
Repairing Leaks in Resource Wrappers
Sanjay Malakar∗, Michael D. Ernst†, Martin Kellogg‡, Manu Sridharan∗

∗University of California, Riverside, USA †University of Washington, USA ‡New Jersey Institute of Technology, USA
Email: smala009@ucr.edu, mernst@cs.washington.edu, martin.kellogg@njit.edu, manu@cs.ucr.edu

Abstract—A resource leak occurs when a program fails to
release a finite resource like a socket, file descriptor or database
connection. While sound static analysis tools can detect all leaks,
automatically repairing them remains challenging. Prior work
took the output of a detection tool and attempted to repair only
leaks from a hard-coded list of library resource types. That
approach limits the scope of repairable leaks: real-world code
uses resource wrappers that store a resource in a field and must
themselves be closed.

This paper makes four key contributions to improve resource
leak repair in the presence of wrappers. (1) It integrates inference
of resource management specifications into the repair pipeline,
enabling extant fixing approaches to reason about wrappers. (2)
It transforms programs into variants that are easier to analyze,
making inference, detection, and fixing tools more effective; for
instance, it makes detection tools report problems closer to the
root cause, often in a client of a resource wrapper rather than
within the wrapper class itself. (3) A novel field containment
analysis reasons about resource lifetimes, enabling repair of more
leaks involving resources stored in fields. (4) It introduces a
new repair pattern and more precise reasoning to better handle
resources stored in non-final fields.

Prior work fixed 41% of resource leak warnings in the NJR
benchmark suite; our implementation Arodnap fixes 68%.

Index Terms—Program repair, resource leaks

I. INTRODUCTION

Resource leaks, such as unreleased file handles, sockets,
or database connections, are a persistent source of reliability
issues. These defects often evade detection during testing and
manifest only after extended run time, leading to degraded
performance, outages, and even security vulnerabilities [1], [2].
Static analysis is a powerful tool for detecting such defects
early in development, and many modern analyzers for Java —
such as Infer [3], SpotBugs [4], and the Checker Framework’s
Resource Leak Checker [5] — can report potential leaks based
on ownership and control-flow reasoning.

However, detection alone is insufficient. Developers complain
that static analyses surface true issues but fail to provide
actionable suggestions [2] and have too many false positives [6].
Automated repair tools that rely only on test-based validation
[7], [8] are ineffective for leak repair, because resource
management leaks typically do not manifest in test failures.
Many leaks share common manifestation and repair patterns [9];
the state-of-the-art tool RLFixer [10] takes advantage of this
insight. RLFixer relies on extant leak-detection tools like Infer,
SpotBugs, and the Resource Leak Checker to detect leaks,
which it repairs using a fixed set of repair templates. However,
because RLFixer treats the leak-detection tools as a black-
box warning oracle, it is limited to repairing leaks of library

resources, like sockets or file descriptors, that the leak-detection
tool tracks by default.

Our key insight is that repairing only leaks of library
resources is usually insufficient, because many resources in
practice are managed by wrappers: programmer-written classes
that themselves act as resources, like the examples in figs. 1
and 2. Acting on this insight requires detecting and reasoning
about such wrappers during the leak-detection stage, but extant
leak-detection tools only reason about library resources (e.g.,
those defined in the JDK) by default. Recent work has extended
one detection tool — the Resource Leak Checker (RLC) — with
a specification generator (“RLC Inference” or “RLCI”) that
automates this manual process [11]. Our first contribution is to
extend the combination of RLFixer and RLC to take advantage
of RLCI specifications. This makes it possible to automatically
detect and fix leaked programmer-written wrappers instead of
only library resources.

However, the RLCI+RLC+RLFixer combination is only
marginally better than the base RLC+RLFixer combination,
repairing 50% instead of 41% of leaks in our experiments.
The reason is that many resource leaks involving wrappers
require reasoning about resources stored in fields. RLFixer
marks a leak as “unfixable” whenever a resource may escape
into a field. Our remaining contributions are a set of new
program transformations and analyses, embodied in a tool
called Arodnap. Arodnap extends RLFixer to reason about
resources that are stored in fields, as well as fix leaks resulting
from mishandling of those resources.

