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Abstract maintained between the application and the underlying run-
time system that supports its execution. This paper con-
Development of multithreaded applications is particu- siders building such tools for an environment where the
larly tricky because of their non-deterministic execution line between application and runtime has been significantly
behaviors. Tools that support the debugging and perfor- blurred.
mance tuning of such applications are needed. Key to the Cross-optimizatiomefers to an environment in which an
construction of such tools is the ability to repeat the non- application and its runtime system are analyzed and opti-
deterministic execution behavior of a multithreaded appli mized together. Just as interprocedural analysis yields be
cation. A clean separation between the application and the efits beyond what can be achieved with purely local opti-
system that runs it facilitates supporting that ability.igh  mizations, “co-analysis” and “co-optimization” of the ap-
paper presents a platform for constructing such tools in a plication and runtime environment can improve overall per-
context in which any separation between the application formance.
and the underlying system (and between both and the plat- Jalapefio [4] is a Java virtual machine (JVM) for
form’s own instrumentation code) has been obscured. high-performance servers that employs cross-optimiaatio
DejaVu supports  deterministic replay of non- \written in Java, Jalapefio brings the benefits of cross-

deterministic executions of multithreaded Java programs o
the Jalapefio virtual machine (running on a uniprocessor).
Jalapefio is written in Java and its optimizing compiler
regularly integrates application, virtual machine, and

optimization to server design and implementation. Jadape”™
uses a dynamic compilation-only strategy that further en-
hances the effectiveness of cross-optimization.

Large scale multithreading in server applications makes

DejaVu instrumentation code into unified machine-code their executions highly non-deterministic. Debuggingtsuc
sequences. DejaVu ensures deterministic replay throughprograms is particularly difficult since it's hard to fix some

symmetric instrumentatior— side-effect identical instru-
mentation in both record and replay modes — aechote

thing that doesn't even fail reliably. It is therefore udefu
to have a tool that is able to reproduce an errant behavior

reflectionwhich exposes the state of an application without \yhen it has been observed. This paper describgiaVu

perturbing it.

1. Introduction

Tools for accurately repeating non-deterministic compu-

(deterministicJava replayutility) for Jalapefio, a tool that
deterministically replays uniprocessdalapefio executions
of multithreaded Java applications.

A replay tool will typically require instrumenting appli-
cation (and possibly runtime) code. If, as is usually the
case, there is a performance penalty for such instrumenta-

tation are important for debugging and tuning server ap- tion, then the code will normally be executed with the in-
plications. On a uniprocessor, construction of execution strumentation turned off. A replay tool strives to be both
replay tools is considerably eased if a clear distinction is

1Replay ofmultiprocessoexecutionsis a considerably harder problem
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apparentthat even a uniprocessor replay engine (as degtrdse) will be
useful in understanding and debugging multithreaded progmrimarily
intended to run on multiprocessors.



accurate inthat the replayed code exhibits exactly the same are preempted at the first yield point after a periodic timer
behavior as the instrumented code, amecise in that the interrupt. These timer interrupts are a noteworthy source
instrumented code exhibits behavior that is close to that ofof non-determinism in Jalapefio. Capturing the effect of
the uninstrumented code. (Note that the accuracy requiressuch asynchronous interrupts would be a challenge to any
ment is absolute while precision is a matter of degree.) replay tool. The multithreading facilities of Jalapeforave
Cross-optimization is a boon to achieving precision, designed to be highly efficient, modular, and independently
since it allows instrumentation, application, and runtime tunable. This design aided greatly in implementing DejaVu,
code to be integrated and optimized together. However,as Jalapefo’s thread packages were fairly easy to under-

cross-optimization makes accuracy more difficult. stand and modify.
DejaVu achieves accuracy by dividing the operations  One of the challenges of integrating DejaVu’s instrumen-
of an application and its runtime inteterministicoper- tation into the application (and runtime) is that this instr

ations (such as instruction executions), which necegsaril mentation behaves differently in record and replay mode.
produce the same result on replay, ammh-deterministic  In record mode, the instrumentation writes information; in
operations(such as environmental queries), which do not. replay mode, it reads information. Like Jalapefio, this in-
In record mode, DejaVu ignores deterministic operations strumentation is written in Java. Consider what would hap-
while recording the results of non-deterministic opemagio  pen if the replay instrumentation triggered a class loatl tha
In replay mode, it again ignores deterministic operations didn’t happen (or happened at a later point) during record.
while systematically replacing non-deterministic opienas DejaVu employs symmetry to prevent different behaviors
with the retrieval of their prerecorded results. of DejaVu between record and replay from precluding ac-
It is fairly easy to isolate non-deterministic operations curate replay. Any side effects of DejaVu that might affect
(on a uniprocessor) if the application and runtime are dis- the execution behavior of Jalapefio and the application are
tinct: application code is deterministic, and all runtinee-s  faithfully generated during both record and replay.
vices, including thread switching, may be treated as non- The requirements of symmetry also place a burden on
deterministic, although there may be a precision penaltytools based on DejaVu. Consider, for instance, a DejaVu-
for treating deterministic services as though they were non based debugger: one would like to be able to interrupt a re-

