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Abstract10

Many important security properties can be formulated in terms of flows of tainted data, and11

improved taint analysis tools to prevent such flows are of critical need. Most existing taint analyses12

use whole-program static analysis, leading to scalability challenges. Type-based checking is a13

promising alternative, as it enables modular and incremental checking for fast performance. However,14

type-based approaches have not been widely adopted in practice, due to challenges with false15

positives and annotating existing codebases. In this paper, we present a new approach to type-based16

checking of taint properties that addresses these challenges, based on two key techniques. First,17

we present a new type-based tainting checker with significantly reduced false positives, via more18

practical handling of third-party libraries and other language constructs. Second, we present a novel19

technique to automatically infer tainting type qualifiers for existing code. Our technique supports20

inference of generic type argument annotations, crucial for tainting properties. We implemented21

our techniques in a tool TaintTyper and evaluated it on real-world benchmarks. TaintTyper22

exceeds the recall of a state-of-the-art whole-program taint analyzer, with comparable precision, and23

2.93X–22.9X faster checking time. Further, TaintTyper infers annotations comparable to those24

written by hand, suitable for insertion into source code. TaintTyper is a promising new approach25

to efficient and practical taint checking.26
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1 Introduction33

Software security is of critical importance to society, as security vulnerabilities can have severe34

financial and safety impacts. Many security vulnerabilities can be described as an undesirable35

flow of tainted data. For example, program inputs possibly controlled by an attacker are36

tainted, and should not flow to sensitive program operations without proper sanitization.37

Static taint analysis aims to automatically discover these dangerous data flows, and many38

approaches to static taint analysis have been proposed [4, 11, 13, 21, 24, 26, 27, 34, 44–46].39

We desire a static taint analysis with the following properties:40

high precision, i.e., few false positive reports;41

high recall, i.e., few missed vulnerabilities;42

fast running times, enabling checking during continuous integration (CI) or even on local43

builds; and44
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applicability to existing code bases.45

Previous approaches do not satisfy all of these properties. Most existing tools perform46

whole-program analysis, using inter-procedural alias and dataflow analysis to discover tainted47

flows. Such approaches are applicable to extant code and can have high precision and48

recall, but they are difficult to scale to large programs, which can have millions of lines of49

code [13, 44]. Such analyses can take hours to complete, making them insuitable for CI50

deployment or local developer runs. Incremental analysis techniques can speed re-analyzing51

code after small changes [13, 15, 42], but they may miss issues [41] or still consume excessive52

resources [42].53

An alternative approach is type-based checking using type qualifiers [23], as embodied54

in pluggable type checkers [19, 36]. A type-based approach performs modular checking for55

tainted flows, combining intra-procedural analysis with annotations at method boundaries56

to capture inter-procedural flows. The Checker Framework [19, 36] includes a type-based57

tainting checker [2]. Such approaches can have high recall, and they have fast running58

times, as the use of annotations completely obviates the need for inter-procedural analysis.59

They are also naturally incremental due to modularity, yielding an automatic and significant60

speedup (nearly 10X in our initial measurements) for small code changes with modern build61

systems [6]. However, extant type-based approaches lack both precision and applicability. For62

precision, the previous checker [2] treats third-party libraries and various language constructs63

too conservatively, leading to excessive false positives. For applicability, running a type-based64

approach on extant code requires adding annotations, a significant up-front effort that limits65

adoption.66

In this paper, we present a new approach to type-based checking for taint properties67

that achieves all of our desired properties: high precision and recall, fast running times, and68

applicability. In contrast to the extant approach [2], we design our checker to prioritize69

usability and flexibility over full soundness. We handle un-annotated library methods as70

polymorphic by default [27], i.e., only returning tainted data when it is passed in, dramatically71

reducing the need to annotate such methods. We also introduce more practical handling of a72

variety of language constructs to reduce false positives. While these techniques can in theory73

introduce unsoundness, our extensive evaluation showed that the impact on analysis recall74

was minimal.75

We also present a novel technique to automatically infer tainting type qualifiers, achieving76

applicability to existing code. Our technique extends a recent search-based approach for77

inferring nullability annotations [30] with several important new features. We develop a78

novel algorithm for inferring type annotations on generic type arguments, crucial for tainting;79

this problem was left open in recent work [30, 31]. Our algorithm can also infer polymorphic80

method annotations when generic types are not present. We introduce an optimized handling81

of local variable annotations to further improve inference performance.82

We implemented our technique in a tool TaintTyper and evaluated it on a range of83

benchmarks. TaintTyper was able to infer annotations comparable to human-written84

annotations and suitable for insertion into source code. Further, once inference was com-85

pleted, TaintTyper had higher recall than a state-of-the-art taint analyzer on real-world86

benchmarks, with comparable precision, and 2.93X–22.9X faster checking time. Hence, the87

evaluation showed that TaintTyper achieved the precision, recall, speed, and applicability88

goals outlined above. An ablation experiment showed that our new checker and inference89

features were crucial for TaintTyper’s effectiveness.90

This paper makes the following key contributions:91

We present a new, more practical type-based tainting checker, with improved handling of92
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third-party libraries and other language constructs.93

We describe a novel inference technique for tainting types. Crucially, the technique94

handles generic type arguments, and includes an important new optimization to reduce95

inference time.96

We present a detailed experimental evaluation showing our approach makes type-based97

taint checking much more practical for real-world projects, significantly improving over98

the state-of-the-art.99

The implementation of TaintTyper is available at https://github.com/ucr-riple/100

TaintTyper.101

2 Background102

In this section, we provide background on typical approaches to taint analysis (Sec. 2.1) and103

the type-based approach (Sec. 2.2), comparing them and motivating our techniques.104

2.1 Taint Analysis105

Taint analysis aims to discover information flow vulnerabilities in code [18], an undesirable106

flow of information from some designated source of values to a designated sink operation.107

Our attacker model assumes that the attacker controls inputs originating from untrusted108

sources and seeks to reach sensitive sinks. In this context, sources include typical mechanisms109

that receive data from external origins, such as reading from the network, accessing files,110

or handling user input. Conversely, sinks are operations that have security-critical effects,111

such as writing to a file, sending data over the network, or executing system or database112

commands. E.g., for an SQL injection attack, the source is an input from a potential attacker113

and the sink is a database query, while for a cross-site scripting (XSS) attack, the sink renders114

output to a web page. Information flow may be direct, solely involving data dependencies,115

or indirect, potentially involving control dependence. As with most practical static taint116

analyses, we consider only direct information flow in this work.117

The most common approach to static taint analysis is to perform an inter-procedural118

(whole-program) dataflow analysis to discover source-to-sink data flows [4, 11, 13, 21, 24,119

26, 27, 34, 44–46]. For languages like Java, inter-procedural analysis requires computing a120

call graph, typically using whole-program pointer analysis [40]. Tracking of tainted data121

flows also requires handling of pointer aliasing, to account for flows through object fields122

and data structures like lists. Precise reasoning about call graphs and pointer aliasing123

is the key scalability bottleneck for whole-program taint analysis. For example, a recent124

approach [25] required over 3 hours and 153GB of RAM to precisely analyze the full Java125

standard library, and real-world programs may grow much larger. Approaches to make such126

analyses incremental have been proposed [13, 15, 42], which could speed up re-analysis of127

a code base after a small change. But, such approaches can miss issues [41] or still require128

significant time or memory [42].129

Tainting rules capturing which source-sink flows may be vulnerable are typically provided130

as input to a taint analysis tool. Such rules may also capture information about validator131

and sanitizer operations, whose use may make a source-sink flow safe. Discovering tainting132

rules is itself non-trivial and has been a subject of much research [17, 20, 33, 38]. In this133

work, we focus on the core analysis problems and assume tainting rules have been provided;134

any improvements in taint rule discovery could be easily combined with our approach.135
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2.2 Type-Based Taint Analysis136