Arodnap improves on the handling of fields in prior work in
three main ways. (1) It adds a code transformation stage to the
detection-and-fixing pipeline (fig. 3) that runs after inference
and leak detection. This code transformation stage enables
precise reasoning and inference for many resource-containing
fields; for example, it adds the final qualifier to eligible fields,
converts resource-containing fields that can be scoped to a
single method into local variables, and adds missing finalizer
methods to classes that contain a resource field. After these
transformations, inference and leak detection generate more
actionable leak warnings. (2) We enhanced RLFixer to reason
about fields: a new field containment analysis makes RLFixer’s
escape logic sound and less conservative in its field handling.
(3) We improved handling of field overwrites. For overwrites
in constructors, we improved RLC’s reasoning. For overwrites
in other methods, we added a new repair pattern to RLFixer,
along with an analysis to determine when the new repair can
be applied soundly. With these improvements, Arodnap can
resolve 68% of all resource leak warnings on the same set of



benchmark programs used in RLFixer’s evaluation, vs. 41%
for RLFixer alone. In sum, our contributions are:
• We extend RLFixer to use RLCI to reason about wrappers.
• We introduce code transformations to ease analysis of and

inference for resource fields.
• We introduce field containment analysis, a static analysis

that identifies resource wrapper classes whose internal fields
do not escape, enabling sound repair of more leaks.

• We improve analysis and repair for leaks due to non-final
resource fields.

• We implemented our approach in a tool Arodnap and
evaluated it on the NJR dataset [12] originally used to
evaluate RLFixer, improving the fix rate from 41% for
RLFixer to 68% for Arodnap.

Our artifact includes all the code, data, and scripts used in this
paper [13]. Arodnap itself is also open-source [14].

II. BACKGROUND

This section describes the three state-of-the-art tools on
which our work builds: RLC for detecting resource leaks
(§II-A), RLCI for inferring resource specifications (§II-B),
and RLFixer (§II-C) for suggesting repairs. It explains how
these tools operate, their limitations, and the motivation for
the enhancements introduced in this work.

A. Static Leak Detection with the Resource Leak Checker

The Resource Leak Checker (RLC) is a pluggable type
system built on top of the Checker Framework [15], [5]. It
verifies that objects such as files, sockets, or streams are cleaned
up (by an explicit call to a finalizer method) before they become
unreachable. RLC is sound by design, scales to real-world
codebases, and requires a manageable annotation burden.

At the core of RLC is the notion of @MustCall obligations. A
type T annotated with @MustCall("close") indicates that close()
must be invoked on every T object before its lifetime ends. The
RLC analysis ensures that all such required methods are called
along every path that leads to the object becoming unreachable
(e.g., via scope exit or variable overwrite). Programmer-written
resource specifications (expressed as RLC annotations) express
ownership, obligation transfer, and aliasing relationships.
• @Owning references are responsible for eventually satisfying

the @MustCall obligations of the object they refer to.
• @NotOwning marks a reference that is not responsible for the

obligation, such as shared or borrowed values.
• @EnsuresCalledMethods(x, y), written on a method m,

guarantees that x.y() is called before m returns.
These annotations allow RLC to track resource lifecycle

responsibilities across field assignments, parameter passing,
method returns, and resource wrappers. Rather than relying
on whole-program alias analysis, RLC uses these annotations
to reason about ownership and aliasing in a modular, sound
way [16]. To statically verify that obligations are fulfilled,
RLC runs three cooperating analyses [5]. First, a type system
computes the set of required @MustCall methods for each
reference. Second, a type system computes which methods have

1 +@MustCall("close")
2 class MyWriter {
3 + @Owning PrintWriter pw;
4 MyWriter(String path) {
5 pw = new PrintWriter(path);
6 }
7 + @EnsuresCalledMethods(value="pw", methods="close")
8 void close() {
9 pw.close();

10 }
11 }
12 void use() {
13 MyWriter writer = new MyWriter("f.txt");
14 }

Fig. 1: Specification inference makes leaks repairable. With no
resource management specification annotations, RLC reports
a leak at line 5, where repair is not possible. With added
specifications (highlighted in green), RLC reports the leak at
line 13 — where repair is feasible by closing the MyWriter object.

definitely been invoked on a given value. Finally, a dataflow
analysis verifies that all required methods have been called
before a resource becomes unreachable.

