
A Perturbation-Free Replay Platform for
Cross-Optimized Multithreaded Applications�

Jong-Deok Choi Bowen Alpern Ton Ngo Manu Sridharany
John Vlissides

IBM T. J. Watson Research Center
PO Box 704, Yorktown Heights, NY 10598fjdchoi, alpernb, tong@us.ibm.com, msridhar@mit.edu, vlis@us.ibm.com

Abstract

Development of multithreaded applications is particu-
larly tricky because of their non-deterministic execution
behaviors. Tools that support the debugging and perfor-
mance tuning of such applications are needed. Key to the
construction of such tools is the ability to repeat the non-
deterministic execution behavior of a multithreaded appli-
cation. A clean separation between the application and the
system that runs it facilitates supporting that ability. This
paper presents a platform for constructing such tools in a
context in which any separation between the application
and the underlying system (and between both and the plat-
form’s own instrumentation code) has been obscured.

DejaVu supports deterministic replay of non-
deterministic executions of multithreaded Java programs on
the Jalapeño virtual machine (running on a uniprocessor).
Jalapeño is written in Java and its optimizing compiler
regularly integrates application, virtual machine, and
DejaVu instrumentation code into unified machine-code
sequences. DejaVu ensures deterministic replay through
symmetric instrumentation— side-effect identical instru-
mentation in both record and replay modes — andremote
reflectionwhich exposes the state of an application without
perturbing it.

1. Introduction

Tools for accurately repeating non-deterministic compu-
tation are important for debugging and tuning server ap-
plications. On a uniprocessor, construction of execution
replay tools is considerably eased if a clear distinction is�International Parallel and Distributed Processing Symposium, San
Fransisco, CA, April 23-27, 2001.yDept. of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139.

maintained between the application and the underlying run-
time system that supports its execution. This paper con-
siders building such tools for an environment where the
line between application and runtime has been significantly
blurred.

Cross-optimizationrefers to an environment in which an
application and its runtime system are analyzed and opti-
mized together. Just as interprocedural analysis yields ben-
efits beyond what can be achieved with purely local opti-
mizations, “co-analysis” and “co-optimization” of the ap-
plication and runtime environment can improve overall per-
formance.

Jalapeño [4] is a Java virtual machine (JVM) for
high-performance servers that employs cross-optimization.
Written in Java, Jalapeño brings the benefits of cross-
optimization to server design and implementation. Jalape˜no
uses a dynamic compilation-only strategy that further en-
hances the effectiveness of cross-optimization.

Large scale multithreading in server applications makes
their executions highly non-deterministic. Debugging such
programs is particularly difficult since it’s hard to fix some-
thing that doesn’t even fail reliably. It is therefore useful
to have a tool that is able to reproduce an errant behavior
when it has been observed. This paper describesDejaVu
(deterministicJava replayutility) for Jalapeño, a tool that
deterministically replays uniprocessor1 Jalapeño executions
of multithreaded Java applications.

A replay tool will typically require instrumenting appli-
cation (and possibly runtime) code. If, as is usually the
case, there is a performance penalty for such instrumenta-
tion, then the code will normally be executed with the in-
strumentation turned off. A replay tool strives to be both

1Replay ofmultiprocessorexecutions is a considerably harder problem
that we hope to be able to address in the future. Nonetheless,it should be
apparent that even a uniprocessor replay engine (as described here) will be
useful in understanding and debugging multithreaded programs primarily
intended to run on multiprocessors.



accurate, in that the replayed code exhibits exactly the same
behavior as the instrumented code, andprecise, in that the
instrumented code exhibits behavior that is close to that of
the uninstrumented code. (Note that the accuracy require-
ment is absolute while precision is a matter of degree.)

Cross-optimization is a boon to achieving precision,
since it allows instrumentation, application, and runtime
code to be integrated and optimized together. However,
cross-optimization makes accuracy more difficult.

DejaVu achieves accuracy by dividing the operations
of an application and its runtime intodeterministicoper-
ations (such as instruction executions), which necessarily
produce the same result on replay, andnon-deterministic
operations(such as environmental queries), which do not.
In record mode, DejaVu ignores deterministic operations
while recording the results of non-deterministic operations.
In replay mode, it again ignores deterministic operations
while systematically replacing non-deterministicoperations
with the retrieval of their prerecorded results.

It is fairly easy to isolate non-deterministic operations
(on a uniprocessor) if the application and runtime are dis-
tinct: application code is deterministic, and all runtime ser-
vices, including thread switching, may be treated as non-
deterministic, although there may be a precision penalty
for treating deterministic services as though they were non-
deterministic. With cross-optimization, identifying andiso-
lating non-deterministic runtime services is more challeng-
ing.

To understand these issues, a brief overview of Jalapeño
is in order. The archetypical Java runtime service —
automatic memory management, both object allocation
and garbage collection — is completely deterministic in
Jalapeño. However, its implementation has implications for
DejaVu. To avoid memory leaks associated with conserva-
tive garbage collection and to allow copying garbage collec-
tion, all of Jalapeño’s garbage collectors are type-accurate.
This means that every reference to a live object must be
identified during garbage collection. Identifying such refer-
ences in the frames of a thread’s activation stack is partic-
ularly problematic. Jalapeñoreference mapsspecify these
locations for predefinedsafe-pointsin the compiled code
for a method.2 At garbage-collection time, Jalapeño guar-
antees that every method executing on every mutator thread
is stopped at one of these safe-points.