2.2.1 Basics137

Type-based taint analysis is built on the ideas of pluggable type systems [19, 36]. A pluggable138

type system defines a set of type qualifiers that refine the built-in types of a language, further139

restricting the kind of value an expression may evaluate to. We write type qualifiers by140

prefixing with an @ character, using Java annotation syntax. For tainting, the main qualifiers141

are @Tainted, for expressions that may be influenced by (data-dependent on) a source, and142

@Untainted, for expressions that must not be influenced by a source. Tainting rules are143

provided in the form of @Tainted qualifiers on source operations and @Untainted qualifiers144

on sink operations.145

A pluggable type system must also define a subtyping relationship ≤ between qualifiers.146

For tainting, we have @Untainted T ≤ @Tainted T for any base type T ; @Untainted147

values may safely flow to (possibly) @Tainted locations, but not vice-versa. Enforcing this148

property requires checking for subtype compatibility at all pseudo-assignments in the program,149

including assignments to variables / fields, parameter passing, and returns. To reduce the150

number of explicit annotations required, pluggable type systems interpret unqualified types151

as having a default qualifier. For tainting, the default qualifier is @Tainted. The following152

example illustrates this checking:153

1 class Ex {
2 @Tainted String f1; @Untainted String f2;
3 void m1(@Untainted String s) {
4 f1 = s; // no error: @Untainted assigned to @Tainted
5 }
6 void m2(@Tainted String t) {
7 m1(t); // error: @Tainted passed to @Untainted
8 f2 = t; // error: @Tainted assigned to @Untainted
9 }

10 }

In the code, @Tainted String f1 could have been written as just String f1 due to154

defaulting. Local variables are not subject to defaulting: their types are inferred using flow-155

sensitive dataflow analysis [19, 36], which also enables handling of taint validators. By default,156

the Checker Framework’s Tainting Checker [2] treats all code, including unannotated third-157

party libraries, with the same defaulting rules. So, since @Tainted is the default qualifier,158

any value returned by a third-party method is assumed to be tainted. This approach leads159

to too many false positives in practice; Sec. 4.1 describes our more practical handling of such160

code.161

2.2.2 Method calls162

Pluggable type systems must also check that method overriding respects the subtyping rules163

for the type qualifiers. Return types must be covariant in overriding methods, and parameter164

types must be contravariant. Consider the following (erroneous) example:165

1 class Super {
2 @Untainted String foo() { return "hi"; }
3 }
4 class Sub extends Super {
5 // invalid override!
6 @Tainted String foo() { return source(); }
7 }
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Sub.foo() cannot be allowed to return a @Tainted String, since code written to handle166

Super objects may expect foo() to return an @Untainted String. Without this checking,167

the following vulnerable code would pass the checker:168

1 void process(Super s) { sink(s.foo()); }
2 process(new Sub());

Given this method override checking, method calls can be handled in the pluggable types169

approach without computing a call graph. At a call c to a method with declared target P.m,170

the checker needs only to check that the parameters passed and return value use at c are171

consistent with the type of P.m itself. If at runtime, an overriding method Q.m is invoked172

at c, override checking ensures that the tainting behavior of Q.m is consistent with P.m, so173

no vulnerability is possible. This ability to check calls without a call graph yields a huge174

scalability benefit for the pluggable types approach.175

2.2.3 Data structures / polymorphism176

Pluggable type systems use parametric polymorphism to support storing differing types of177

data in different instances of a data structure. Consider the following example:178

1 List<@Tainted String> taintedStrs = new ArrayList<>();
2 List<@Untainted String> untaintedStrs = new ArrayList<>();
3 taintedStrs.add(source()); untaintedStrs.add("safe");
4 sink(taintedStrs.get(0)); // error reported
5 sink(untaintedStrs.get(0)); // no error reported

Here we have two ArrayList instances, one holding possibly-tainted strings and the179

other holding untainted strings. The taintedness of list contents is captured by adding a180

taint qualifier to the generic type argument, e.g., List<@Tainted String>. With these type181

declarations, the pluggable type checker reports an error at the first sink call while also182

proving that the second sink call is safe.183

To achieve similar precision, a whole-program static analysis must use context sensitivity:184

each call to the relevant ArrayList methods must be analyzed separately, and ArrayList’s185

internal state must be represented with a context-sensitive heap abstraction [40]. Context186

sensitivity significantly increases the running time of such analyses. The pluggable types187

approach uses qualified type arguments to achieve similar precision with much less cost.188

@PolyTaint annotations can be used for polymorphic methods that do not already use189

type variables. Consider, e.g., the parentPath function in Fig. 1. Here, the return value190

of a call to parentPath should only be considered @Tainted if the parameter for that call191

is @Tainted; the @PolyTaint annotations capture this property. Again, a standard whole-192

program analysis can achieve this precision with context sensitivity, but at greater cost to193

scalability.194

It is possible that different objects of a non-generic class vary in terms of whether tainted195

data is stored in their fields. Such cases can be handled in whole-program analysis using field196

sensitivity, which models each field of each (abstract) object separately. Typically, no such197

modeling is used in the pluggable types approach, outside of generic types. We have found198

that this rarely leads to false positives; qualified generic type arguments and @PolyTaint199

nearly always suffice for good precision in practice.200

2.2.4 Benefits201

A typechecking approach to tainting scales well since the checking is fully modular: each202

method can be checked in isolation given only the type signatures of fields it accesses and203

ECOOP 2025
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1 Map<String, +@Untainted String> paths = ...;
2 +@PolyTaint String parentPath(+@PolyTaint String path) {
3 return path.substring(0, path.lastIndexOf("/"));
4 }
5 void exec(String name) {
6 String path = paths.get(name);
7 String parent = parentPath(path);
8 sink(Paths.get(parent).toAbsolutePath().toFile());
9 }

10 void sink(@Untainted String t) { ... }

Figure 1 Motivating example for inference. Green text indicates where annotations are inserted
by TaintTyper.

methods it invokes. Checking is also incremental: after a change, only the code that needs to204

be re-compiled needs to be re-checked. Beyond improved scalability, a type-based approach205

to taint checking has various other advantages [19, 36]. Qualifiers serve as machine-checked206

documentation of tainting properties and invariants, and can also aid in safely performing207

refactorings. And, errors from the type-based approach can be more understandable, since208

they only require reasoning about local code and the types of related functions, not an209

inter-procedural trace. Because our analysis is type-based, it operates over type annotations210

rather than runtime behavior, meaning the attacker’s knowledge of the program’s internals211

does not fundamentally affect the analysis. We assume the attacker cannot modify the212

program’s source code.213

Currently, adopting type-based taint checking imposes a significant burden on program-214

mers, as they must manually annotate their own code and any relevant third-party code. Our215

checking and inference techniques significantly reduce this burden, making the type-based216

approach more practical.217

3 Motivating Example and Approach218

Example Fig. 1 gives a motivating example for our approach. (Disregard the green inferred219

annotations for the moment.) The sink method (line 10) requires an @Untainted argument.220

Assuming the values in the paths map cannot be tainted, the sink call at line 8 is safe.221