RLC is a specify-and-verify system: the programmer writes
explicit ownership and aliasing annotations, and the pro-
grammer obtains a sound guarantee of no resource leaks.
Unfortunately, most Java codebases lack these specifications.
RLC ships with specifications for the JDK standard library;
programmers are expected to write annotations like @Owning and
@MustCallAlias to specify their own resource-handling code.
Writing these annotations is tedious and error-prone, motivating
automatic inference of resource-management specifications.

B. Inference for Resource Management Annotations

RLC Inference (RLCI) [11] statically discovers specifications
related to resource lifecycles and ownership. By analyzing how
objects are allocated, passed, and used throughout a program,
the inference identifies and automatically annotates patterns of
resource management.

This approach is especially valuable when analyzing a user-
defined resource wrapper — a class that internally manages a
resource delegate but may not explicitly expose it. In such cases,
inference can insert annotations documenting that the wrapper
owns its internal resources and exposes a finalizer method
like close() that satisfies their obligations. These inferred
specifications enable RLC to verify both the implementation
and the use sites of the wrapper class.

Figure 1 demonstrates how inference enables more action-
able leak warnings. The class MyWriter internally allocates a
PrintWriter and provides a close() method that properly closes
it. Without inference, RLC does not recognize that MyWriter

is a wrapper that is responsible for closing the resource. RLC
therefore reports a leak at the PrintWriter allocation inside
the constructor (because the PrintWriter is not closed before
the constructor returns). Once inference recovers the necessary
specifications (in green in fig. 1), including @MustCall on the
class and @EnsuresCalledMethods on the cleanup method, RLC
shifts the warning to the use() method, which erroneously
allocates a MyWriter object without closing it.



1 class TempFileWriter {
2 private PrintStream stream;
3

4 public TempFileWriter(String path) {
5 stream = new PrintStream(path);
6 }
7

8 void resetStream(String path) {
9

10 stream = new PrintStream(path);
11 }
12

13 public void printSomething() {
14 stream.println("hello");
15 }
16

17

18

19

20 }
21

22 class Client {
23 public static void print() {
24

25

26 TempFileWriter tmp = new TempFileWriter("f.txt");
27 tmp.printSomething();
28

29

30

31 }
32 }

(a) Leaky version without cleanup. RLC reports leaks at lines 5
and 10.

1 class TempFileWriter implements AutoCloseable {
2 @Owning private PrintStream stream;
3

4 public TempFileWriter(String path) {
5 stream = new PrintStream(path);
6 }
7

8 void resetStream(String path) {
9 if (stream != null) stream.close();

10 stream = new PrintStream(path);
11 }
12

13 public void printSomething() {
14 stream.println("hello");
15 }
16

17 public void close() {
18 stream.close();
19 }
20 }
21

22 class Client {
23 public static void print() {
24 TempFileWriter tmp = null;
25 try {
26 tmp = new TempFileWriter("f.txt");
27 tmp.printSomething();
28 } finally {
29 if (tmp != null) tmp.close();
30 }
31 }
32 }

(b) Arodnap inserts a finalizer (in blue), letting inference infer
ownership (in red), shifting RLC’s leak warning from line 5 to
line 26, enabling RLFixer to insert cleanup logic (in green).

Fig. 2: Simplified leak repair example from the NJR dataset, benchmark url882f91ec97_WenboCao_Microsoft_Drone, file Generate-
DeterminantFromMinor.java. RLFixer cannot repair the original code (fig. 2a). In fig. 2b Arodnap inserts the missing finalizer, which
enables inference to infer ownership. RLFixer then eliminates both leaks: one inserting a try–finally wrapper at lines 25–30 and
one by inserting a pre-close on line 9 before the field overwrite.

By shifting the warning from inside the wrapper to its call
site, inference makes the leak warning more actionable and
amenable to automatic repair.

C. Semi-Automated Repair with RLFixer

RLFixer [10] automatically generates fix hints for resource
leaks based on warnings emitted by static analysis tools, such
as RLC or Infer [3], which it treats as black-box warning
generators. It aims to generate repairs that do not alter core
program logic, using control-flow scaffolding like try–finally
blocks to enforce cleanup. RLFixer emits its output as textual
hints without applying or validating them, requiring manual
developer intervention to write patches.