To make good on this guarantee, Jalapeño contains its
own thread package that performs quasi-preemptive thread
switching only when the current running thread is at a pre-
determinedyield point(in method prologues and on loop
backedges). Yield points are a subset of safe-points. To
achieve some measure of fairness among Java threads, they

2Jalapeño does not interpret Java bytecodes. Rather, one ofthree
Jalapeño compilers translates these bytecodes to machinecode. Currently,
DejaVu uses Jalapeño’sbaselinecompiler.

are preempted at the first yield point after a periodic timer
interrupt. These timer interrupts are a noteworthy source
of non-determinism in Jalapeño. Capturing the effect of
such asynchronous interrupts would be a challenge to any
replay tool. The multithreading facilities of Jalapeño were
designed to be highly efficient, modular, and independently
tunable. This design aided greatly in implementing DejaVu,
as Jalapeño’s thread packages were fairly easy to under-
stand and modify.

One of the challenges of integrating DejaVu’s instrumen-
tation into the application (and runtime) is that this instru-
mentation behaves differently in record and replay mode.
In record mode, the instrumentation writes information; in
replay mode, it reads information. Like Jalapeño, this in-
strumentation is written in Java. Consider what would hap-
pen if the replay instrumentation triggered a class load that
didn’t happen (or happened at a later point) during record.
DejaVu employs symmetry to prevent different behaviors
of DejaVu between record and replay from precluding ac-
curate replay. Any side effects of DejaVu that might affect
the execution behavior of Jalapeño and the application are
faithfully generated during both record and replay.

The requirements of symmetry also place a burden on
tools based on DejaVu. Consider, for instance, a DejaVu-
based debugger: one would like to be able to interrupt a re-
play, inspect the state of the Jalapeño heap, and resume the
replay. Java’s reflection facility provides an effective mech-
anism for inspecting the heap. However, if this facility is
invoked in Jalapeño in replay mode, the symmetry between
record and replay is broken and replay cannot be resumed.
Since these side effects of debugging cannot be incorpo-
rated into the record and replay mechanism to achieve sym-
metry, tools built with DejaVu currently run in a separate
JVM from the one running the application to avoid perturb-
ing the replayed application.

To retain the advantage of reflection, the JVM running
the tool (thetool JVM) employs a technique calledremote
reflection [14], which enables reflection to operate across
the separate address spaces of the two JVM’s. The tool JVM
interprets the same reflection methods of the JVM running
the application (theapplication JVM), but it uses the appli-
cation JVM’s data by intercepting the reflection bytecodes
and by transparently mapping the objects’ data between the
address spaces.3 This allows a debugger running on the tool
JVM to query program state by invoking the JVM’s internal
reflection methods without affecting the state of the appli-
cation JVM.

By combining symmetric instrumentation and remote re-
flection, DejaVu for Jalapeño serves as a perturbation-free

3It is possible for such a tool to allow a user to intentionallyalter the
state of the application, but this would irrevocably break the symmetry
between record and replay. Replay could still be resumed, but no guarantee
could be made as to its accuracy.

2



x = 0, y = 0

(D)

print y;
y = y * 2;

if (y < 15)
y = Date();

(A) (B) (C)

o1.notify();

y = x + 100;

x = y * 2;

y = y * 2;

print y;

T1 T2 T1 T2 T1 T2

y = x * 2;

y = Date();
if (y < 15)

o1.wait();

print y;

y = 1;

y = x * 2;

T1 T2

y = x + 100;

T1, T2: threads : thread switch

x = y * 2;

y = 1;

y = y * 2;

print y;

x = 0, y = 0

Figure 1. Non-Deterministic Execution Examples.

replay platform that enables a family of replay-baseddevel-
opmenttools for understanding and performance tuning, as
well as for debugging, cross-optimized multithreaded appli-
cations.

The next section presents DejaVu’s replay strategy in de-
tail. Section 3 explains remote reflection and its application
to DejaVu. Section 4 describes DejaVu’s GUI interface.
Section 5 considers related work and section 6 concludes.

2. Deterministic Replay

On a uniprocessor system, execution behavior of an ap-
plication can be uniquely defined by (1) the sequence of
execution events, and (2) the program state after each exe-
cution event. Therefore, two execution behaviors of an ap-
plication are identical if (1) their execution sequences are
identical, and (2) the program states after any two corre-
sponding events are identical. In Java, an (execution) event
can be defined as an execution of a Java bytecode by an
interpreter or an execution of a set of machine instructions
generated from a bytecode by a compiler. (Note that be-
cause a bytecode can be executed more that once, it may
correspond to several events.)

For a multithreaded application, events can be executed
by different threads. Athread switchis the transition in the
event sequence from an event executed by one thread to an
event executed by another thread. The timing of a thread
switch can affect the order of events after the thread switch
and hence can affect the program state after an event.

