefit in many
real-world problems. Many application domains are
envisioned in which teams of software agents cooperate
to achieve a global objective. We also foresee signif-
cant applications for self-interested agents, for exam-
ple, in electronic marketplaces, where economic soft-
ware agents can interact with humans and/or other
agents to maximize their own individual profits.

This paper investigates the use of Reinforcement
Learning in multi-agent economies. Specifically, we
study the use of Q-learning (Watkins, 1989) to learn
pricing strategies in a competitive marketplace. Q-

learning is an algorithm for learning to estimate the
long-term expected reward for a given state-action
pair. It has the nice properties that it does not need
a model of the environment, and it can be used for
on-line learning. With a lookup table representing the
Q-function, the learning procedure is guaranteed to
converge to the optimal value function and optimal
policy.

The are two main challenges in using Q-learning in
multi-agent systems. First, most of the existing con-
vergence proofs only apply to single-agent, stationary
Markov Decision Problems. (Important first steps in
analyzing the two-agent case have been reported in
(Littman, 1994) and (Hu and Wellman, 1998).) How-
ever, when multiple agents simultaneously adapt, each
agent provides an effectively non-stationary environ-
ment for the other agents. Hence it is unknown in gen-
eral whether any global convergence will be obtained
in this case, and if so, whether such solutions are opti-
mal. Second, we expect that large multi-agent systems
will have states spaces that are too large for lookup ta-
bles to be feasible, and hence some sort of function ap-
proximation scheme seems necessary to represent the
Q-function.

The present work combines single-agent and multi-
agent Q-learning with tree-based function approxima-
tion in a model two-seller economy. The sellers alter-
nately take turns setting prices, taking into account
the other seller’s current price. After the price has
been set, the consumers choose either seller 1’s prod-
uct or seller 2’s product, based on the current price
pair. This leads to an instantaneous reward or profit
given to the sellers. We assume that both sellers have
full knowledge of the expected consumer response for
any price pair, and moreover have full knowledge of
both reward functions.

Q-learning is one of a variety of ways of endow-
ing agents with “foresight,” i.e. an ability to antic-

ipate long-term consequences of actions. Foresight
was found in previous work (Tesauro and Kephart,
1999a,b) to improve profitability, and to damp out or
eliminate the pathological behavior of unending cyclic
“price wars,” in which long episodes of repeated under-
cutting amongst the sellers alternate with large jumps
in price. Such price wars were found to be rampant
in prior studies of agent economy models (Kephart,
Hanson and Sairamesh, 1998; Sairamesh and Kephart,
1998) when agents use “myopically optimal” or “my-
optimal” pricing algorithms that optimize immediate
reward, but do not anticipate any longer-term conse-
quences. Q-learning in particular is a principled way
to obtain deep lookahead, since the Q-function rep-
resents the cumulative discounted reward looking in-
finitely far ahead in time. In contrast, the prior work
of (Tesauro and Kephart, 1999a) was based on shallow
finite lookahead.

Q-learning with lookup tables was previously stud-
ied in (Tesauro and Kephart, 1999b). A single Q-
learner playing against a myoptimal opponent always
converged to an optimal policy. In the more inter-
esting case of two agents simultaneously Q-learning
against each other, convergence was again obtained in
all three models, at least for small-to-moderate values
of the discount parameter. In (Tesauro, 1999), prelim-
inary studies of Q-learning with neural networks found
reasonably good policies but excessively long training
times. This is a potentially major drawback in an on-
line scenario where agents must learn quickly to main-
tain profitability. The current study of regression trees
as an alternate function approximator was motivated
by the goal of improving on the training time of neu-
ral networks while generating policies of at least equal
quality to those given by a neural network.

The remainder of this paper is organized as follows.
Section 2 describes the structure and dynamics of
the model two-seller economy, and presents three
economically-based seller profit functions which are
prone to price wars when agents myopically optimize
their short-term payoffs. Section 3 describes the imple-
mentation of Q-learning in these model economies, and
summarizes previous results of lookup table and neural
network Q-learning. In Section 4, the algorithms used
for constructing regression trees and adapting them
to Q-learning in our study are presented. Section 5
presents the results of using Q-learning with regression
trees and compares these results to those of section
3. Finally, section 6 summarizes the main conclusions
and discusses promising directions and challenges for
future work.