We shall show how the enhanced checker and inference of TaintTyper can automatically222

annotate and validate this example.223

The first challenge is the use of library methods like Paths.get, toAbsolutePath, and224

toFile on line 8. Without manual annotation, the previous type-based approach [2] treats225

these calls as returning a @Tainted value by default. Our approach treats most unannotated226

methods as polymorphic [27]: it assumes they only return @Tainted data when a parameter227

is @Tainted. Therefore, by default, TaintTyper determines that the expression passed to228

sink can only be @Tainted if the parent variable is @Tainted, a correct handling for this229

example.230

The parent variable is assigned the result of calling parentPath(path) (line 7), where231

path is a value in the paths map (line 6). As noted above, the values in the paths map are232

not tainted, which is captured by giving paths the type Map<String,@Untainted String>233

(line 1); this type makes the path variable @Untainted at line 6. The parentPath function234

can only return @Tainted data if its argument is @Tainted, captured with @PolyTaint235

annotations (line 2). With these annotations, the TaintTyper checker reports no warning236
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for this code, as desired.237

Search

TaintTyper
Checker

(Inference
Mode)

+
Fix Comp

TaintTyper Inference

Unannotated
Program

Errors

Updates program 
by fixing errors, adding new code

TaintTyper
Checker

(Check Mode)

Annotated
Program

Figure 2 High-level architecture of TaintTyper.

The example shows that to238

be effective, TaintTyper must239

support inferring annotations on240

generic type arguments and241

@PolyTaint annotations. The242

generic type argument support is243

required to eliminate the error,244

and @PolyTaint properly captures245

the behavior of the parentPath246

method.1 The inference technique247

of Sec. 5 can successfully infer the248

necessary green annotations in Fig. 1.249

Our approach Fig. 2 shows the high-level architecture of TaintTyper. Given an unanno-250

tated program, TaintTyper first performs inference to create an annotated version of the251

program. The inference improves on a recent search-based technique [30] that repeatedly252

runs a checker to determine the best set of annotations to insert. Here, the checker is our253

new type-based taint checker, combined with a new fix computation algorithm to enable254

inference of type argument annotations and @PolyTaint. The inference step only needs to255

run once. Afterward, developers need only run the TaintTyper checker. They can fix the256

errors initially reported by the checker and also write new code (with annotations) that257

will be verified by the checker. Since the checker is type based, it runs much faster than a258

whole-program static analysis, enabling quick turnaround times, less CI resource usage, and259

even checking on local builds.260

4 Practical Type-Based Checking261

This section details the new features in TaintTyper’s type checker that reduce false positives262

in real-world code, making the checker practical. We discuss handling of unannotated code,263

and then new handling of other language constructs.264

4.1 Unannotated Code265

TaintTyper specially handles interactions with unannotated, unchecked code, typically266

written by a third-party. Given the prevalence of third-party libraries lacking taint annotations267

in modern Java programs, such interactions occur commonly. By default, the Checker268

Framework’s Tainting Checker [2] uses @Tainted annotation for all code, whether from269

source or from libraries. So, all unannotated library methods are assumed to have a270

@Tainted return type, yielding too many false positives to be usable.271

TaintTyper adopts a polymorphic by default handling of calls to unannotated methods,272

extending a technique from previous work [27]. This approach treats the return type and273

all parameter types (including the receiver type) of an unannotated method as if they were274

annotated as @PolyTaint (see Sec. 2.2.3). For calls to such methods, the return value will275

1 For this code excerpt, the parameter and return of parentPath could be marked @Untainted, but this
would unnecessarily force all other callers of parentPath to pass in @Untainted data.

ECOOP 2025
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a.b.C#foo( )

foo’s declared return type contains type variable ?

a.b.C#foo is from stub files ?

a.b is from AnnotatedPackages Regex ?

Call site type Treat as Polymorphic

No

Yes

Yes

No

NoYes

Figure 3 Logic for determining the return type qualifier for a method call, accounting for
unannotated code.

be treated as @Tainted only if at least one of the actual parameters at the call is @Tainted.276

Consider this expression from line 8 from Fig. 1:277

Paths.get(parent).toAbsolutePath().toFile();

The invoked toFile method is unannotated, so with our polymorphic treatment, its278

return value will only be treated as @Tainted if the result of the toAbsolutePath call279

is @Tainted. Since toAbsolutePath is also unannotated, the process recurses, and the280

taintedness depends on the result of the Paths.get(parent ) call. Finally, since Paths.get281

is also unannotated, TaintTyper concludes the taintedness of the whole expression depends282

on whether parent is tainted, as desired for this example.283

An overview of the logic for determining the return type qualifier for a method call, and284

when to apply polymorphic defaulting, is given in Fig. 3 (the logic for parameter types285

is similar). The flowchart handles a call to some method a.b.C#foo, where a.b is the286

package containing class C. If foo’s declared return type contains a generic type variable,287

we use the standard type checking rule for the call site, even if foo is in unannotated code.288

This exception is important since the return type is at least partially determined by type289

arguments from the call site. E.g., line 6 of Fig. 1 invokes Map.get, whose return type is290

the type variable V for map values. Though Map.get is unannotated, TaintTyper applies291

standard checking, to preserve information from the type argument @Untainted String292

given for this particular Map at line 1.293

TaintTyper also always uses the standard call site type if foo’s type been specified294

in a stub file [3], as such files allow for externally providing types for library routines like295

sources and sinks. Otherwise, to determine whether code should be treated as annotated,296

TaintTyper takes as input an AnnotatedPackages regular expression (borrowing from297

the NullAway nullness checker [12]) which specifies which Java packages should be treated298

as annotated code. Note that this setting does not distinguish between first-party and299

third-party code, providing flexibility. E.g., when adopting TaintTyper, source packages300

can be set as annotated gradually, initially leaving other source packages as unannotated and301

unchecked. Only if the a.b package is not part of the annotated packages, the polymorphic302

handling for unannotated code is applied.303

The polymorphic-by-default handling of unannotated code is not sound for all cases.304

For example, if an unannotated method is itself a tainted source, then its return value305
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should be treated as tainted, independent of the argument taintedness. Similar issues arise306

for unannotated sink methods. As discussed in Sec. 2.1, we view discovery of source and307

sink methods as a separate problem from the core checking and inference issues we address308

here. A method may also return tainted data even with untainted arguments, if a setter309

method of the receiver is invoked earlier with tainted data. When discovered, such cases310

can be addressed via stub file models [3]. In practice, our evaluation (Sec. 7) showed that311

this technique did not lead to false negatives in comparison to two state-of-the-art tools on312

real-world benchmarks, and that it dramatically increased practicality compared to [2].313

4.2 Other Constructs314

TaintTyper computes a default @Untainted type for a variety of language constructs315

that are treated as @Tainted by the previous checker [2]. Enum constants, class literals,316

lambda expressions, and fields of annotations are always treated as @Untainted. A static317

final field is treated as @Untainted if its initializer expression is @Untainted. An array318

initializer expression (e.g., new String[] {x,y}) has @Untainted contents by default if all319

the initial array values are @Untainted. Similarly, a cast expression is @Untainted if the320

casted expression is @Untainted. In some cases, like static final fields, an explicit @Untainted321

annotation could be written, but our defaulting reduces the annotation burden. Note that322

other cases like lambda expressions cannot be directly annotated, and can only be handled323

with a warning suppression without our approach.324

java.util.Collection data structures are widely used in Java programs, making special-325

case handling useful. A Collection is often constructed directly from another Collection326

or array, e.g., new ArrayList<>(otherList). In such cases, if the other Collection holds327