The example in Figure 1 (A and B) illustrates how two
different executions of the same program with the same ini-

tial state can still result in different behaviors due to the
timing of thread switching. The “print y” of Figure 1-
(A) will print 8, while the “print y” of Figure 1-(B) will
print 0.

The program state after an event can itself affect when a
thread switch occurs by affecting the execution path follow-
ing the event. Consider now Figure 1-(C) and Figure 1-(D),
in which “Date()” returns today’s date from the system
wall-clock. In the example, different program states im-
mediately after “y = Date()” made different branches
taken after “if (y < 15)”: the “true” branch was
taken in Figure 1-(C), and the “false” branch was taken in
Figure 1-(D). The “true” branch in Figure 1-(C) resulted
in a thread switch from T1 to T2 due to “o1.wait()” in-
side the branch, while the “false” branch in Figure 1-(D)
did not result in an immediate thread switch.

We can ensure two executions of a multithreaded appli-
cation are identical by ensuring identical thread switches
and identical program states after corresponding events. We
first describe the technique that ensures identical program
states after corresponding events, assuming identical thread
switches. We then describe the technique to ensure identi-
cal thread switches, assuming identical program states after
corresponding events. Combining these two techniques en-
sures identical execution behaviors of different executions.

2.1. Ensuring Identical Program State

An event isdeterministicif the samein-stateproduces
the sameout-state, where in-state and out-state are the pro-
gram states immediately before and after the event, respec-
tively. All the events in Figure 1-(A) and Figure 1-(B) are

3



deterministic. If all the events are deterministic, execution
behaviors remain identical as long as thread switches occur
the same way, assuming initial program states are identical.

Some events are inherently non-deterministic: the same
in-state can produce different out-states. An example non-
deterministic event is reading the value of a wall clock
during execution, like the “Date()” function in Fig-
ure 1-(C) and Figure 1-(D). Another example is reading a
keystroke or mouse movements. DejaVu handles a non-
deterministic event by recording the (change in the) out-
state during one execution and by systematically replacing
non-deterministic operations with the retrieval of their pre-
recorded results.

2.2. Ensuring Identical Thread Switches

In Jalapeño, three factors can cause thread switches: (1)
synchronization events, (2) timed events such (sleep and
timedwait), and (3) timer interrupts. Thread switches due
to synchronization events are deterministic, while thread
switches due to the other two are non-deterministic.

Replaying Deterministic Thread Switches

A thread switch occurs when a synchronization event blocks
the execution of the current thread. Await event or an
unsuccessfulmonitorenter event corresponds to this
case. Synchronization events can also make a blocked
thread ready to execute. Events corresponding to this
case aremonitorexit, notify, notifyAll, and
interrupt.

A thread switch occurred when thread “T1” in Figure 1-
(C) executed “o1.wait()”. This thread switch is deter-
ministic in that there will always be a thread switch at that
event. The key issue for the replay in this case is how to
ensure thread “T2” becomes the next active thread in the
presence of multiple ready threads.

An unsuccessfulmonitorenter event also generates
a thread switch (in Jalapeño) since the current thread is
blocked until it can successfully enter the monitor: e.g.,
a synchronized method or block in Java. Whether a
monitorenter event is successful or not depends on the
program state, including thelock stateof each thread, and
is generally a non-deterministic event. Cross-optimization
of Jalapeño and its application, however, benefits DejaVu in
this regard, although it also presents some problems (to be
discussed later).

When DejaVu replays an application up to a synchro-
nization operation (saymonitorenter), it replays the
program state of Jalapeño as well, including its thread pack-
age, which maintains thelock stateof each thread and lock
variable plus the dispatch queue of threads. Therefore the
synchronization operation will succeed or fail during replay

mode depending on whether it succeeded or failed during
record mode. If it fails, moreover, the next thread to be dis-
patched during replay mode (as determined by the thread
package) will be the same thread dispatched during record
mode. This is because the data structure used by the thread
package in selecting the next active thread will also be ex-
actly reproduced by DejaVu.

Similarly, anotify operation, as in Figure 1-(C), per-
formed on an object during replay mode will succeed or
fail if it succeeded or failed during record mode.4 If it suc-
ceeded during record mode, it will succeed during replay
mode and awake the same thread among potentially multi-
ple threads waiting on the same object.

Cross-optimization simplifies the implementation of this
behavior in that no additional information need be captured
or restored during replay to accommodate programmer-
specified synchronization events.

Replaying Non-Deterministic Timed Events

The thread package’s state includes a queue of threads
ready to execute (theready threads) and a list of threads
blocked due to synchronization operations (theblocked
threads). Under DejaVu, blocked threads normally be-
come ready threads as a result of operations from other
threads that wake up the blocked threads, such asnotify,
notifyAll, andmonitorexit. Two exceptions are
sleep and timedwait operations. A sleeping thread
wakes up after a period specified in an argument to the
sleep operation. Await operation can specify a pe-
riod after which a thread should wake up unilaterally. These
timer-dependent operations must be handled specially.