deterministic. With cross-optimization, identifying aiso- play, inspect the state of the Jalapefio heap, and resume the
lating non-deterministic runtime services is more challen replay. Java's reflection facility provides an effectiveaime
ing. anism for inspecting the heap. However, if this facility is

To understand these issues, a brief overview of Jalapefianvoked in Jalapefo in replay mode, the symmetry between
is in order. The archetypical Java runtime service — record and replay is broken and replay cannot be resumed.
automatic memory management, both object allocation Since these side effects of debugging cannot be incorpo-
and garbage collection — is completely deterministic in rated into the record and replay mechanism to achieve sym-
Jalapefio. However, its implementation has implicationsf metry, tools built with DejaVu currently run in a separate
DejaVu. To avoid memory leaks associated with conserva-JVM from the one running the application to avoid perturb-
tive garbage collection and to allow copying garbage cellec ing the replayed application.
tion, all of Jalapefio’s garbage collectors are type-ateur To retain the advantage of reflection, the JVM running
This means that every reference to a live object must bethe tool (thetool JVM) employs a technique calledmote
identified during garbage collection. Identifying sucreref  reflection[14], which enables reflection to operate across
ences in the frames of a thread’s activation stack is partic-the separate address spaces of the two JVM'’s. The tool JVM
ularly problematic. Jalapefieference mapspecify these interprets the same reflection methods of the JVM running
locations for predefinedafe-pointsn the compiled code  the application (th@pplication JVN), but it uses the appli-
for a method® At garbage-collection time, Jalapefio guar- cation JVM'’s data by intercepting the reflection bytecodes
antees that every method executing on every mutator threacind by transparently mapping the objects’ data between the
is stopped at one of these safe-points. address spacésThis allows a debugger running on the tool

To make good on this guarantee, Jalapefio contains itsJVM to query program state by invoking the JVM's internal
own thread package that performs quasi-preemptive threadeflection methods without affecting the state of the appli-
switching only when the current running thread is at a pre- cation JVM.
determinedyield point(in method prologues and on loop By combining symmetric instrumentation and remote re-
backedges). Yield points are a subset of safe-points. Toflection, DejaVu for Jalapefio serves as a perturbatiom-fre
achieve some measure of fairness among Java threads, they

SIt is possible for such a tool to allow a user to intentionallier the

2Jalapefio does not interpret Java bytecodes. Rather, otferesf state of the application, but this would irrevocably breh& symmetry
Jalapefio compilers translates these bytecodes to mamdee Currently, between record and replay. Replay could still be resumeadguarantee
DejaVu uses Jalapefidimselinecompiler. could be made as to its accuracy.
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Figure 1. Non-Deterministic Execution Examples.

replay platform that enables a family of replay-badedel- tial state can still result in different behaviors due to the
opmentools for understanding and performance tuning, as timing of thread switching. Thepri nt y” of Figure 1-
well as for debugging, cross-optimized multithreadediappl (A) will print 8, while the “pri nt y” of Figure 1-(B) will
cations. print O.

The next section presents DejaVu's replay strategy inde-  The program state after an event can itself affect when a
tail. Section 3 explains remote reflection and its applarati  thread switch occurs by affecting the execution path follow
to DejaVu. Section 4 describes DejaVu’s GUI interface. ing the event. Consider now Figure 1-(C) and Figure 1-(D),
Section 5 considers related work and section 6 concludes. in which “Dat e() ” returns today’s date from the system
wall-clock. In the example, different program states im-
mediately after y = Dat e()” made different branches
taken after f'f (y < 15)" the “true” branch was
taken in Figure 1-(C), and thé &l se” branch was taken in