@Untainted elements, TaintTyper always treats the new Collection as having @Untainted328

elements. The version of [2] we compared with did not handle these cases correctly due to329

type inference limitations.2330

The Collection.toArray(T[]) method, which converts a Collection to a T[] array,331

is also frequently used. With the baseline checker, even for a Collection of @Untainted332

values, the array contents type of a toArray call is @Tainted unless the toArray argument333

is explicitly annotated (e.g., c.toArray(new @Untainted String[0])). TaintTyper does334

not require this annotation and treats the result of toArray as having @Untainted contents335

if the Collection contents are @Untainted.336

5 Inference337

In this section we detail how TaintTyper performs inference. TaintTyper extends338

a previous search-based inference technique with support for generic types, @PolyTaint339

annotations, and unannotated code. It also introduces a new optimization that significantly340

improves inference performance.341

5.1 Baseline Algorithm342

Our inference extends the search-based inference approach of Karimipour et al. [30]. The343

approach aims to infer annotations that minimize the final number of errors reported by344

a checker, which in [30] was the nullness checker NullAway [12]. By minimizing the final345

2 The inference limitations have been addressed in more recent versions, but we found that these versions
introduced new bugs, so we did not update the version that we compared to.
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number of errors, this approach infers annotations that maximize the amount of code that346

fully passes the checker. A recent study showed this search-based approach to work better347

than alternate approaches in practice [28].348

The search performs black-box inference, in which the effectiveness of annotations in349

reducing errors is measured by running the checker itself and observing its output. This350

technique computes a set of annotations that fix some reported checker errors. Then, the351

checker is re-applied to see if these annotations cause new errors. Consider this example:352

1 void m1() { m2(source()); m2(source()); }
2 void m2(String t) { sink(t); }

Initially, TaintTyper reports an error at line 2, since t is @Tainted by default and353

passed to a sink. A local fix for this error is to annotate t as @Untainted. But, with this354

fix, TaintTyper reports two new errors on line 1 (since source’s return is @Tainted),355

increasing the total number of errors. So, the fix is rejected by the search. The previous work356

describes optimizations to speed the search process, by evaluating independent annotations357

simultaneously [30]; we evaluate the effectiveness of these optimizations for taint inference in358

Sec. 7.2.3.359

The previous work only described how to fix errors reported by NullAway. For tainting,360

computing annotations for fixes is significantly more complex due to the need to support361

generic types and @PolyTaint. Recent work on pluggable type inference left open inference362

for generic types due to the challenges involved [30, 31]. In Sec. 5.2, we describe our novel363

technique for computing annotations to fix tainting errors, supporting generic type arguments364

and @PolyTaint.365

5.2 Computing Fixes366

For our tainting checker, there are two main causes of reported errors: type incompatibility367

at a (pseudo-)assignment, and incorrect method overriding (see Sec. 2.2). For both cases,368

fixing the error requires adjusting the type of relevant variables or expressions. E.g., for the369

example of Sec. 5.1, the initial fix was to change the type of parameter t to @Untainted370

String. Alg. 1 gives our new technique to compute the annotations to achieve a desired371

type adjustment. The main procedure FindAnnots takes as arguments an expression e372

and a desired type for the fix Tf . It either returns a set of annotations that modify e’s type373

to be Tf , or ⊥ to indicate it has failed to find such a set. FindAnnots relies on various374

other procedures, some of which we elide for brevity but describe in text. We also only375

show handling of key representative language constructs for simplicity. We first explain the376

basic cases for Alg. 1, and then present our novel handling of generic type arguments and377

@PolyTaint annotations.378

5.2.1 Basics379

For a variable v (which could be a local, parameter, or field), line 3 uses a routine Update-380

Type (not shown) to update v’s declared type directly. UpdateType may fail and return381

⊥; e.g., TaintTyper does not attempt to convert a raw type like List to a generic type382

like List<@Untainted String>, as this change is out of scope for our work (other tools can383

be applied for such cases [43]). For binary operators with sub-expressions e1 and e2, we384

recursively compute fixes for e1 and e2 and then combine them using a special ⊎ operator385
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Algorithm 1 Pseudocode for finding annotations for a fix.

1: procedure FindAnnots(e, Tf )
2: if e is a variable v then
3: return UpdateType(v, Tf )
4: else if e is a binary expression e1op e2 then
5: return FindAnnots(e1, Tf ) ⊎ FindAnnots(e2, Tf )
6: else if e is a call e1.m(e2, . . . , en) then
7: G← GenericsAnnots(e, Tf )
8: if G ̸= ⊥ return G

9: P ← PolyTaintAnnots(e, Tf )
10: if P ̸= ⊥ return P

11: m← InvokedMethod(e)
12: if TreatAsPolyTainted(m) then
13: return

⊎
i∈PTArgs(m) MakeUntainted(ei)

14: else
15: return UpdateType(ReturnType(m), Tf )
16: end if
17: end if
18: end procedure
19: procedure MakeUntainted(e)
20: T ′ ← @Untainted TypeOf(e)
21: return FindAnnots(e, T ′)
22: end procedure
23: procedure GenericsAnnots(e, Tf )
24: m← InvokedMethod(e)
25: S ← FindTypeSubst(ReturnType(m), Tf )
26: if S = ⊥ return ⊥
27: er ← ReceiverArg(e)
28: T ′ ← ApplySubst(S, ReceiverType(m), TypeOf(er))
29: return FindAnnots(er, T ′)
30: end procedure

(line 5). ⊎ propagates the failure value ⊥—it is defined as follows:386

A ⊎ B =
{

⊥ A = ⊥ ∨ B = ⊥,

A ∪ B otherwise.
387

Method calls, handled at lines 6–16, require the most complex handling. We first attempt388

to handle the call by inferring annotations on generic type arguments (line 7). If that fails,389

we attempt inference of @PolyTaint annotations (line 9). We will explain the generics390

and @PolyTaint cases further shortly. If both generics and @PolyTaint inference fail (by391

returning ⊥), we fall back to a more direct handling, depending on the method being invoked.392

line 12 checks if the invoked method m should be treated as having @PolyTaint anno-393

tations. This check returns true if either m has declared @PolyTaint annotations or if m394

is unannotated and our default polymorphic handling applies (see Sec. 4.1). In such cases,395

to make the call’s type untainted, all @PolyTaint parameters must be made untainted,396

reflected in line 13 (PTArgs(m) returns the @PolyTaint argument positions for m). Make-397

Untainted (lines 19–22) updates the type of expression e with a top-level @Untainted398

annotation and then recursively calls FindAnnots. Any failure to make an argument399

untainted is propagated using ⊎. Finally, for calls to annotated methods, our base handling400

is to update the declared return type of the invoked method (line 15).401
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5.2.2 Generics402

For calls to methods involving generic types, our approach aims to find fixes that annotate403

type arguments instead of directly updating the invoked method’s return type. To see why,404

consider the call paths.get(name) on line 6 in Fig. 1. This call invokes Map.get, whose405

return type is generic type variable V. Say that FindAnnots aims to make the result of the406

call @Untainted. The baseline technique for method calls (line 15 in Alg. 1) would change407

get’s return type to @Untainted V, a valid fix. But, this change would force all calls to408