2. Model agent economies

Our models make a number of simplifying assump-
tions relative to the likely complexities of real agent
economies. The economy is restricted to two sellers,
competing on the basis of price, who offer similar or
identical products to a large population of consumer
agents. Prices are discretized and lie between a min-
imum and maximum price; there are typically ~ 100
possible prices. This renders the state space small
enough to use lookup tables to represent the agents’
pricing policies and expected profits. Time is also dis-
cretized; at each time step, the consumers compare
the current prices of the sellers, and instantaneously
and deterministically choose to buy from at most one
seller. Hence at each time step, for each possible pair
of prices, there is a deterministic profit obtained by
each seller.

We also assume that the sellers alternately take turns
adjusting their prices, rather than simultaneously set-
ting prices. Alternating-turn dynamics is motivated by
two considerations: (a) It ensures that there will be
a deterministic optimal policy (Littman, 1994), and
hence normal Q-learning, which yields deterministic
policies, can apply. (b) In a realistic many-seller econ-
omy, it seems reasonable to assume that the sellers will
adjust their prices at different times rather than at the
same time (although probably not in a well-defined or-

der).

The three economic models studied here are described
in detail elsewhere '. In the first model, called
the “Price-Quality” model (Sairamesh and Kephart,
1998), the sellers’ products have different values of a
scalar “quality” parameter, with higher-quality prod-
ucts being perceived as more valuable. At each time
step, the consumers buy the lowest-priced product
subject to constraints of a maximum allowable price
and a minimum allowable quality. The substitutabil-
ity of seller products enables direct price competition,
and the “vertical” differentiation of differing quality
values leads to asymmetries in the sellers’ profit func-
tions. Such asymmetries can result in unending cyclic
price wars when the sellers employ myoptimal pricing
strategies.

The second model, described in (Kephart, Hanson and
Sairamesh, 1998), is an “Information-Filtering” model
in which the two sellers offer news articles in partly
overlapping categories. This model contains a “hor-
1zontal” differentiation of article categories. To the

'!Descriptions and prior studies of these eco-
nomic models are available on the Web at:
www.research.ibm.com /infoecon/researchpapers.html.

extent that the categories overlap, there can be direct
price competition, and to the extent that they differ,
there are asymmetries that again lead to the potential
for cyclic price wars.

The third model is the “Shopbot” model described in
(Greenwald and Kephart, 1999), which models the sit-
uation on the Internet in which some consumers use a
shopbot to compare prices of all sellers offering a given
product, and select the lowest-priced seller. In this
model, the sellers’ products are identical, and their
profit functions are symmetric. Myoptimal pricing
leads the sellers to undercut each other until the mini-
mum price point is reached. At that point, a new price
war cycle can be launched, due to asymmetric buyer
behavior, rather than seller asymmetries. Some buyers
choose a random seller rather than bargain-hunt with
the shopbot; this makes it profitable to abandon the
low-price competition, and instead maximally exploit
the random buyers by charging the maximum possible
price.

RN
XN
f R
0.15 : WY

Figure 1. Sample profit landscape for seller 1 in Price-
Quality model, as a function of seller 1 price p; and seller
2 price pa.

An example seller profit function, taken from the
Price-Quality model, is plotted in figure 1. This shows
the instantaneous profit for seller 1, Ui(p1,p2). The
quality parameters are ¢; = 1.0, g2 = 0.9 (i.e. seller
1 is the higher-quality seller). The myoptimal policy
for seller 1, pj(p2), is obtained for each value of p,
by sweeping across all values of p; and choosing the
value with the highest profit. For small p;, the peak
profit is obtained at p; = 0.9, whereas for larger po,
there is eventually a discontinuous shift to the other
peak, which follows the parabolic-shaped ridge along
the diagonal.

The Information-Filtering and Shopbot models also

have similar profit landscapes. In all three models,
it is the existence of multiple, disconnected peaks in
the landscapes, with varying relative heights depend-
ing on the other seller’s price, that leads to price wars
when the sellers behave myopically.

In these models it is assumed for simplicity that the
players have essentially perfect information. They
can model the consumer behavior perfectly, and they
also have perfect knowledge of each other’s costs and
profit functions. Hence the model is in essence a two-
player perfect-information deterministic game, similar
to games like chess. The main differences are that the
payoffs are not strictly zero-sum, there are no termi-
nating nodes in the state space, and payoffs are given
to the players at every time step.