On a uniprocessor system, execution behavior of an ap-rigure 1-(D). The t r ue” branch in Figure 1-(C) resulted
plication can be uniquely defined by (1) the sequence ofjn 3 thread switch from T1to T2 due tol. wai t () ”in-
execution eventsind (2) the program state after each exe- sjde the branch, while thé 4l se” branch in Figure 1-(D)
cution event. Therefore, two execution behaviors of an ap-did not result in an immediate thread switch.
plication are identical if (1) their execution sequences ar We can ensure two executions of a multithreaded appli-
identical, and (2) the program states after any two corre- cation are identical by ensuring identical thread switches
sponding events are identical. In Java, an (execution)tevenand identical program states after corresponding evergs. W
can be defined as an execution of a Java bytecode by afirst describe the technique that ensures identical program
interpreter or an execution of a set of machine instructionsstates after corresponding events, assuming identiczsdhr
generated from a bytecode by a compiler. (Note that be-syjitches. We then describe the technique to ensure identi-
cause a bytecode can be executed more that once, it maya| thread switches, assuming identical program states aft
correspond to several events.) corresponding events. Combining these two techniques en-

For a multithreaded application, events can be executedsyres identical execution behaviors of different exeqgtio
by different threads. Ahread switchis the transition in the

event sequence from an event executed by one thread to ap.1. Ensuring Identical Program State

event executed by another thread. The timing of a thread

switch can affect the order of events after the thread switch ~ An event isdeterministicif the samein-stateproduces

and hence can affect the program state after an event. the sameout-state where in-state and out-state are the pro-
The example in Figure 1 (A and B) illustrates how two gram states immediately before and after the event, respec-

different executions of the same program with the same ini-tively. All the events in Figure 1-(A) and Figure 1-(B) are

2. Deterministic Replay



deterministic. If all the events are deterministic, examut  mode depending on whether it succeeded or failed during
behaviors remain identical as long as thread switches occurecord mode. If it fails, moreover, the next thread to be dis-
the same way, assuming initial program states are identical patched during replay mode (as determined by the thread
Some events are inherently non-deterministic: the samepackage) will be the same thread dispatched during record
in-state can produce different out-states. An example non-mode. This is because the data structure used by the thread
deterministic event is reading the value of a wall clock package in selecting the next active thread will also be ex-
during execution, like the Dat e()” function in Fig- actly reproduced by DejaVu.
ure 1-(C) and Figure 1-(D). Another example is reading a  Similarly, anot i f y operation, as in Figure 1-(C), per-
keystroke or mouse movements. DejaVu handles a nonformed on an object during replay mode will succeed or
deterministic event by recording the (change in the) out- faj| if it succeeded or failed during record mofiéf it suc-
state during one execution and by systematically replacingceeded during record mode, it will succeed during replay
non-deterministic Operations with the retrieval of the‘lﬂ-p mode and awake the same thread among potentia”y multi-

recorded results. ple threads waiting on the same object.
) ] ) Cross-optimization simplifies the implementation of this
2.2. Ensuring Identical Thread Switches behavior in that no additional information need be captured

or restored during replay to accommodate programmer-
In Jalapefio, three factors can cause thread switches: (1¥pecified synchronization events.
synchronization events, (2) timed events sushdep and
timedwai t ), and (3) timer interrupts. Thread switches due
to synchronization events are deterministic, while thread

switches due to the other two are non-deterministic. Replaying Non-Deterministic Timed Events

The thread package’s state includes a queue of threads

Replaying Deterministic Thread Switches ready to execute (theeadythreads) and a list of threads
blocked due to synchronization operations (thilecked
threads). Under DejaVu, blocked threads normally be-
come ready threads as a result of operations from other
hreads that wake up the blocked threads, suatoas f y,

oti fyAll, andnoni torexit. Two exceptions are
sl eep and timedwai t operations. A sleeping thread
wakes up after a period specified in an argument to the
sl eep operation. Awai t operation can specify a pe-
riod after which a thread should wake up unilaterally. These

Athread switch occurs when a synchronization event blocks
the execution of the current thread. whai t event or an
unsuccessfuhroni t or ent er event corresponds to this
case. Synchronization events can also make a blocke
thread ready to execute. Events corresponding to this
case arenmonitorexit, notify, notifyAll, and
i nterrupt.