Map.get to return untainted values, preventing any Map from holding possibly-tainted values,409

which is impractical.410

Instead, our technique tries to find a fix that leverages generic type arguments, as shown in411

the GenericsAnnots routine of Alg. 1. First (line 25), we call FindTypeSubst (not shown)412

to find a substitution for the type variables in the return type of m that yields the desired413

type Tf . For the above example, GenericsAnnots is called with e = paths.get(name)414

and Tf = @Untainted String. Since get’s return type is type variable V, line 25 successfully415

finds a substitution S = V 7→ @Untainted String that yields Tf . FindTypeSubst may416

fail to find a substitution, in which case it returns ⊥ (line 26). FindTypeSubst works by417

recursing through type structures, mapping type variables to the desired type arguments; we418

elide details as they are straightforward.419

When we successfully find a substitution S, we then apply S to the declared receiver type420

of the method, and recursively try to find corresponding annotations for the receiver argument421

of the call (lines 27–29). If S does not cover all type variables in the receiver type, we reuse422

the generic type arguments from the receiver argument at the call site. For our paths.get423

example, the declared type of the Map.get receiver is Map<K,V>, but our substitution V 7→424

@Untainted String does not cover K. So, we reuse the String type argument for K from line425

1 of Fig. 1, yielding a recursive call FindAnnots(paths, Map<String,@Untainted String>)426

at line 29.427

The recursive nature of FindAnnots successfully handles much more complex uses of428

generic types, e.g.:429

1 void foo(Map<Integer, +@Untainted String> t) {
2 sink(t.values().iterator().next());
3 }

FindAnnots aims to make the return type for the next call @Untainted String, but it430

is not immediately evident which generic type argument must be annotated to achieve this.431

In our algorithm, the generics logic proceeds by recursively trying to make the iterator call432

return Iterator<@Untainted String>. This in turn leads to trying to make the values call433

return Collection<@Untainted String>, which finally leads to successfully adjusting the434

type of t to Map<Integer, @Untainted String>. TaintTyper can also annotate generic435

type arguments in extends clauses of class declarations, and generic methods (where the436

type variable is scoped to the method instead of the class) are also handled fully.437

5.2.3 @PolyTaint inference438

As noted in Sec. 2.2, @PolyTaint can be useful when a method is generic in its tainting439

behavior but was not declared using generic type variables. Due to the lack of type variables,440

inference of @PolyTaint annotations must discover relevant data flow from parameters to441

return values, which may occur through callee methods. E.g., for the parentPath method in442

Fig. 1, the taintedness of the path argument influences the return taintedness via a call to443

path.substring.444
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Algorithm 2 Pseudocode for inferring polymorphic annotations.

1: procedure PolyTaintAnnots(e, Tf )
2: m← InvokedMethod(e)
3: Result← ∅
4: Freturn ← FindAnnotForReturnStatements(m, Tf )
5: Worklist← Freturn

6: Processed← ∅
7: while Worklist ̸= ∅ do
8: Felement ←Worklist.pop()
9: if Felement is not on a local variable then

10: Result← Result ∪ {Felement}
11: continue
12: end if
13: if Felement ∈ Processed then
14: continue
15: end if
16: Processed← Processed ∪ {Felement}
17: Fassign ← FindAnnotForAssignments(m, Felement, Tf )
18: Worklist←Worklist ∪ Fassign

19: end while
20: FParameters ← {F | F ∈ Result ∧ F is on parameter of m}
21: FNonParameters ← Result \ FParameters

22: if FParameters = ∅ then
23: return MakeUntainted(m)
24: else
25: PolyMethodFix←MakePolyTainted(m, FParameters) ∪ FNonParameters

26: Fargs ← ∅
27: for arg ∈ PolyMethodFix.args do
28: Fargs ← Fargs ∪ FindAnnots(arg, UpdatedTarget(Tf ))
29: end for
30: end if
31: return Fargs

⊎
PolyMethodFix

32: end procedure

The PolyTaintAnnots procedure for inferring @PolyTaint annotations (called at line445

9 in Alg. 1) is conceptually simple: it works by inserting @PolyTaint annotations, observing446

where such annotations lead to type checking errors, and then recursively inserting more447

annotations to fix those errors. However, we found that a straightforward implementation448

based on this strategy was too inefficient, so we introduced two improvements. First, a449

naïve approach to discovering new type errors is to re-run the full type checker, but leads450

to many expensive checker runs; instead, we implemented our own limited analysis of data451

flows relevant to @PolyTaint to discover new errors. Second, we bounded the depth of the452

search into callee methods, giving up and returning ⊥ if inference required searching further453

(we found depth five to work best in our experiments).454

Alg. 2 gives a simplified view of the PolyTaintAnnots procedure. The algorithm starts455

by invoking FindAnnotForReturnStatements (not shown), which scans the method456

body for returned expressions and uses FindAnnots to discover the annotations needed457

to align each expression’s type with Tf . If any of the computed annotations targets a local458

variable v, PolyTaintAnnots uses FindAnnotForAssignments (not shown) to scan for459

expressions assigned to v and compute necessary annotations for those expressions (again460

via FindAnnots). This process iterates using a worklist until all locals are handled. Upon461
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completing the iterations, if there exists an annotation on a method parameter, the method is462

identified as polymorphic, and the necessary annotations are computed. The method indirectly463

invokes FindAnnots from Alg. 1 through calls to FindAnnotForReturnStatements464

and FindAnnotForAssignments, which may recursively invoke PolyTaintAnnots.465

A separate depth bound ensures termination, and the algorithm returns ⊥ if the bound466

is reached or if any call to FindAnnots returns ⊥. When a method is determined to467

be polymorphic, the algorithm calculates the required annotations for its arguments and468

combines these with the annotations derived for the return type.469

5.2.4 Example470

We now discuss the overall process of applying inference to our motivating example in Fig. 1.471

Since the error in the unannotated code is reported at line 8, initially FindAnnots is472

invoked to try to make the toFile() call passed to sink have type @Untainted String.473

As discussed in Sec. 4.1, this expression includes nested calls to unannotated code, handled474

by line 13 in Alg. 1. Eventually, this leads to annotating parent as @Untainted. This475

annotation causes a new checker error at line 7, leading inference to use FindAnnots to476

make the parentPath(path) call @Untainted. Here, our @PolyTaint inference succeeds for477

parentPath, leading to the annotations on line 2. The search then makes path @Untainted,478

causing a type error at line 6. Here, FindAnnots makes the paths.get call @Untainted479

by updating the generic type of the paths field, discussed in detail in Sec. 5.2.2 above. With480

this change, no new errors are reported, completing inference.481

5.2.5 Local Variable Optimization482

Our initial inference implementation took an excessive amount of time, nearly 24 hours for483

larger benchmarks. Most inference time is spent running the checker to detect the impact484

of annotations on warnings. For tainting, we found that many such checker runs were for485

annotations on local variables, e.g., the runs for parent and path in Fig. 1 (discussed above).486

As an optimization, we enhanced our fix computation to internally determine the impact487

of local variable annotations rather than using the checker. This reasoning requires finding488

assignments to the relevant locals, and then recursively invoking FindAnnots to make the489

type of each assignment’s right-hand side match the local’s new type, similar to the logic490

shown in Alg. 2 for inferring @PolyTaint. With this optimization, two checker calls (for491

parent and path) are eliminated in inference for Fig. 1. In Sec. 7.2 we show this optimization492

has a very significant impact on inference performance.493

6 Implementation494

TaintTyper includes both type-based taint checking and inference (see Fig. 2). Taint-495

Typer’s checker (see Sec. 4) was built using the Checker Framework [19, 36], version 3.42.0.496

Use of the Checker Framework equips the TaintTyper checker with robust support for497

flow-sensitive local type inference, checking of generic types, and qualifier polymorphism.498