Timer expiration depends on the wall-clock value and
is non-deterministic with respect to application state. Con-
sequently, readying a thread for execution based on wall-
clock time affects subsequent threading behavior non-
deterministically. To ensure deterministic threading be-
havior during replay, timer expiration is based on equiv-
alent program state, not wall-clock values alone. DejaVu
achieves this by reproducing the wall-clock values during
replay mode.

To handlesleep and timedwait, Jalapeño reads
the wall clock periodically. The values read are non-
deterministic, but their reproduction is deterministic under
DejaVu. Therefore events that depend on wall-clock values,
such assleep and timedwaits, will execute determinis-
tically. Reproducing wall-clock values is a special case of
replaying non-deterministic events, described above.

4A notify operation on an object “succeeds” if there exists a thread
waiting on the same object.

4



// during DejaVu record // during DejaVu replay
// at every yield point // at every yield point
if (liveClock) { if (liveClock) {

// only when the clock is running // only when the clock is running
liveClock = false; liveClock = false;

// pause the clock // pause the clock
nyp++; nyp--;
if (preemptiveHardwareBit) { if (nyp == 0) {

// preemption required // preemption performed
// by system clock // during record
recordThreadSwitch(nyp); nyp = replayThreadSwitch();
nyp = 0; // initialize the counter

// reset the counter // for the next thread switch
threadSwitchBitSet = true; threadSwitchBitSet = true;

// set the software switch bit // set the software switch bit
} }
liveClock = true; liveClock = true;

// resume the clock // resume the clock
} }

if (threadSwitchBitSet) { if (threadSwitchBitSet) {
threadSwitchBitSet = false; threadSwitchBitSet = false;
performThreadSwitch(); performThreadSwitch();

} }

(A) (B)

Figure 2. DejaVu Instrumentation at Yield Points for Record (A) and Replay (B)

2.3. Replaying Preemptive Thread Switches

A non-deterministic thread switch occurs in Jalapeño as
a result of preemption, based on a wall-clock timer inter-
rupt. Since the number of instructions executed in a fixed
wall-clock interval can vary, a non-deterministic number of
instructions will be executed within each preemptive thread
switch interval.

Cross-optimization simplifies things here too, since De-
jaVu replays Jalapeño’s thread package. Ensuring identical
preemptive thread switches requires identifying the events
after which a preemptive thread switch occurred during
record, and enforcing thread switches after the correspond-
ing events during replay. The key issue here is how to iden-
tify the corresponding events in record and replay.

Wall-clock time is not a reliable basis for events, be-
cause a thread’s execution speed can vary due to external
factors such as caching and paging. Instruction addresses
are also insufficient, as the same instruction can be exe-
cuted many times during an execution through loops and
method invocations. A straightforward counting of instruc-
tions executed by each thread will work, but the overhead is
prohibitive.

The Instant Replay[12] system observed that events
could be uniquely identified by a pair consisting of an in-
struction address and a count of the number of backward
branches executed by the program. Jalapeño exploits this
observation with yield points encountered taking the roll

of backward branches executed.5 Since preemptive thread
switches in Jalapeñoonly occur at yield points, the yield-
point count can uniquely specify preemptive thread-switch
events. Moreover, this count can be kept as a delta since the
last such event (nyp in Figure 2).

The code in Figure 2-(A) is executed at every yield point
during DejaVu record.nyp is initially set to0, is incre-
mented at each yield point6, and is recorded (and set back to0) when a thread switch takes place. The code in Figure 2-
(B) is executed at every yield point during replay.nyp is
initially set to the first recorded value, and is decremented
at normal yield points. It reaches0 at those yield points
that the recorded program performed a thread switch. (It
is then assigned a new value from the recorded data.) The
preemptiveHardwareBit, set by timer interrupt (and
cleared byperformThreadSwitch()) during record,
is ignored during replay.

2.4. Symmetric Instrumentation

Note the similarity between Figures 2-(A) and 2-(B).
Such similarity between instrumentation code of Dejavu’s
record and replay modes is key to achieving accurate replay.

5Remember, there is a yield-point on each loop backedge and inevery
method prologue — so, while the two counts are not identical,they serve
the same purpose.

6UnlessliveClock is false; the role ofliveClock will be de-
scribed below.

5



DejaVu cannot replay its own instrumentation,which be-
haves differently by definition: it writes data in record mode
and reads data in replay mode. Ideally, DejaVu’s execution
should betransparentto Jalapeño— not affecting its behav-
ior except to effectuate replay.

Cross-optimizing DejaVu, Jalapeño, and the application,
however, makes total transparency impractical. Side effects
of DejaVu instrumentation may affect the virtual machine
and/or the application. For example, any class that De-
jaVu loads affects Jalapeño, since a class loaded by DejaVu
will not be loaded again for Jalapeño. Hence class loading
on DejaVu’s part can change Jalapeño’s execution behavior
and potentially that of the application. Class loading can
also affect the garbage collector, because loading usually
involves allocating new heap objects.