A thread switch occurred when thread “T1” in Figure 1-
(C_) _ex.ec.uted 01. wai t_() ". This thread switch IS deter- timer-dependent operations must be handled specially.
ministic in that there will always be a thread switch at that

event. The key issue for the replay in this case is how to, 1IMer expiration depends on the wall-clock value and
ensure thread “T2” becomes the next active thread in thelS NON-deterministic with respect to application statenCo
presence of multiple ready threads sequently, readying a thread for execution based on wall-

An unsuccessfuloni t or ent er event also generates clock t.ime'affects subsequent threz_a\d_ing behavipr non-
a thread switch (in Jalapefio) since the current thread iSdet(.armlnls.tlcaIIy. To ensure d'ete.rmlr.ustlc threading pe-
blocked until it can successfully enter the monitor: e.g., havior during replay, timer expiration is based on equiv-
a synchronized method or block in Java. Whether aaler_lt program state, not vyall-clock values alone. De""?"“
moni t or ent er event is successful or not depends on the achieves this by reproducing the wall-clock values during

program state, including theck stateof each thread, and replay mode.

is generally a non-deterministic event. Cross-optimarati To handlesl eep and timedwai t, Jalapefio reads

of Jalapefio and its application, however, benefits Dejavu i the wall clock periodically. The values read are non-

this regard, although it also presents some problems (to bedeterministic, but their reproduction is deterministicien

discussed later). DejaVu. Therefore events that depend on wall-clock values,
When DejaVu replays an application up to a synchro- such ass| eep and timedaai t s, will execute determinis-

nization operation (sayroni t or ent er), it replays the  tically. Reproducing wall-clock values is a special case of

program state of Jalapefio as well, including its threaétpac  replaying non-deterministic events, described above.

age, which maintains tHeck stateof each thread and lock

variable plus the dispatch queue of threads. Therefore the 4a ot ty operation on an object “succeeds” if there exists a thread

synchronization operation will succeed or fail during 3pl  waiting on the same object.




/1 during DejaVu record
/1 at every yield point
if (livedock) {
/1 only when the clock is running
lived ock = fal se;
/1 pause the clock
nyp++;
if (preenptiveHardwareBit) {
/1 preenption required
/1 by system cl ock
recordThreadSwi t ch(nyp);
nyp = 0;
/1 reset the counter
threadSwi tchBit Set = true;
/1 set the software switch bit
}
lived ock = true;
/1 resune the clock

if (threadSwitchBitSet) {
threadSwi tchBitSet = fal se;
per f or nirhr eadSwi t ch() ;

(A

/1 during DejaVu repl ay
/1 at every yield point
if (livedock) {
/1 only when the clock is running
lived ock = fal se;
/1 pause the clock
nyp--;
if (nyp ==0) {
/] preenption perforned
/1 during record
nyp = replayThreadSwi tch();
/1 initialize the counter
/1 for the next thread switch
threadSwi tchBit Set = true;
/1 set the software switch bit
}

livedock = true;
/1 resune the clock

}
if (threadSwitchBitSet) {

threadSwi tchBitSet = fal se;
per f or nirhr eadSwi t ch() ;

(B

Figure 2. DejaVu Instrumentation at Yield Points for Record (A) and Replay (B)

2.3. Replaying Preemptive Thread Switches of backward branches executedSince preemptive thread
switches in Jalapefionly occur at yield points, the yield-
A non-deterministic thread switch occurs in Jalapefio as point count can uniquely specify preemptive thread-switch
a result of preemption, based on a wall-clock timer inter- events. Moreover, this count can be kept as a delta since the
rupt. Since the number of instructions executed in a fixed last such eventny p in Figure 2).
wall-clock interval can vary, a non-deterministic numbér o The code in Figure 2-(A) is executed at every yield point
instructions will be executed within each preemptive tbrea during DejaVu record.nyp is initially set to0, is incre-
switch interval. mented at each yield pofhtand is recorded (and set back to
Cross-optimization simplifies things here too, since De- 0) when a thread switch takes place. The code in Figure 2-
javu replays Jalapefio’s thread package. Ensuring idantic (B) is executed at every yield point during replayyp is
preemptive thread switches requires identifying the event initially set to the first recorded value, and is decremented
after which a preemptive thread switch occurred during at normal yield points. It reachdsat those yield points
record, and enforcing thread switches after the correspondthat the recorded program performed a thread switch. (It
ing events during replay. The key issue here is how to iden-is then assigned a new value from the recorded data.) The
tify the corresponding events in record and replay. preenpti veHar dwar eBi t , set by timer interrupt (and
Wall-clock time is not a reliable basis for events, be- cleared byper f or mrhr eadSwi t ch() ) during record,
cause a thread’s execution speed can vary due to externab ignored during replay.
factors such as caching and paging. Instruction addresses
are also insufficient, as the same instruction can be exe-2.4. Symmetric Instrumentation
cuted many times during an execution through loops and

method invocations. A straightforward counting of instruc Note the similarity between Figures 2-(A) and 2-(B).
tions executed by each thread will work, but the overhead issych similarity between instrumentation code of Dejavu's
prohibitive. record and replay modes is key to achieving accurate replay.