3. Single and Multi-agent Q-learning
3.1 Learning algorithm

The standard procedure for Q-learning is as follows.
Let Q(s,a) represent the discounted long-term ex-
pected reward (with discount parameter) to an agent
for taking action a in state s. (The value of a reward
expected at n time steps in the future is discounted by
y™.) Assume that Q(s,a) is represented by a lookup
table containing a value for every possible state-action
pair, and that the table entries are initialized to ar-
bitrary values. Then the procedure for solving for
Q(s,a) is to infinitely repeat the following two-step
loop:

1. Select a particular state s and a particular action
a, observe the immediate reward r for this state-action
pair, and the resulting state s’.

2. Adjust Q(s,a) according to the following equation:

AQ(s,a) = ofr +7maxQ(s',8) ~ Q(s,0)] (1)

where « is the learning rate parameter. A variety of
methods may be used to select state-action pairs in
step 1, provided that every state-action pair is visited
sufficiently often. When « is decreased over time with
an appropriate schedule, the above procedure is guar-
anteed to converge to the correct values for stationary
MDPs.

In our economic models, the distinction between states
and actions is somewhat blurred. It will be assumed
that the “state” for each seller is sufficiently described
by the other seller’s last price, and that the “action” is
the current price decision. This should be a sufficient
state description because no other history is needed
either for the determination of immediate reward, or

for the calculation of the myoptimal price by the fixed-
strategy player. We have also redefined r and s’ for the
two-agent case as follows: let s’ be the state that is ob-
tained, starting from s, of one action by the Q-learner
and a response by the opponent. Likewise, r is defined
as the sum of the two rewards obtained after those
two actions. These modifications were introduced so
that the state s’ would have the same player to move
as state s. (A possible alternative to this, which has
not been investigated, is to include the side-to-move as
additional information in the state-space description.)

3.2 Results of lookup table learning

Detailed results of lookup table-based Q-learning are
presented in (Tesauro and Kephart, 1999b). In brief,
single-agent Q-learning in all three models was found
to always yield exact convergence to a stationary op-
timal solution (as expected). The resulting Q-derived
policies always outperformed a myopic strategy when
tested against myopic opposition, and the expected
profit increased montonically with . In many cases,
Q-learning had the side benefit of also improving the
myopic opponent’s expected profit. This improvement
1s due to the Q-learner learning to abandon undercut-
ting behavior more readily as the price decreases. The
price-war regime is thus smaller and confined to higher
average prices, leading to a closer approximation to
collusive behavior, with greater expected profits for
both sellers.

For simultaneous Q-learning by both sellers, the proce-
dure utilized was to alternately adjust a random entry
in seller 1’s Q-function, followed by a random entry
in seller 2’s Q-function, using the same formalism pre-
sented above. As the Q-functions evolved, the policies
were correspondingly updated so that they optimized
the agents’ current Q-function. In modeling the two-
step payoff r to a seller in equation 1, the opponent’s
current policy was used, as implied by its current Q-
function.

Simultaneous Q-learning in the Price-Quality model
yielded robust convergence to a unique pair of policies,
independent of v, identical to the solution found by
shallow lookahead in (Tesauro and Kephart, 1999a).
In the Shopbot model, exact convergence of the Q-
functions was only found for v < 0.7. For v >
0.7, there was very good approximate convergence,
in which the Q-functions converged to stationary so-
lutions to within small random fluctuations. Differ-
ent solutions were obtained at each value of 4. For
small ¥, a symmetric solution is generally obtained (in
which the shapes of pi(p2) and pa(p1) are identical),
whereas a broken symmetry solution, similar to the

Price-Quality solution, is obtained at large 4. There
was a range of v values, between 0.1 and 0.2, where
either a symmetric or asymmetric solution could be
obtained, depending on initial conditions. The asym-
metric solution seems counter-intuitive because one
would expect that symmetric profit functions would
lead to symmetric policies. Finally, in the Information-
Filtering model, simultaneous Q-learning produced ex-
act or good approximate convergence for 0 <y < 0.5.
For larger -, no convergence was obtained. The Q-
derived policies yielded reduced-amplitude price wars,
and montonically increasing profitability for both sell-
ers as a function of 4, up to v = 0.5.