Where transparency cannot be achieved, DejaVu em-
ployssymmetrybetween record mode and replay mode: ac-
tions of DejaVu that might affect the JVM (or DejaVu it-
self) are performed identically during both record and re-
play. Such actions include:� object allocation,� class loading and method compilation,� stack overflow, and� updating the logical clock.

Symmetry in Object Allocation

To maintain symmetry in object allocation, which can affect
the garbage collector, DejaVu allocates and uses (at a given
point in the execution) the same heap objects for both record
and replay modes. For example, it uses the same buffer to
store captured information in record mode and to store cap-
tured information read from disk in replay mode. DejaVu
pre-allocates the buffer independent of mode during its ini-
tialization. Additional heap objects are created as neededat
a given execution point in both record and replay modes.

Symmetry in Loading and Compilation

DejaVu maintains symmetry in class loading and method
compilation by pre-loading all the classes of DejaVu,
whether needed only for record or replay, during its ini-
tialization before the application starts. DejaVu also pre-
compiles the methods in the pre-loaded DejaVu classes dur-
ing initialization. Furthermore, DejaVu pre-loads classes
needed for file I/O (to store captured information during
record and to read it back during replay). The I/O methods
DejaVu invokes are input methods during record, and output
methods during replay. To maintain symmetry in loading
the classes and compiling methods for I/O, DejaVu writes
into a temporary file (i.e., invokes output methods) and then

immediately reads from that file (i.e., invokes input meth-
ods) as part of DejaVu initialization during both record and
replay. This forces both input methods and output methods
to be compiled during both record and replay.

Symmetry in Stack Overflow

Jalapeño allocates runtime activation stacks in heap objects
(arrays), creating a new one when the current stack over-
flows. Should that happen, DejaVu maintains symmetry by
ensuring that an overflow occurs at exactly the same point
in the execution during both modes, whether in Jalapeño or
in the application.

DejaVu’s own instrumentation in Jalapeño invokes dif-
ferent DejaVu methods in record and replay modes, since
the modes do different things. The result can be unequal
runtime activation-stack increments at corresponding invo-
cations of a DejaVu method. These can result in different
behaviors in runtime-stack overflow. DejaVu addresses this
problem by eagerly growing the runtime activation stack
just before calling a DejaVu method when available stack
space falls below a heuristically determined value.

Symmetry in Updating the Logical Clock

DejaVu’s logical clock keeps track of the number of yield
points executed by a thread. Since the instrumentation for
record and replay perform different tasks, one might entail
more yield points than the other. To keep the logical clocks
in synch, none of the yield points encountered while exe-
cuting instrumentation code is counted in the logical clock.
(This is the purpose of theliveClock flag in Figure 2.)

2.5. Java Native Interface

The Java Native Interface (JNI) allows a Java applica-
tion to interact with native code. Execution behavior of a
Java application can be affected by native code in two ways:
through return values or callbacks. Callbacks can be made
only through pre-defined JNI functions. DejaVu captures
return values from a native call and callback parameters
during record, and it regenerates them at the corresponding
execution points during replay. This approach is sufficient
since Jalapeño’s implementation of JNI does not allow na-
tive code to obtain direct pointers into the Java heap.

3. Remote Reflection

The first goal for a debugger integrated with DejaVu is
to preserve the execution of the application being replayed.
The execution must not be perturbed by normal debugger
operations such as stopping and continuing, querying ob-
jects and program states, setting breakpoints, etc.

6



Jalapeño’s Java-based implementation adds a second
goal for the debugger. Jalapeño uses reflection extensively
for all objects so that the many system components can be
integrated seamlessly and effectively. As a result, there is
strong motivation to exploit the same reflection interface to
interact with the JVM and applications rather than using a
different, ad hoc interface.

These two goals yield many advantages, but they lead
to a conflict in the implementation. First, to use reflection,
the debugger must be an integral component of the system
— in other words, the debugger must execute in-process
— but maintaining the deterministic execution of the en-
tire system becomes problematic. For example, suppose the
application has stopped at a breakpoint and the user wants
to display stack trace. The JVM must then execute the de-
bugger and its reflective methods to compute the desired
information. This action itself changes the state of the JVM
because thread scheduling occurs, classes may be loaded,
garbage collection may take place, etc. As a result, it may
no longer be possible to resume the deterministic execution
when the application continues.

On the other hand, keeping the application JVM unper-
turbed during replay requires an out-of-process debugger —
that is, a debugger that runs on an independent JVM. But
that will put the application’s reflection out of the debug-
ger’s reach. Although the debugger can load the classes and
execute the reflection methods, the desired data resides in
the application JVM rather than the tool JVM.

At a higher level, the general problem is that with re-
flection, data and the code describing it are tightly coupled.
In other words, the code must execute in the same address
space to obtain information about the data.

Remote reflection solves this problem by decoupling the
data and its reflection code, thus allowing a program in one
JVM to execute a reflection method that operates directly on
an object residing in another JVM. In the case of DejaVu,
the debugger can execute out-of-process to avoid perturbing
the application, yet it can take full advantage of Jalapeño’s
reflection interface.