The Instant Replay[12] system observed that events
could be uniquely identified by a pair consisting of an in-  °Remember, there is a yield-point on each loop backedge aextiry
struction address and a count of the number of backward;:gtzggqgr;&?ggse_ so, while the two counts are not identibal serve
branches executed by the program. Jalapefo exploits this sypjessi i ved ock is f al se; the role ofl i ved ock will be de-
observation with yield points encountered taking the roll scribed below.




DejaVu cannot replay its own instrumentation, which be- immediately reads from that file (i.e., invokes input meth-
haves differently by definition: it writes data in record neod ods) as part of DejaVu initialization during both record and
and reads data in replay mode. Ideally, DejaVu’s executionreplay. This forces both input methods and output methods
should beransparento Jalapefio— not affecting its behav- to be compiled during both record and replay.
ior except to effectuate replay.

Cross-optimizing DejaVu, Jalapefio, and the application, Symmetry in Stack Overflow
however, makes total transparency impractical. Side &ffec
of DejaVu instrumentation may affect the virtual machine Jalapefo allocates runtime activation stacks in heapctshje
and/or the application. For example, any class that De-(arrays), creating a new one when the current stack over-
jaVu loads affects Jalapefio, since a class loaded by DejaViflows. Should that happen, DejaVu maintains symmetry by
will not be loaded again for Jalapefio. Hence class loadingensuring that an overflow occurs at exactly the same point
on DejaVu’s part can change Jalapefio’s execution behaviofin the execution during both modes, whether in Jalapefio or
and potentially that of the application. Class loading can in the application.
also affect the garbage collector, because loading usually DejaVu’s own instrumentation in Jalapefio invokes dif-
involves allocating new heap objects. ferent DejaVu methods in record and replay modes, since

Where transparency cannot be achieved, DejaVu em-the modes do different things. The result can be unequal
ployssymmetnbetween record mode and replay mode: ac- runtime activation-stack increments at corresponding-inv
tions of DejaVu that might affect the JVM (or Dejavu it- cations of a DejaVu method. These can result in different
self) are performed identically during both record and re- behaviors in runtime-stack overflow. DejaVu addresses this

play. Such actions include: problem by eagerly growing the runtime activation stack
_ . just before calling a DejaVu method when available stack
e object allocation, space falls below a heuristically determined value.

e class loading and method compilation, _ _ _
Symmetry in Updating the Logical Clock

stack overflow, and ) . ,
* DejaVu’s logical clock keeps track of the number of yield

¢ updating the logical clock. points executed by a thread. Since the instrumentation for
record and replay perform different tasks, one might entail
more yield points than the other. To keep the logical clocks
in synch, none of the yield points encountered while exe-
To maintain symmetry in object allocation, which can affect cuting instrumentation code is counted in the logical clock
the garbage collector, DejaVu allocates and uses (at a giver{This is the purpose of thel ved ock flag in Figure 2.)
pointin the execution) the same heap objects for both record
and replay modes. For example, it uses the same buffer t@ 5. Java Native Interface
store captured information in record mode and to store cap-
tured information read from disk in replay mode. DejaVu The Java Native Interface (JNI) allows a Java applica-
pre-allocates the buffer independent of mode during its ini tjon to interact with native code. Execution behavior of a
tialization. Additional heap objects are created as neatled 35,4 application can be affected by native code in two ways:
a given execution pointin both record and replay modes.  through return values or callbacks. Callbacks can be made
only through pre-defined JNI functions. DejaVu captures
Symmetry in Loading and Compilation return values from a native call and callback parameters
. L . . during record, and it regenerates them at the corresponding
Deja\{u r_namtams symmgtry in class loading and m_ethod execution points during replay. This approach is sufficient
compilation by pre-loading all the classes of Dejavu, since Jalapefio’s implementation of JNI does not allow na-

".Vh?th‘?r needed only for .recgrd or replay, .durmg IS INi- i code to obtain direct pointers into the Java heap.
tialization before the application starts. DejaVu also-pre

compiles the methods in the pre-loaded DejaVu classes dur- .

ing initialization. Furthermore, Dejavu pre-loads classe 3. Remote Reflection

needed for file 1/0O (to store captured information during

record and to read it back during replay). The I/O methods The first goal for a debugger integrated with DejaVu is
DejaVu invokes are input methods during record, and outputto preserve the execution of the application being replayed
methods during replay. To maintain symmetry in loading The execution must not be perturbed by normal debugger
the classes and compiling methods for I/O, DejaVu writes operations such as stopping and continuing, querying ob-
into a temporary file (i.e., invokes output methods) and then jects and program states, setting breakpoints, etc.