Myopic vs. Myopic

Average profit
o
=
(3]

Q vs. Q; Shopbot Model

0.00
0.0 0.2 0.4 0.6 0.8 1.0 12

Y
11 T T

Q vs. Q (y=0.9)

10+

09r

& 081

0.7 1

06 1

0.5 I I I I |
0.5 0.6 0.7 0.8 0.9 1.0 11

P1

Figure 2. Results of simultaneous Q-learning with lookup
tables in the Shopbot model. (a) Average utility per time
step for seller 1 (solid diamonds) and seller 2 (open dia-
monds) vs. discount parameter . Dashed line indicates
baseline myopic vs. myopic expected utility. (b) Cross-
plot of Q-derived price curves at v = 0.9. Dashed line and
arrows indicate a sample price dynamics trajectory.

Figure 2 is illustrative of the results of simultaneous
Q-learning. The left figure plots the average profit for
both sellers in the Shopbot model. The right figure
plots Q-derived price curves (at v = 0.9) of seller 1

and seller 2 against each other. The system dynamics
can be obtained by alternately applying the two pric-
ing policies. This can be done by an iterative graphi-
cal construction, in which for any given starting point,
one first holds ps constant and moves horizontally to
the p1(p2) curve, and then one holds p; constant and
moves vertically to the pz(p1) curve. For these partic-
ular curves, the graphical construction leads to a very
short cyclic price war, indicated by the dashed line.
The price-war behavior begins at the price pair (1, 1),
lasts only a couple of steps, and then drops to ps ~ 0.8.
At this point seller 1 resets its price to p; = 1.0 and
the cycle repeats. The price war amplitude is dimin-
ished compared to myopic vs. myopic play, where a
long price war would persist all the way to a minimum
price point ~ 0.58.

3.3 Difficulties of neural network training

Some preliminary results of combining Q-learning with
neural networks were reported in (Tesauro, 1999). The
neural nets typically appeared to reach peak profitabil-
ity in a few hundred sweeps through the training cases
(corresponding to a few hours of CPU time). The
policies were reasonably good at this point, and qual-
itatively similar to the lookup table policies, but the
quality of approximation of the Q-function was poor,
as indicated by large Bellman error. With much fur-
ther training (out to several days of CPU time), the
Bellman error improved significantly, but there was
no improvement in policy profitability. It is possi-
ble that, with enough additional training, further im-
provements in profitability might be found, but it ap-
peared that the required training times would be pro-
hibitively long.

4. Q-learning with regression trees

Our regression tree algorithm employs the simplest
conceivable heuristics: we use axis-parallel splits, se-
lect splits that minimize variance, and approximate
the function by constant values in the leaf nodes. A
brief description appears below; more details can be
found in (Breiman et al., 1984).

The trees are constructed in a “batch” mode using a
fixed set of training cases. Each training case has d in-
put attribute values, and an associated function value
which may be adjusted during training. Given a train-
ing set N, a regression tree is constructed recursively
as follows: First, the average a¢ and the variance v of
the function values of the cases are calculated. If | N|is
less than a given threshold or if v is sufficiently small,
the algorithm terminates, returning a leaf node which
approximates the function by the constant a. Other-

wise, the best axis-parallel split of the cases is found
by examining all possible splits on each attribute. The
best split is defined as follows: consider a split that di-
vides N into sets Ny and N», with respective variances
vy and vy. The split which minimizes the quantity
|N1i|vi + | N2|vs is the best split. A new internal node
defined by this split is then created. The training set
is separated into two subsets, and two subtrees for the
new node are created recursively. Finally, the algo-
rithm returns the node and terminates.

We performed some initial investigations of minimal
error-complexity pruning, as described in (Breiman et
al., 1984). However, it was found that setting a mini-
mum of five cases in each leaf node and not using any
pruning gave better results. Minimal error-complexity
pruning seems ill-suited to our problem, perhaps be-
cause the policies generated by using the tree are more
important than the accuracy of the tree’s approxima-
tion of the function. Other pruning algorithms have
not been investigated.

In our problem, the training cases consist of random
price pairs (corresponding to uniform random explo-
ration of the state-action space), plus an additional
“knowledge-engineered” binary attribute which is set
to 1 when the Q-learner’s price is less than the op-
ponent’s price, and 0 otherwise. This helps the tree
represent the critically important “undercutting” dis-
continuity present in all three models.