3.1. Transparent remote access

Remote reflection allows remote data to be accessed
transparently in the Java programming model. The key to
remote reflection is an object in the local (tool) JVM called
theremote object, which serves as a proxy for the real object
in the remote (application) JVM.

To set up the association between the two JVM’s, the
user (i.e., the debugger) specifies a list of reflection methods
that are said to bemapped: when they are executed in the
tool JVM, they return a remote object that represents the
actual object in the remote JVM. Typically, these are access
methods that return the internal components of an object.

Once a remote object is obtained from a mapped method,
all values or objects derived from it will also originate from
the remote JVM. The standard reflection method can be in-
voked on the remote object in the same way as a normal
object. Aside from the list of mapped methods, a remote
object is indistinguishable from a normal object in the local
JVM, from the program’s perspective.

The uniform treatment of local and remote objects gives
the advantage of transparency. Because a remote object is
logically identical to a local object, a program uses the same
reflection interface whether it executes in-process or out-of-
process. As a result, the maintenance of both the reflection
interface and programs using it is greatly simplified.

A second advantage is that no effort is required in the re-
mote JVM, since remote reflection relies on the underlying
operating system to access the remote JVM address space.
In other words, the remote JVM does not execute any code
to respond to queries from the debugger, and no JVM code
is modified to support the debugger. This guarantees that
the remote JVM is not perturbed by the debugger unless
the user specifically wants to modify the state of the remote
JVM.

Consider a simple example in Figure 3. In this case, the
debugger is executing in the local JVM that supports remote
reflection. The application (with its runtime) being replayed
is the remote JVM.

To compute the line number, the
lineNumberOf() method of Debugger invokes
the VM Dictionary.getMethods() method to
obtain a table ofVM Method. Then it selects the desired
element and invokes its virtualgetLineNumberAt()
method. This reflection method then consults the ob-
ject’s internal array to return a line number. To execute
this code with remote reflection, we specify that the
VM Dictionary.getMethods() method is to be
mapped to an array ofVM Method’s in the remote space.
Therefore, when the code is executed, it returns the initial
remote object representing the actual array. Next the
candidate variable accesses the remote array and gets
a second remote object. ThegetLineNumberAt()
reflection method is then invoked on the remote object.
Since thelineTable array is an instance field of the
remote object, it too is a remote object. When this third
remote array is accessed, the array element is obtained
from the remote JVM. The net result is that the reflection
method has transparently described an object across two
JVM’s.

3.2. Implementation

A standard Java interpreter is extended to implement re-
mote reflection. The extension includes managing the re-
mote object and extending the bytecodes to operate on the

7



class Debugger {
public int lineNumberOf

(int methodNumber, int offset) {

VM_Method[] mTable =
VM_Dictionary.getMethods();

VM_Method candidate =
mTable[methodNumber];

int lineNumber =
candidate.getLineNumberAt(offset);

return lineNumber;

}
}

class VM_Method {
private int[] lineTable;

public int getLineNumberAt(int offset) {
if (offset>lineTable.length)
return 0;

return lineTable[offset];
}

}

Figure 3. A Java method mak-
ing reflective queries across JVM’s.
Debugger.lineNumberOf() invokes
VM Dictionary.getMethods() to ob-
tain a table of VM Method, the reflection
method getLineNumberAt() is then in-
voked on the remote object. The final result
lineTable[offset] is obtained from the
remote JVM.

remote object. Remote reflection also requires operating
system support for access across processes. This functional-
ity is typically provided by the system debugging interface,
which in the Jalapeño implementation is the Unixptracefa-
cility. Our implementation is simplified by the fact that the
debugger only makes queries and does not modify the state
of the application JVM (except in response to a user request
to change a value); we need not create new objects in the
remote space.

3.3. Remote object

To implement the remote object, it was sufficient to
record the type of the object and its real address. Remote
objects originate from a mapped method or another remote
object. In the first case, the address is provided to the in-
terpreter through the process of building the Jalapeño boot
image [4]. For the latter case, the address is computed based
on the field offset from the address of the remote object.

For a DejaVu tool running on the tool JVM to access
native methods, the JNI implementation on this tool JVM

Java Interpreter with 
Remote Reflection

JDK
OS calls

control,
binary data

Jalapeno~

Jalapeno
Debugger

~

Java Class 
(reflection)

method 
bytecode

method 
bytecode

compiled 
method

compiled 
method

Remote 
Object

Remote 
Object

Object

Object

Object Object

myClass.getName()

Figure 4. Implementation for Jalapeño: (1) a
Java interpreter is extended to support re-
mote reflection, and this in turn runs on top of
the Sun JVM; (2) Jalapeño loads and runs the
reflection methods as compiled code; (3) the
debugger loads and runs the reflection meth-
ods as bytecode; (4) remote objects are asso-
ciated with the actual objects in the Jalapeño
space.

will have to be extended to handle remote objects. For our
debugger, however, it proved sufficient to clone the remote
objects and the remote arrays of primitives. (Note that this
is a separate issue from being able to replay native calls in
theapplicationJVM.)