For our prototype, we modeled a number of source and sink methods involved in the most499

common Java vulnerabilities [7]. Our sinks include common methods that write to a file,500

send data over the network, or execute sensitive system or database commands. We modeled501

sources that read from the network, the file system, or user input. We also modeled a502

few relevant well-known sanitizer methods [8]. As noted in Sec. 2, creating more complete503
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databases of sources, sinks, and sanitizers is still a research problem, and TaintTyper can504

easily benefit from further advances in that area.505

TaintTyper’s inference implementation uses a modified version of the NullAwayAnno-506

tator tool [30]. Inside the TaintTyper checker, we implemented Alg. 1 to find annotations507

that can fix an error, and added support for serializing this information in the checker output.508

Our inference implementation reads in this serialized output to use during its search. The509

search is similar to that of [30], enhanced with our local variable optimization (Sec. 5.2.5).510

The search is depth bounded [30], and we used a bound of 15 in our experiments.511

7 Evaluation512

Here we present an experimental evaluation showing the high effectiveness of TaintTyper513

in practice.514

7.1 Experimental setup and research questions515

From previous work we found three benchmark suites will all tainting violations labeled,516

serving as a ground truth. They are:517

Securibench Micro [32], which provides 122 servlets exhibiting potential information-518

flow vulnerabilities, with the source code annotated with benign or problematic flows.519

JInfoFlow [24], a self-contained benchmark of 12 information-flow violations featuring520

reflection-intensive, event-driven code without dependencies on external libraries.521

Injection Experiments [39], comprising 8 Java programs with information-flow viola-522

tions reported by their tool. While the original tool is no longer available, the dataset523

remains accessible. In the metadata, the authors label the reports from their tool as true524

or false positives.525

Although these three benchmarks capture various interesting cases, they consist either of toy526

examples [24, 32] or projects that have not been maintained for years [39]. Consequently, we527

use them solely as one validation of the impact of the techniques of Sec. 4 on TaintTyper’s528

recall.529

For a more realistic evaluation, we examine a suite of actively-developed open-source530

Java programs used in recent work [10, 14]. We selected only projects for which there were531

some reported tainting errors. We also strove to include a variety of project sizes and types,532

ensuring the benchmark reflects real-world scenarios; our suite includes a web framework,533

content management system, security framework, forum software, and library management534

system. Due to the lack of a ground truth on these benchmarks, we made considerable535

manual efforts to ensure the accuracy of our results. This included carefully comparing results536

against previous static analyzers and manually annotating the code for comparison (further537

details below). In the end, we prioritized benchmarks that were the most representative538

and important, ultimately selecting seven projects for our evaluation, as listed in Table 1.539

We used all benchmarks from [10] for which there were reported tainting errors except for540

webgoat and opencms, which were not included due to complex build system configurations541

that TaintTyper cannot yet handle. One such complexity arises when the code relies on542

generated code, such as when using Project Lombok [1]. If a generated getter method is543

inferred to return untainted, it must first be delomboked and explicitly annotated. However,544

when the code is compiled, the generated code is overwritten, causing the loss of information545

needed to propagate the untainted annotation from the getter to the corresponding field.546

This is not a fundamental limitation of our approach but rather an implementation challenge547

that could be addressed with additional engineering effort.548
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Project KLoC Inferred Annotations
Total per kLoC

esapi-java-legacy 18.3 265 14.4
pybbs 9.7 105 10.8
alfresco-core 13.4 81 6.0
alfresco-remote-api 85.8 213 2.5
cxf 47.5 296 6.2
struts 49.3 313 6.3
commons-configuration 20.2 261 12.9

Table 1 Benchmark sizes and inferred annotation counts.

We used CodeQL [4] v2.15.1 and P/Taint [5, 24] as baseline tools for our evaluation.549

CodeQL is a production-quality security analysis tool, widely used and freely available.550

P/Taint uses state-of-the-art whole-program analysis techniques, also employed in recent551

work [13]. We configured both tools to detect issues involving the sources and sinks modeled552

for TaintTyper (Sec. 6). We considered a variety of other tools for our experiments but553

found them unsuitable. FlowDroid [11] is a well-known taint analyzer for Android, but it554

does not support analysis of Java server programs. And, the taint analyses in SonarQube [9],555

RAPID [21], and CompTaint [13] are not freely available.556

Given these benchmarks and tools, we studied seven research questions:557

RQ1 Does TaintTyper find the known errors in existing labeled benchmarks?558

RQ2 After inference, how do TaintTyper’s reported errors compare to those reported by559

state-of-the-art tools (in terms of precision and recall)?560

RQ3 After inference, how does TaintTyper’s checking time compare with state-of-the-art561

tools on real-world benchmarks?562

RQ4 Does TaintTyper’s inference run in a reasonable amount of time, and are our563

optimizations effective?564

RQ5 Does TaintTyper require a reasonable number of annotations?565

RQ6 How do the annotations inferred by TaintTyper compare to manually-written anno-566

tations?567

RQ7 How is TaintTyper’s effectiveness impacted if we disable checker improvements,568

generic type argument inference, and @PolyTaint inference?569

We address RQ1–RQ4 in Sec. 7.2. Then, Sec. 7.3 addresses RQ5 and RQ6, and Sec. 7.4570

answers RQ7. All experiments were conducted in a Google Cloud instance with an AMD571

EPYC Milan 3rd Generation 2.45GHz CPU with 32vcpu (16 cores) and 128GB memory.572

7.2 Inference effectiveness573

7.2.1 Soundness on labeled benchmarks574

To evaluate the soundness of TaintTyper, the three labeled benchmark suites were used.575

For these experiments, we customized the source and sink specifications used by TaintTyper576

to match what was expected by each benchmark suite.577

We first ran TaintTyper’s checker without inference, and confirmed that it did not miss578

any labeled vulnerabilities in the benchmarks. We then applied our inference to annotate the579

benchmarks automatically and re-check them again, to check how the inferred annotations580

impacted recall.581
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SecuriBench Micro JInfoFlow-bench Injection Experiments
Total 136(137) Total 12 Total 730(745)
aliasing 12 JInfoFlow/basic 2 Snake&Ladder 40
arrays 9 JInfoFlow/ctx 5 MediaPlayer 0
basic 61 JInfoFlow/event 5 EmergencySNRest 0(3)
collections 14 FarmTycoon 5
datastructures 5 Abagail 0
factories 3 JExcelAPI 3(4)
inter 16 Colossus 682(693)
pred 5
reflection 4
sanitizers 3(4)
session 3
strong updates 1

Table 2 Without inference, TaintTyper reports all the labeled true-positive issues across these
three benchmarks. With inferred annotatations, it misses one issue in Securibench Micro, detects all
issues in JInfoFlow, and misses 15 issues in Injection Experiments.

Project TP CodeQL TaintTyper
Precision Recall Precision Recall

esapi-java-legacy 18 0.90 0.50 0.95 1.00
pybbs 9 1.00 0.89 1.00 1.00
alfresco-core 2 1.00 0.50 1.00 1.00
alfresco-remote-api 21 0.82 0.43 0.70 1.00
cxf 9 1.00 0.11 0.75 1.00
struts 23 0.39 0.39 0.50 1.00
commons-configuration 11 1.00 0.73 0.69 1.00

Table 3 Precision and recall results across our benchmark suite.