The function values for the cases are initialized to the
seller’s two-step immediate reward for that state and
action (as in Section 3). An initial tree is built from
these cases. Then, repeated sweeps are performed
through the set of training cases, in which the case
values @); are adjusted according to:

AQs=alr+ymaxQ(s\ D) - Q] (2)

where the max-Q value for the successor state is found
using the current tree. A new tree is built after each
sweep through the training set. The algorithm termi-
nates after a fixed number of sweeps. Training runs
typically used a fixed learning rate «, which seemed to
give good results even though convergence theorems
require decreasing « with time.

In the case of multiple Q-learners, the tree updates
are performed as follows. First, the sweep through the
training set of each Q-learner is done, with the most
recent policy of the other Q-learners (determined from
their most recently constructed tree) used to calculate
the immediate reward r. Then, the trees of all the
Q-learners are reconstructed. This method promotes

consistency of the Q-functions, as all Q-learners have
access to equally recent information about other Q-
learners.

One slightly different algorithm was also examined,
which involved building a tree as above, and then fur-
ther refining the leaf node values. A random new
point in the space is chosen, and the corresponding
leaf node is determined. Let a be the current leaf
node estimate of the function, & be the number of
cases that fell in that leaf node during previous train-
ing, and f be the function value of the new point.
The leaf node’s estimate is then updated according to:
@ = (axk+ f)/(k+1). This process continues for a
number of new points, after which a new tree is built
from a newly constructed training set. This algorithm
worked well in the case of a single Q-learner, but for
multiple Q-learners was not as good at producing sta-
ble policies as the batch updating algorithm described
above.

5. Results

In the case of single-agent Q-learning, the batch train-
ing algorithm converged rapidly, within a few dozen
iterations, taking ~ 1 minute or less of CPU time on a
fast RS/6000 workstation. This represents a huge im-
provement over neural network training, which ranged
from a few hours to several days of CPU time. Fur-
thermore, in all three economic models, regression tree
learning was consistently able to match the exact opti-
mal policies that were obtained from lookup-table Q-
learning. (Again, this is superior to neural nets, which
usually were not able to find the optimal policies.)

These optimal policies were found with training set
sizes that were relatively small fractions of the total
state space size. Typically we find that data sets ~
20-25% of the state space size in the Price-Quality
and Information-Filtering models, and ~ 40-50% in
the Shopbot model, are sufficient to generate exact or
near-optimal policies. As shown in figure 3, the algo-
rithm’s behavior as a function of training set size is
quite good. The policy profitability quickly asymp-
totes at the level of the lookup table policy, and for
smaller training sets, there is graceful degradation: in
most cases a near-optimal policy is found, however,
there is an increasing chance that a poor solution will
be obtained as the training set size is reduced.

We can also see in figure 3 that the trees grow to rea-
sonable sizes (much smaller than the corresponding
lookup tables) as a function of training set size. For
example, in the Shopbot model, trees with approxi-
mately 300 nodes (or 150 leaf nodes) were able to gen-

Shopbot Model: Avg. Profit vs Training Set Size
39 T T T T
38 | !]
1 | 1

37
36 -
35 -
34 -
33 r
32 -
31 r
30 -
29
28

0 500 1000 1500 2000 2500

Shopbot Model: Tree Size vs Training Set Size
350

o

250
f

200

150 ¥

100

50

0 500 1000 1500 2000 2500

Figure 3. Results of single-agent Q-learning with regression
trees in the Shopbot model, ¥ = 0.5. (a) Average Q-learner
profit per time step as function of training set size. Error
bars represent min and max profit over 10 runs with differ-
ent randomly-generated training sets. Lower dashed line
represents average profit in myopic vs. myopic play. Up-
per dashed line indicates average profit of exact optimal
policy obtained by lookup table Q-learning. (b) Average
tree size as a function of training set size.

erate optimal policies. Trees with approximately 600
nodes generated optimal policies in the Price-Quality
model, with the higher quality seller as the Q-learner.

Most of our results were obtained with the minimum
number of training cases per leaf node (“Minobjs”)
set to 5. This lenient criterion resulted in a large
number of leaf nodes, with relatively good constant-
value approximation within each leaf node. We have
also investigated more stringent stopping criteria by
increasing Minobjs. This results in smaller trees, with
potentially cruder function approximation within the
leaf nodes. Generally we find robust behavior with in-
creasing Minobjs, as illustrated in figure 4. Increasing
Minobjs from 5 to 20 was found to reduce the tree size
by nearly a factor of 3, with only a slight decrease in
policy profitability.