3.4. Bytecode extensions

Since the initial remote object is obtained via amapped
method, theinvokestatic and invokevirtual
bytecodes for invoking a method are extended as follows.
The target class and method are checked against the map-
ping list. Those to be mapped are intercepted so that the
actual invocation is not made. Instead, if the return type is
an object, a remote object is created containing the type and
the address of the corresponding object in the remote JVM.
If the return type is a primitive, the actual value is fetched
from the remote JVM.

In addition, all bytecodes that operate on a reference
need to be extended to handle remote objects appropriately
— for Java, this includes 23 bytecodes. If the result of the
bytecode is a primitive value, the interpreter computes the
actual address, makes the system call to obtain the value

8



from the remote address space, and pushes the value onto
the local Java stack. If the result is an object, the inter-
preter computes the address of the field holding the refer-
ence, makes the system call to obtain the field value, and
pushes onto the Java stack a new remote object with the ap-
propriate type.

4. Graphical User Interface

The debugger has a GUI based on Java’s Swing frame-
work. The classes providing the core debugger functionality
must be run on the tool JVM to enable remote reflection, but
the GUI would be unacceptably slow if it were thus inter-
preted. Furthermore, the researchers working on Jalapeño
typically execute the virtual machine remotely from a Win-
dows box, since both the application JVM (Jalapeño) and
the tool JVM run on AIX. This too incurs overhead. Hence
the GUI is designed to run on yet a third JVM, communi-
cating with the debugger JVM through TCP. (Bandwidth is
minimized by transmitting small packets of data rather than
large images.) Our design lets developers run the debug-
ger remotely while running the GUI on their local machine,
affording both simple integration and satisfactory perfor-
mance.

The GUI provides all the functionality found in most
command-line debuggers along with some features from
graphical debuggers. A view of the executing method’s Java
source and machine instructions allows setting breakpoints
and single-stepping. The user can inspect instances (includ-
ing statics) through a tree-based class viewer. The GUI also
provides views of current breakpoints and the call stack
along with the corresponding Java source code. A thread
viewer is useful for finding subtle bugs in multithreaded ap-
plications. (Screen shots of the graphical user interface dur-
ing a debugging session can be found at the DejaVu web-
site [1, 2].)

5. Related Work

Repeated execution is a widely accepted technique for
debugging and understanding deterministic sequential ap-
plications. Repeated execution, however, fails to reproduce
the same execution behavior for non-deterministic applica-
tions. Replaying a non-deterministic application requires
generating enough traces to reproduce the same execution
behavior.

Many previous approaches for replay [12, 17, 15] cap-
ture the interactions among processes — i.e.,critical events
— and generate traces for them. A major drawback of
such approaches is the overhead, in time and particularly in
space, of capturing critical events and in generating traces.

Igor, Recap, and PPD are some of the early works
that provide replay capability as part of debugging [8, 15,

13, 6]. They all support replay (or “reverse execution”)
by checkpointing and re-executing from a previous check-
point. Igor, however, does not directly address the issue of
non-determinism in multithreaded applications [8]. Recap
checkpoints the program state by forking and suspending
a new process [15]. It handles non-determinism in multi-
threaded applications by capturing the effect of every read
of shared memory locations, which is quite expensive. PPD
performs program analysis to reduce the size of snapshots
at checkpoints, and also captures the effect of every read
of shared memory locations [13, 6]. Boothe’s approach
is quite similar to the above approaches: it “reverse exe-
cutes” via checkpointing and re-executing from a previous
checkpoint [5]. It also forks an idle process, like Recap, for
checkpointing.

To reduce the trace size,Instant Replay[12] assumes
that applications access shared objects through a correct,
coarse-grained operation calledCREW(Concurrent-Read-
Exclusive-Write) and generates traces only for these coarse
operations. Obviously, this approach will not work for
applications that do not use the CREW discipline, but
it also fails when critical events within CREW are non-
deterministic.

Russinovich and Cogswell’s approach [16] is similar to
ours in that it captures thread switches (rather than all criti-
cal events) on a uniprocessor. They modified the Mach op-
erating system so that it notifies the replay system on each
thread switch. Since they do not replay the (operating sys-
tem’s) thread package itself, their replay mechanism must
tell the thread package which thread to schedule at each
thread switch. This entails maintaining a mapping between
the thread executing during record and during replay. This
is a significant execution cost that DejaVu does not incur
because it replays the entire Jalapeño thread package.

Holloman and Mauney’s approach [10, 9] is similar
to (and has the same drawbacks as) Russinovich and
Cogswell’s except for the mechanism for capturing the pro-
cess scheduling information. Their approach uses exception
handlers instrumented into the application code that capture
all the exceptions, including the ones for process schedul-
ing, sent from the UNIX operating system to the application
process.

Earlier incarnations of DejaVu [7, 11] developed for
SUN’s JDK running on WIN32 also generate traces only for
thread switches.7 These approaches suffer the same draw-
backs as that of Russinovich and Cogswell.

Remote reflection integrates two common debugger fea-
tures: out-of-process execution and reflection. Typical de-
buggers such asdbx or gdb are out-of-process, but they
rely on some fixed data format convention instead of re-

7Logging data for non-reproducible events such as reading the wall
clock need be done independently of thread switch information in all re-
play schemes.