Symmetry in Object Allocation



Jalapefo’s Java-based implementation adds a second Once aremote objectis obtained from a mapped method,
goal for the debugger. Jalapefio uses reflection extegsivel all values or objects derived from it will also originaterno
for all objects so that the many system components can behe remote JVM. The standard reflection method can be in-
integrated seamlessly and effectively. As a result, there i voked on the remote object in the same way as a normal
strong motivation to exploit the same reflection interfaxze t object. Aside from the list of mapped methods, a remote
interact with the JVM and applications rather than using a object is indistinguishable from a normal object in the loca
different, ad hoc interface. JVM, from the program’s perspective.

These two goals yield many advantages, but they lead The uniform treatment of local and remote objects gives
to a conflict in the implementation. First, to use reflection, the advantage of transparency. Because a remote object is
the debugger must be an integral component of the systentogically identical to a local object, a program uses thessam
— in other words, the debugger must execute in-processreflection interface whether it executes in-process orodut-
— but maintaining the deterministic execution of the en- process. As a result, the maintenance of both the reflection
tire system becomes problematic. For example, suppose théinterface and programs using it is greatly simplified.
application has stopped at a breakpoint and the user wants A second advantage is that no effort is required in the re-
to display stack trace. The JVM must then execute the de-mote JVM, since remote reflection relies on the underlying
bugger and its reflective methods to compute the desiredoperating system to access the remote JVM address space.
information. This action itself changes the state of the JVM In other words, the remote JVM does not execute any code
because thread scheduling occurs, classes may be loade¢h respond to queries from the debugger, and no JVM code
garbage collection may take place, etc. As a result, it mayis modified to support the debugger. This guarantees that
no longer be possible to resume the deterministic executionthe remote JVM is not perturbed by the debugger unless
when the application continues. the user specifically wants to modify the state of the remote

On the other hand, keeping the application JVM unper- JVM.
turbed during replay requires an out-of-process debugger —  Consider a simple example in Figure 3. In this case, the
that is, a debugger that runs on an independent JVM. Butdebugger is executing in the local JVM that supports remote
that will put the application’s reflection out of the debug- reflection. The application (with its runtime) being repdy
ger’'s reach. Although the debugger can load the classes anik the remote JVM.
execute the reflection methods, the desired data resides in To compute the line number, the
the application JVM rather than the tool JVM. [ i neNurmber Of () method of Debugger invokes

At a higher level, the general problem is that with re- the VMDi ctionary. get Met hods() method to
flection, data and the code describing it are tightly coupled obtain a table oi/MMet hod. Then it selects the desired
In other words, the code must execute in the same addresglement and invokes its virtuaet Li neNunber At ()
space to obtain information about the data. method. This reflection method then consults the ob-

Remote reflection solves this problem by decoupling the ject's internal array to return a line number. To execute
data and its reflection code, thus allowing a program in onethis code with remote reflection, we specify that the
JVM to execute a reflection method that operates directly onVMDi ct i onary. get Met hods() method is to be
an object residing in another JVM. In the case of DejaVu, mapped to an array 8fMMet hod'’s in the remote space.
the debugger can execute out-of-process to avoid pertyrbin Therefore, when the code is executed, it returns the initial
the application, yet it can take full advantage of Jalafefio remote object representing the actual array. Next the

reflection interface. candi dat e variable accesses the remote array and gets
a second remote object. Thget Li neNunber At ()
3.1. Transparent remote access reflection method is then invoked on the remote object.

Since thel i neTabl e array is an instance field of the

Remote reflection allows remote data to be accessed €Mote object,_ it too is a remote object. When.this th!rd
transparently in the Java programming model. The key to remote array is accessed, the array element is obta}lned
remote reflection is an object in the local (tool) JVM called from the remote JVM. The net “?S““ IS that.the reflection
theremote objectwhich serves as a proxy for the real object meth,od has transparently described an object across two
in the remote (application) JVM. JVMs.