For Securibench Micro, the metadata indicated 136 labeled vulnerabilities. However,582

manual inspection revealed 137 in total, with one unlabeled issue in Basic26.java and one583

missing label in Basic31.java. Securibench Micro also makes extensive use of raw types,584

which appear rarely in modern Java code and are not yet fully handled by TaintTyper;585

we inserted (unannotated) generic type arguments for these cases. With these fixes, after586

inference, TaintTyper only missed one true issue out of 137; this was due to an interaction587

between our polymorphic-by-default library handling and side effects, as discussed in Sec. 4.1.588

In inference-annotated JInfoFlow-bench, TaintTyper successfully identifies all 12 labeled589

vulnerabilities. The Injection Experiments consist of eight Java programs, one of which590

could not be compiled. We annotated the remaining seven programs (collectively comprising591

754 labeled issues) using TaintTyper inference. Eight of the labeled issues occur in files592

not part of the available benchmark codebase, and one occurs in test code. Upon manually593

inspecting the inferred annotations and the reported errors from TaintTyper, we found594

that it discovered 730 of the remaining 745 issues, with the missed issues again due to595

side-effecting third-party library calls. The number of missed issues across these benchmarks596

is small, and as shall be shown in Sec. 7.2.2, we saw no missed issues for TaintTyper when597

compared to a production-quality tool on real-world benchmarks. Table 2 summarizes our598

findings across these benchmarks.599

RQ1: TaintTyper’s checker identifies all known issues in the labeled benchmarks,
and inference reduces recall only slightly.

600
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Project Analysis Runtime Inference Runtime
TaintTyper CodeQL P/Taint ALL LOC CORE NONE

esapi-java-legacy 19s 94s 53m 23m 65m 47m 105m
pybbs 12s 83s 35m 8m 15m 11m 22m
alfresco-core 15s 75s 21m 9m 14m 20m 31m
alfresco-remote-api 69s 202s 167m 134m 311m 391m 711m
cxf 47s 1076s 151m 148m 294m 498m 817m
struts 39s 425s >48h 343m 629m 1354m >48h
commons-configuration 25s 114s 209m 105m 168m 299m 432m

Table 4 Analysis runtime and inference runtime results across our benchmark suite.

7.2.2 Reported errors601

Table 3 compares the precision and recall of TaintTyper and CodeQL for our benchmarks,602

addressing RQ2. For TaintTyper, the errors are computed after inference has run, so the603

code includes inferred annotations. Computing recall requires knowing the ground truth of604

all real issues in these benchmarks, which is infeasible to collect. To estimate recall, we use605

the union of all true positive issues reported by TaintTyper, CodeQL, and P/Taint as our606

ground truth. (We treat a report as a true positive if the corresponding dataflow is deemed607

feasible by manual inspection.) This may over-estimate the true recall of all tools, but it608

provides a good basis for comparing the tools. The “TP” column gives the number of true609

positive issues for each benchmark.610

Comparing error reports between the tools was non-trivial due to their different reporting611

approaches. For TaintTyper, an error is typically reported as a code location where a612

@Tainted value is being written into an @Untainted location. CodeQL reports an error as613

a data flow trace from a source to a sink, and P/Taint reports an error as a source/sink614

pair without a trace. Comparing these errors required manually matching each true-positive615

TaintTyper error to a step in some CodeQL trace, or to some data flow for a P/Taint616

source/sink pair, and vice versa. CodeQL sometimes treats a formal parameter as a tainted617

source, without any explicit call passing in tainted data. In these cases, TaintTyper618

annotates the parameter as @Untainted, capturing the fact that tainted data should not be619

passed in, but does not report an error. We count such cases as equivalent to reporting the620

error; TaintTyper could easily report errors for such cases if desired.621

We exclude the precision and recall of P/Taint from Table 3 as both were very low on622

our benchmarks. P/Taint found a total of six true positive issues across the benchmarks623

(all of which were also found by some other tool), and it reported 50 false positives. We624

carefully checked our P/Taint configuration and confirmed it found expected issues in smaller625

benchmarks like Securibench Micro [32]. We also consulted with the tool authors, who626

acknowledged that P/Taint may not handle these benchmarks well (e.g., due to missing627

framework support). Still, triaging P/Taint results was very useful, to gain further confidence628

in our ground truth.629

TaintTyper finds all true positive issues discovered by CodeQL and P/Taint, leading to630

a recall of 1 on all benchmarks in Table 3. TaintTyper also finds additional true positives631

missed by CodeQL, reflected in CodeQL’s lower recall numbers. TaintTyper has lower632

precision than CodeQL on three benchmarks; we suspect this is due to heuristics in CodeQL633

that are missing in TaintTyper. Still, TaintTyper matches or exceeds CodeQL’s precision634

on the other four benchmarks.635
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Project Manual Annotation Count Inferred Annotation Count Error Count
Total TypeArg PolyTaint Total TypeArg PolyTaint C off G off P off All Active

esapi-java-legacy 278 20 34 265 13 34 49 16 13 13
pybbs 95 27 4 105 46 4 21 16 2 2
alfresco-core 81 38 0 81 36 0 12 5 2 2
alfresco-remote-api 110 12 10 213 22 7 66 42 27 24
cxf 380 62 37 296 51 42 73 37 20 11
struts 347 50 5 313 47 7 116 54 44 37
commons-configuration 239 10 25 261 12 23 33 17 11 11

Table 5 Number of annotations inserted manually and by TaintTyper inference, and final error
counts with various features disabled; C for checker improvements, G for generics inference, and P
for @PolyTaint inference.

RQ2: On our benchmarks, TaintTyper has outstanding recall, with comparable
precision to CodeQL.

636

7.2.3 Performance637

Table 4 gives analysis runtimes for TaintTyper, CodeQL, and P/Taint checking. The638

speedups of TaintTyper’s checker over CodeQL are quite significant, ranging from 2.93X–639

22.9X. And, we see orders-of-magnitude speedups compared to P/Taint, which could not640

analyze the struts benchmark within a 48-hour time limit. Given that TaintTyper’s641

checking is modular and incremental, we expect even larger speedups over the whole-program642

analysis approach for larger benchmarks. As a sanity check of the benefits of incremental643

checking, we manually re-ran TaintTyper checking for five randomly-chosen source files for644

alfresco-remote-api and struts (the two largest benchmarks), and observed further speedups645

of 8.7X and 10.9X respectively.646

RQ3: TaintTyper’s checker runs much faster than the baseline tools, with further
incremental speedups.

647

Table 4 shows inference performance with all optimizations enabled in the ALL column.648

Fully-optimized inference always ran in less than 6 hours, suitable for an overnight run649

and acceptable since it only needs to run once (see Fig. 2). The LOC, CORE, and NONE650

columns respectively show running times with our new local variable optimization only651

(Sec. 5.2.5), the core optimizations of [30] only (see Sec. 5.1), and no optimizations. The652

core optimizations of [30] seem to have a lesser impact for tainting inference than they did653

for nullability; excluding struts (which did not terminate in 48 hours with optimizations654

disabled), we see a maximum speedup of 2.23X, compared to 17.8X reported in [30]. Our655

local variables optimization on its own yields speedups of 1.47X–2.78X, sometimes larger than656

the core optimizations. Fortunately, the techniques are complementary, together yielding the657

best speedups of 2.75X–5.52X.658

RQ4: TaintTyper has acceptable inference performance, aided significantly by our
new optimization.

659

7.3 Assessing annotations660

Table 1 shows the number of annotations inferred by TaintTyper for our benchmarks and661

the corresponding annotation density, addressing RQ4. The number of inferred annotations662
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per KLoC is relatively low, ranging from 2.5-14.4. In comparison, Banerjee et al. [12] reported663

an average of 13 annotations per KLoC for NullAway, ranging up to 46 annotations, and664

that checker has been widely adopted.665

RQ5: The annotation requirements of TaintTyper are low enough to enable adoption,
given the importance of preventing tainting vulnerabilities.