An illustration of the quality of regression tree func-
tion approximation compared to an exact lookup ta-
ble solution is shown in figure 5. The tree correctly
fits the diagonal discontinuity along the undercutting
line pg < pumy (aided greatly by the “knowledge-

Shopbot Model, Avg. Profit vs Minobjs

38.5 T T
38 } } 1
375 b
37 +
36.5 1
36 q
355 1
35+ 1
345 b
34
5 10 20 30 50
Shopbot Model, Tree Size vs Minobjs
300 T T T T T
3
250 - 1
200 + & —
150 1
3
100 1
=
50 .

0
5 10 20 30 50

Figure 4. Results of varying Minobjs, the minimum no. of
cases per leaf node. Single-agent Q-learning with regression
trees in the Shopbot model, v = 0.5, 1500 training cases.
(a) Average Q-learner profit per time step as function of
Minobjs. Error bars represent min and max profit over 10
runs with different randomly-generated training sets. (b)
Average tree size as a function of Minobjs.

engineered” input attribute), and unlike neural net-
works, it also correctly fits the second discontinuity
in the small pg regime. This is important in obtain-
ing the optimal policy. Neural nets fit the flat and
smoothly curving portions of the landscape better, but
this is irrelevant to finding the optimal policy.

The results of multi-agent Q-learning using regres-
sion trees were also promising. In the Price-Quality
model, results were identical to those generated with
lookup tables: robust convergence was found to a
self-consistent pair of policies independent of 4. In
the Information-Filtering model, convergence was ob-
tained for 4 up to 0.5, with cumulative profits for
both sellers increasing with higher v, exactly as in
the lookup table case. Results for the Shopbot model
were mixed. For 4 up to 0.2, convergence to symmet-
ric policies was obtained. Using the leaf-node updat-
ing algorithm described briefly in Section 4, the same
asymmetric solutions were obtained for v > 0.2. Using
the batch training algorithm with large v, the policies
of the sellers remain symmetric for some time, after
which they suddenly become asymmetric and no con-
vergence is obtained. Although these results are not

completely understood, they seem to correspond well
with the lookup table results, where it was also seen
that the symmetric solution for multi-agent Q-learning
was highly unstable.

=

S OSSSS ST SO IOS

S S S SSISSTSIOSS
SIS

=
RO
SRS
SR
NWe e

SRR
SN

=
S
oS 5 S <O
OSSO ITS OO SSS
‘..:‘:“::‘::o‘/
SOTSITIOTS
SIS
COSSOISSOSSOSSOSS>
SIS SIISISSSS
S S
ORI SSS S
RS
O OORROSS
TR

Figure 5. Plot of the Q-function for single-agent Q-learning
vs. a myopic opponent in the Shopbot model at v = 0.7.
p_@Q is the Q-learner’s price and p_ MY is the myopic
player’s price. (a) Exact optimal Q-function obtained by
lookup table Q-learning. (b) Regression tree approxima-
tion to the Q-function. The tree was trained on 1500 cases
and contained at least 10 cases per leaf node.

Training times in the multi-agent case increased, but
convergence was still usually obtained in under 5 min-
utes. Partly this was due to having to use a smaller
value of & ~ 0.1, whereas in the single agent case, it
was often possible to go as high as @ ~ 1 and still
obtain convergence. Tree sizes increased slightly in
multi-agent Q-learning tests, which is reasonable since
the profit landscapes are more complicated. In the
Shopbot model, trees that generated optimal policies
ranged from 350-400 nodes, and trees with approxi-
mately 700 nodes generated optimal policies for the
higher-quality seller in the Price-Quality model.

6. Conclusions

We have studied a simple combination of tree-based
function approximation with single-agent and multi-
agent Q-learning, and have found highly encouraging
results in three different models of agent economies,
each with a different mechanism for generating price
wars. This suggests that the success of the algorithm
1s not due to specific details of any single model, and
it is likely to be more generally applicable in agent
economies.