To set up the association between the two JVM’s, the )
user (i.e., the debugger) specifies a list of reflection mitho  3-2. Implementation
that are said to benapped when they are executed in the
tool JVM, they return a remote object that represents the A standard Java interpreter is extended to implement re-
actual object in the remote JVM. Typically, these are accessmote reflection. The extension includes managing the re-
methods that return the internal components of an object. mote object and extending the bytecodes to operate on the



cl ass Debugger {
public int |ineNunberO
(int nethodNunber, int offset) { f?e\?zccl‘i:ii

myClass.getName()
\

VM _Met hod[] nifabl e =
VM Di ctionary. get Met hods();

VM_Met hod candi date = p—
nrabl e[ met hodNurrber] ;

int lineNunber =
candi dat e. get Li neNunber At (of f set) ; bytecode Object >

return |ineNunber; emote B T
} Jalapeno Tl method
} Debugger B
s method
Java Interpreter with
cl as_s VM—M?t hod {_ Remote Reflection
private int[] lineTable; ‘
public int getLineNunberAt(int offset) { IDK Jalapeno
if (offset>lineTable.length) control P
return O; binary data

return lineTabl e[ of fset];
}

} Figure 4. Implementation for Jalapefio: (1) a

Java interpreter is extended to support re-

Figure 3. A Java method mak- mote reflection, and this in turn runs on top of

ing reflective queries across JVM's. the Sun JVM; (2) Jalapefio loads and runs the
Debugger . | i neNunber Of () invokes reflection methods as compiled code; (3) the
VMDi cti onary. get Met hods() to  ob- debugger loads and runs the reflection meth-
tain a table of VMMethod, the reflection ods as bytecode; (4) remote objects are asso-
method get Li neNurber At () is then in- ciated with the actual objects in the Jalapefio
voked on the remote object. The final result space.

I i neTabl e[ of fset] is obtained from the

remote JVM.

will have to be extended to handle remote objects. For our
debugger, however, it proved sufficient to clone the remote
remote object. Remote reflection also requires operatingobjects and the remote arrays of primitives. (Note that this
system support for access across processes. This furetionais a separate issue from being able to replay native calls in
ity is typically provided by the system debugging interface theapplicationJVM.)
which in the Jalapefio implementation is the Upiracefa-
cility. Our implementation is simplified by the fact that the 3.4, Bytecode extensions
debugger only makes queries and does not modify the state

of the application JVM (except in response to a user request  gjnce the initial remote object is obtained vianapped
to change a value); we need not create new objects in thé,athod  thei nvokest ati c and i nvokevi rt ual

remote space. bytecodes for invoking a method are extended as follows.
_ The target class and method are checked against the map-
3.3. Remote object ping list. Those to be mapped are intercepted so that the
actual invocation is not made. Instead, if the return type is
To implement the remote object, it was sufficient to an object, a remote object is created containing the type and
record the type of the object and its real address. Remotehe address of the corresponding object in the remote JVM.
objects originate from a mapped method or another remotelf the return type is a primitive, the actual value is fetched
object. In the first case, the address is provided to the in-from the remote JVM.
terpreter through the process of building the Jalapefid boo In addition, all bytecodes that operate on a reference
image [4]. For the latter case, the address is computed basedeed to be extended to handle remote objects appropriately
on the field offset from the address of the remote object. = — for Java, this includes 23 bytecodes. If the result of the
For a DejaVu tool running on the tool JVM to access bytecode is a primitive value, the interpreter computes the
native methods, the JNI implementation on this tool JVM actual address, makes the system call to obtain the value



from the remote address space, and pushes the value ontd3, 6]. They all support replay (or “reverse execution”)

the local Java stack. If the result is an object, the inter- by checkpointing and re-executing from a previous check-
preter computes the address of the field holding the refer-point. Igor, however, does not directly address the issue of
ence, makes the system call to obtain the field value, andnon-determinism in multithreaded applications [8]. Recap
pushes onto the Java stack a new remote object with the apeheckpoints the program state by forking and suspending

propriate type. a new process [15]. It handles non-determinism in multi-
threaded applications by capturing the effect of every read
4. Graphical User Interface of shared memory locations, which is quite expensive. PPD