666

Table 5 compares the number of annotations inferred by TaintTyper to the number of667

annotations inserted in a separate manual process. Two co-authors added manual annotations,668

each checking the other’s work and coming to consensus for any disagreement. We completed669

this process, adding 1,530 manual annotations. We limited the manual changes to inserting670

annotations, prohibiting code changes. This limitation is contrived: a developer would most671

likely fix bugs and refactor code alongside adding annotations. We chose this methodology672

to fairly compare with TaintTyper inference, which only inserts annotations.673

Table 5 shows that the number of inserted annotations does tend to differ between674

the two approaches. We inspected the discrepancies in detail, and found that in all cases,675

TaintTyper’s inserted annotations were reasonable; which annotations were “better” was a676

subjective question. In cases where TaintTyper inserted fewer annotations, one pattern677

was where a manually-written annotation captured some desired invariant, but TaintTyper678

eschewed the annotation since it increased the final error count. A second pattern were679

cases where during manual annotation, an opportunity to use @PolyTaint was missed, but680

TaintTyper made use of @PolyTaint to avoid several other @Untainted annotations.681

For cases where TaintTyper inserted more annotations, a common explanation was682

again reducing error count; TaintTyper would insert many extra annotations to reduce the683

final error count by one, but this was not deemed to be worthwhile during manual annotation.684

In such cases, arguably a better fix would be to restructure the code so fewer annotations685

would be needed. We could easily add a setting to TaintTyper to limit the number of686

annotations it inserts to fix a single warning to avoid such cases. In an extended version of687

the paper [29], we give detailed examples illustrating the above scenarios.688

RQ6: TaintTyper’s inserted annotations were always acceptable for insertion into
source code, and sometimes improved on our manual annotations.

689

7.4 Ablation690

Finally, to answer RQ6, we performed an ablation study to see how many errors are reported691

by TaintTyper when disabling the checker features of Sec. 4, generics inference (Sec. 5.2.2),692

and @PolyTaint inference (Sec. 5.2.3) individually. The results are shown in Table 5. We693

see large increases in reported errors with our new checker features disabled (3X-10.5X more694

errors), and similar impacts with generics support disabled (1.2X-8X more errors), showing695

the criticality of these features for precision. Further, without the new checker features, 85696

of the additional errors were false positives that could not be removed with annotations (see697

Sec. 4.2); such cases require a warning suppression, causing developer frustration.698

Inference of @PolyTaint has a less significant impact on final error counts. However,699

@PolyTaint inference is still critical for generating annotations close to what would be man-700

ually written, as shown in Table 5. Manual annotations included a total of 115 @PolyTaint701

annotations across our benchmarks, and with inference of such annotations disabled, none of702

these would be found by TaintTyper. Similarly, Table 5 shows that generic type annotations703
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are used commonly, and hence TaintTyper’s support for inferring these annotations is704

important.705

RQ7: Our new checker features, generic type support, and @PolyTaint support were
all critical to TaintTyper’s effectiveness.

706

7.5 Threats to Validity707

Our benchmark choices are a threat to external validity. We described our methodology708

for choosing benchmarks in Sec. 7.1. While we strove to choose diverse benchmarks, it is709

possible that TaintTyper will be less effective on a different set of programs. Our choice710

of tools for comparison (CodeQL and P/Taint) is another threat to external validity; other711

whole-program static analyzers may perform differently. See Sec. 7.1 for our process in712

choosing these tools. Paper co-authors performing the manual annotation of benchmarks is713

a threat to internal validity. We strove to add these annotations disregarding the workings714

of TaintTyper’s inference. Other developers may manually annotate code in different715

ways, but a user study evaluating the degree of such differences is out of scope for this work.716

Implementation bugs in TaintTyper may also impact internal validity; but, we have done717

significant checking of correctness using manual inspection and a suite of regression tests.718

8 Related Work719

There is a broad literature on taint analysis; here we discuss the most closely related work.720

In Sec. 2 we contrasted type-based techniques with whole-program approaches [4, 11, 13,721

21, 24, 26, 27, 34, 44–46], and we compared with CodeQL [4] and P/Taint [24] in our722

evaluation. Recent work by Banerjee et al. [13] describes an approach to incremental taint723

analysis but does not evaluate its performance. Szabo [42] presents an initial exploration of724

incrementalizing CodeQL analyses. While their incremental running times were promising,725

the additional memory usage of their technique was prohibitive. Type-based taint analysis is726

naturally incremental and does not suffer from these engineering challenges.727

The most closely related whole-program approach is that of Huang et al. [27], which728

partially inspired our work. Their work is also formulated in terms of type-based taint729

analysis and type inference. Their type system does not support generic types: instead, they730

apply polymorphic types to fields to achieve a form of field sensitivity. It is unclear how to731

expose such field polymorphism in terms of standard pluggable types. Their work does not732

present a technique to persist types into source code to enable checking without inference733

and is specific to Android applications so we did not include this tool in our evaluations.734

TaintTyper performs inference for standard Java pluggable types, including generic types,735

enabling a straightforward integration with standard development workflows. The inference736

of [27] runs faster than ours since it operates over a single constraint encoding. However,737

our inference works with an existing checker without requiring a constraint encoding, which738

simplifies making improvements to the checker like those of Sec. 4.739

There are many other approaches to enforcing information flow properties with types. The740

well-known Jif system [35] and many subsequent works support sophisticated properties like741

multiple principals. Such features are not necessary to capture the vulnerabilities targeted742

by typical taint analyses and this work. Ernst et al. [22] target verification of Android apps,743

also using pluggable types. Their system aims for soundness for a security-critical military744

context, leading to an annotation burden of 60 annotations per KLoC, much higher than745

ours. TaintTyper eschews strict soundness to reduce the annotation burden for usability.746
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We believe TaintTyper’s inference technique could be adapted to systems like [22] in the747

future.748

Regarding alternate inference approaches, standard type inference [37, Chapter 22] tries749

to discover a complete typing for a program in a given type system. Such techniques do not750

directly apply to our scenario, as a typical program will not be verifiable in our taint type751

system solely through adding annotations, due to true or false positives; we aim to find a752

good set of annotations for such untypable programs. Kellogg et al. [31] present a general753

inference technique for any pluggable type system built on the Checker Framework. However,754

their technique does not infer polymorphic or generic type annotations, and it may generate755

many more annotations than what would be written by developer.756

Checker Framework Inference [16] uses constraint-based approach to infer types, with757

applications to domains like a type system for measurement units [47]. We chose a “black758

box” inference approach [30] for this work since it enabled re-using a checker implementation759

without reimplementing its logic in a constraint language. The approach of [47] does not760

support inference of polymorphic method annotations like @PolyTaint, and the paper does761

not discuss in detail its level of support for inferring annotations on generic type arguments.762

9 Conclusions763

We have presented TaintTyper, a novel approach to type-based taint checking and inference764

for Java. TaintTyper includes a novel checker that makes the core tainting type system765

more practical to use, and a novel inference algorithm capable of handling generic types and766

polymorphic annotations. Our evaluation showed that TaintTyper provided significant767

scalability advantages over a standard approach, with improved recall and comparable768

precision, and inferred annotations suitable for direct inclusion in source code. Hence,769

TaintTyper is a significant step toward practical and widescale type-based taint checking770

for Java.771
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