The main contributions of this work are twofold. First,
an important open question in Reinforcement Learning
research is how to combine RL methods such as Q-
learning with nonlinear function approximation. Most
of the empirical research on this topic has involved
neural networks. Our work, along with (Wang and
Dietterich, 1999), is among the first to demonstrate
success in combining Q-learning with regression trees.
Our results show clear advantages over the neural net
approach, and thus provide impetus for further studies
of tree-based methods.

The second contribution is that with regression trees,
Q-learning appears much more feasible as a prac-
tical approach to learning strategies in multi-agent
economies. With lookup tables, Q-learning generally
performed well in terms of training time and policy
profitability, both in the single-agent and multi-agent
cases, but is expected to scale poorly with the number
of agents. Regression trees are expected to offer much
better scaling. We find that they train quickly, achieve
profits equal or very close to the lookup table policies,
and offer significant advantages in terms of tree size
and amount of training data required.

One clearly important direction of future research is to
examine how well regression trees perform in economic
models with more agents and more realistic details.
(Preliminary results indicate that in a three-seller case,
regression trees still seem to perform well with a man-
ageable increase in the size of the trees.) It also seems
likely that more sophisticated methods for generating
splits and leaf-node function approximation, such as
oblique splits and linear function approximation, could
be of clear benefit. It will also be important to resolve
how to adapt our batch training methodology to online
learning, which is inherently incremental.

Finally, we have observed empirical behavior of multi-
agent Q-learning, such as approximate but not ex-
act convergence, that has no analog in ordinary Q-
learning, where the Bellman equation is known to be
a contraction mapping, leading to a unique global at-
tractor with zero residual error. The empirical results

here, together with those of (Sandholm and Crites,
1995) for Prisoner’s Dilemma, suggest that more in-
teresting theoretical results may be available in the
multi-agent case. Depending on the payoff functions
and on v, there may be a single global attractor, or
multiple basins of attraction, or no attractor dynam-
ics at all. Also, the attractors may be small finite re-
gions or limit cycles rather than points, with non-zero
asymptotic residual error.

References

L. Breiman et al.,, Classification and Regression Trees.

Monterey CA: Wadsworth, 1984.

A. Greenwald and J. O. Kephart, “Shopbots and price-
bots.” Proceedings of IJCAI-99, 506-511, 1999.

J. Hu and M. P. Wellman, “Multiagent reinforcement
learning: theoretical framework and an algorithm.” Pro-

ceedings of ICML-98, 1998.

J. O. Kephart, J. E. Hanson and J. Sairamesh, “Price-war
dynamics in a free-market economy of software agents.”

Proceedings of ALIFE-VI, Los Angeles, 1998.

M. L. Littman, “Markov games as a framework for multi-
agent reinforcement learning,” Proceedings of the Eleventh
International Conference on Machine Learning, 157-163,
Morgan Kaufmann, 1994.

J. Sairamesh and J. O. Kephart, “Dynamics of price and
quality differentiation in information and computational
markets.” Proceedings of the First International Confer-
ence on Information and Computation Economics (ICE-

98), 28-36, ACM Press, 1998.
T. W. Sandholm and R. H. Crites, “On multiagent Q-

Learning in a semi-competitive domain.” Proceedings of
IJCAI-95 Workshop on Adaptation and Learning in Mul-
tiagent Systems, Montreal, Canada, 71-77, 1995.

G. J. Tesauro and J. O. Kephart, “Foresight-based pric-
ing algorithms in agent economies.” Deciston Support Sci-
ences, to appear, 1999(a).

G. Tesauro and J. O. Kephart, “Pricing in agent economies
using multi-agent Q-learning.” Proceedings of: Workshop
on Decision Theoretic and Game Theoretic Agents, Lon-

don, England, 5-6 July 1999(b).

G. Tesauro, “Pricing in agent economies using neural
networks and multi-agent Q-learning.” Proceedings of:
IJCAI-99 Workshop on Learning About, From and With
Other Agents, Stockholm, Sweden, 2 Aug. 1999.

X. Wang and T. G. Dietterich, “Efficient value func-
tion approximation using regression trees.” Proceedings
of: IJCAI-99 Workshop on Statistical Machine Learning
for Large-Scale Optimization, Stockholm, Sweden, 31 Jul.
1999.

C.J. C. H. Watkins, “Learning from delayed rewards.” Ph.
D. thesis, Cambridge University, 1989.