performs program analysis to reduce the size of snapshots

The debugger has a GUI based on Java’s Swing frame-at checkpoints, and also_ captures the effect of every read
work. The classes providing the core debugger functionalit ©f shared memory locations [13, 6]. Boothe’s approach
must be run on the tool JVM to enable remote reflection, but IS 9uité similar to the above approaches: it “reverse exe-
the GUI would be unacceptably slow if it were thus inter- CUtes” via checkpointing and re-executing from a previous
preted. Furthermore, the researchers working on Jalapengheckpoint [5]. It also forks an idle process, like Recap, fo
typically execute the virtual machine remotely from a Win- Checkpointing.
dows box, since both the application JVM (Jalapefio) and  To reduce the trace sizénstant Replayf12] assumes
the tool JVM run on AIX. This too incurs overhead. Hence that applications access shared objects through a correct,
the GUI is designed to run on yet a third JVM, communi- Coarse-grained operation call@REW(Concurrent-Read-
cating with the debugger JVM through TCP. (Bandwidth is Exclusive-Write) and generates traces only for these eoars
minimized by transmitting small packets of data rather than OPerations.  Obviously, this approach will not work for
large images.) Our design lets developers run the debug@pPPlications that do not use the CREW discipline, but
ger remotely while running the GUI on their local machine, it also fails when critical events within CREW are non-

affording both simple integration and satisfactory perfor deterministic. _
mance. Russinovich and Cogswell’s approach [16] is similar to

The GUI provides all the functionality found in most ours in that it captures thread switches (rather than dit cri
command-line debuggers along with some features fromcal events) on a uniprocessor. They modified the Mach op-
graphical debuggers. A view of the executing method’s Javaerating system so that it notifies the replay system on each
source and machine instructions allows setting breakgpoint thread switch. Since they do not replay the (operating sys-
and single-stepping. The user can inspect instances ¢inclu tem’s) thread package itself, their replay mechanism must
ing statics) through a tree-based class viewer. The GUI alsotell the thread package which thread to schedule at each
provides views of current breakpoints and the call stack thread switch. This entails maintaining a mapping between
along with the corresponding Java source code. A threadthe thread executing during record and during replay. This
viewer is useful for finding subtle bugs in multithreaded ap- S @ significant execution cost that DejaVu does not incur
plications. (Screen shots of the graphical user interface d  because it replays the entire Jalapefio thread package.
ing a debugging session can be found at the DejaVu web- Holloman and Mauney’s approach [10, 9] is similar

site [1, 2].) to (and has the same drawbacks as) Russinovich and
Cogswell’s except for the mechanism for capturing the pro-
5. Related Work cess scheduling information. Their approach uses exaeptio

handlers instrumented into the application code that captu
Repeated execution is a widely accepted technique forf'leI the etxfceptlf)hnsblglc)l(udmg tthe one? fortprtck)}cess S“C h%dl:]l'
debugging and understanding deterministic sequential ap—'nrg’ sentiromthe operating system fo the applicatio
plications. Repeated execution, however, fails to reptedu process.

the same execution behavior for non-deterministic applica _ =a/lier incarnations of Dejavu [7, 11] developed for
SUN'’s JDK running on WIN32 also generate traces only for

behavior.
Many previous approaches for replay [12, 17, 15] cap- Remote reflection integrat'es two common debugger fea-
ture the interactions among processes — éritical events tures: out-of-process execution and reflection. Typical de
— and generate traces for them. A major drawback of PUggers such adbxor gdb are out-of-process, but they
such approaches is the overhead, in time and particularly in"®ly ©n some fixed data format convention instead of re-

space, of capturing critical events and in generating srace "Logging data for non-reproducible events such as readiagil

Igor, Recap and PPD are some of the early WOrKS  ¢lock need be done independently of thread switch infoionaiti all re-
that provide replay capability as part of debugging [8, 15, play schemes.




flection to interpret the data. The Sun JDK debugger [3]
and the more recent Java Platform Debugger Architecture

[2] http:/lwww.research.ibm.com/jalapeno/dejavu/dafe-

demo.html.

are also out-of-process and are based on reflection; how- [3] Java DevelopmentKit 1.1. Technical report, Sun Micsy

ever, there are several important differences from remote
reflection. First, the Sun JDK approach is intended for user
applications because it requires the virtual machine to be
fully functional. The reflection interface requires a debug
ging thread running internally in the virtual machine theat i
dedicated to responding to queries from the out-of-process
debugger. In comparison, remote reflection requires no ef-
fort on the target JVM; the JVM does not execute any code,
and no JVM code is modified to support remote reflection.
Second, the Sun JDK debugger uses a reflection interface
that is different and separate from the internal reflection i
terface. Although this allows the debugging reflection in-
terface to be implemented in native code to minimize JVM
perturbation, it requires implementing and maintaining tw
reflection interfaces with similar functionalities. In ¢oamst,

with remote reflection the same reflection interface can be
used internally or externally.

6. Conclusions

This paper addresses the problem of building a
perturbation-free runtime tool, such as a debugger, for-hea
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cross-optimized with the Java Virtual Machine (JVM). It
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