9



flection to interpret the data. The Sun JDK debugger [3]
and the more recent Java Platform Debugger Architecture
are also out-of-process and are based on reflection; how-
ever, there are several important differences from remote
reflection. First, the Sun JDK approach is intended for user
applications because it requires the virtual machine to be
fully functional. The reflection interface requires a debug-
ging thread running internally in the virtual machine that is
dedicated to responding to queries from the out-of-process
debugger. In comparison, remote reflection requires no ef-
fort on the target JVM; the JVM does not execute any code,
and no JVM code is modified to support remote reflection.
Second, the Sun JDK debugger uses a reflection interface
that is different and separate from the internal reflection in-
terface. Although this allows the debugging reflection in-
terface to be implemented in native code to minimize JVM
perturbation, it requires implementing and maintaining two
reflection interfaces with similar functionalities. In contrast,
with remote reflection the same reflection interface can be
used internally or externally.

6. Conclusions

This paper addresses the problem of building a
perturbation-free runtime tool, such as a debugger, for heav-
ily multithreaded non-deterministicJava server applications
cross-optimized with the Java Virtual Machine (JVM). It
shows how Jalapeño’s design for general extensibility and
modularity allows for efficient instrumentation for the ap-
plication and also for the Jalapeño runtime system.

Cross-optimization of the runtime system and the appli-
cation can improve the overall performance of the applica-
tion and the runtime system. Cross-optimization also al-
lows for precise instrumentation for a runtime tool such as
DejaVu. Cross-optimization, however, introduces new chal-
lenges to program replay due to the side effects of the re-
play tool that can affect the runtime and the application. We
showed how DejaVu employs symmetry in side effects and
remote reflection to solve these challenges.

Acknowledgements

We would like to thank Mark Mergen, Vivek Sarkar,
Mark Wegman, James Russell, and Daniel Yellin for their
constant support and encouragement. We would like to
thank Jalapeño team members, especially Anthony Cocchy,
Clement R. Attanasio, and Stephen E. Smith, for their help
with the Jalapeño runtime system.

References

[1] http://www.research.ibm.com/jalapeno/dejavu.

[2] http://www.research.ibm.com/jalapeno/dejavu/oopsla00-
demo.html.

[3] Java Development Kit 1.1. Technical report, Sun Microsys-
tems.

[4] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mer-
gen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.
Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and
J. Whaley. The Jalapeño virtual machine.IBM Systems Jour-
nal, 39(1), 2000.

[5] B. Boothe. Efficient algorithms for bidirectional debugging.
In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI),
pages 299–310, June 2000.

[6] J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques
for debugging parallel programs with flowback analysis.
ACM Transactions on Programming Languages and Sys-
tems, 13(4), October 1991.

[7] J.-D. Choi and H. Srinivasan. Deterministic replay of java
multithreaded applications. InProceedings of the ACM SIG-
METRICS Symposium on Parallel and Distributed Tools,
pages 48–59, August 1998.

[8] S. I. Feldman and C. B. Brown. Igor: A system for pro-
gram debugging via reversible execution. InProceedings of
the ACM SIGPLAN and SIGOPS Workshop on Parallel and
Distributed Debugging, pages 112–123, May 1988.

[9] E. D. Holloman. Design and implementation of a replay de-
bugger for parallel programs on unix-based systems.Mas-
ter’s Thesis, Computer Science Department, North Carolina
State University, June 1989.

[10] E. D. Holloman and J. Mauney. Reproducing multiprocess
executions on a uniprocessor.Unpublished paper, August
1989.

[11] R. Konuru, H. Srinivasan, and J.-D. Choi. Deterministic re-
play of distributed java applications. InProceedings of the
14th IEEE International Parallel & Distributed Processing
Symposium, pages 219–228, May 2000.

[12] T. J. Leblanc and J. M. Mellor-Crummy. Debugging parallel
programs with instant replay.IEEE Transactions on Com-
puters, C-36(4):471–481, April 1987.

[13] B. P. Miller and J.-D. Choi. A mechanism for efficient de-
bugging of parallel programs. InProceedings of ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI), pages 135–144, June 1988.

[14] T. Ngo and J. Barton. Debugging by remote reflection.Proc.
of EURO-PAR 2000, August 2000.

[15] D. Z. Pan and M. A. Linton. Supporting reverse execution
of parallel programs. InProceedings of the ACM SIGPLAN
and SIGOPS Workshop on Parallel and Distributed Debug-
ging, pages 124–129, May 1988.

[16] M. Russinovich and B. Cogswell. Replay for concurrent
non-deterministic shared-memory applications. InProceed-
ings of ACM SIGPLAN Conference on Programming Lan-
guages and Implementation (PLDI), pages 258–266, May
1996.

[17] K. C. Tai, R. H. Carver, and E. E. Obaid. Debugging con-
current ada programs by deterministic execution.IEEE
Transactions on Software Engineering, 17(1):45–63, Jan-
uary 1991.

10