For each leak warning, RLFixer performs a lightweight alias
analysis to group variables referring to the same resource in-
stance — handling both direct aliases and a special case of user-
defined wrapper types (those that encapsulate a resource via
constructor injection and a close() method). It then conducts a
demand-driven resource escape analysis [10, §3.3] to determine
whether the resource escapes its enclosing method through
fields, return values, method parameters, or data structures. If
any such escape is detected, RLFixer conservatively marks the
leak as unrepairable; inserting a close() call at the warning site

in such cases risks a “use-after-close” error, because external
code might still use the resource afterward.

After deeming a leak fixable, RLFixer selects a repair
template from a set of hard-coded options. Each involves
inserting a close() call in a finally block, optionally wrapping
existing resource usage in a structured control-flow construct
such as a try–catch.

While RLFixer repairs some leaks, it struggles with many
real-world code patterns. It cannot handle any leak caused by
reassignment — overwriting a field without first closing the
resource — since it cannot guarantee safe cleanup when the
resource may escape the current scope. Its ability to reason
about wrapper classes is limited to cases where the class
explicitly defines a method named close(). In some cases,
RLFixer’s alias reasoning concludes a resource may escape
when in fact it does not, thereby missing fix opportunities.

About 62% of leaks that RLFixer cannot repair in the NJR
benchmarks [12] involve resources stored in fields. Arodnap’s
techniques address exactly this scenario: ownership inference
moves the leak warning from the field assignment back to the
wrapper allocation, and a new pre-close insertion repair, guided
by a more precise escape analysis, lets RLFixer safely close
resources even when the field is reassigned.



RLCI
inference

RLC
checking

Code
transformation

RLCI
inference

RLC
checking

Enhanced
RLFixer

Patch
validation

2 3 4 5 6 7

Arodnap

1 8

Inputs and Outputs:
1. Input Source Code, 2. Inferred Specifications, 3. RLC Warnings, 4. Transformed Code, 5. Updated Specifications, 6. Updated Warnings, 7. Patched Code, 8. Validated Patched Code

Fig. 3: Arodnap’s leak-repair pipeline. Dark gray boxes indicate new components we introduced; light gray boxes are existing
components we extended; white boxes are existing components we reused.

III. EXAMPLE REPAIR

Figure 2 is a simplified but representative real-world resource
leak from the NJR dataset [12] that RLFixer cannot repair
without Arodnap. Class TempFileWriter allocates a PrintStream

both in its constructor and in the resetStream method. RLC
reports leaks at both these locations. The PrintStream objects
are written into fields and thus might escape the current scope,
so RLFixer deems both warnings unrepairable and emits no fix.
Further, RLC inference (RLCI) cannot infer that TempFileWriter
is a wrapper type, because the class does not implement a
finalizer method like close.

Injecting Finalizer to Enable Ownership Inference. Arodnap
injects a close() finalizer and the AutoCloseable interface
on TempFileWriter (shown in blue in fig. 2b) to aid RLCI.
These changes enable RLCI to add an @Owning annotation on
the stream field, explicitly marking ownership. Because the
class now owns the resource, RLC now reports a leak at the
TempFileWriter’s allocation inside the print method instead.

The new warning inside print is a shifted leak warning. A
shifted leak warning occurs when RLC reports the same defect
at a different program location under a different analysis
configuration (e.g., after adding ownership information). The
underlying defect is unchanged; only the report location shifts.
Here, the added close method does not fix a leak, but is needed
for repair. The PrintStream created in the TempFileWriter

constructor cannot be closed there, as it may be used later by
the printSomething method. The resource cleanup must instead
occur at the end of the enclosing TempFileWriter’s lifecycle.

Fix Generation. Given these transformations, RLFixer can
generate repairs. As shown in green in fig. 2b, it encloses
the allocation in print within try–finally. Further, our new
pre-close insertion repair (section IV-C2) inserts a pre-close
that closes stream before reassignment (line 9).

This example reflects a common pattern in real-world Java
code: user-defined wrapper classes that manage resources
internally. Two types of mistakes can lead to resource leaks.
Resources may leak because the wrapper class has mistakes
(like the missing close() method in this example, although
mistakes in real code that Arodnap can fix are often much
subtler!). Resources may also leak because the wrapper class is
misused (as in the print() method in class Client). Our system
makes both cases analyzable and repairable with minimal
structural edits, so that automated tools can handle patterns
that required manual annotation and refactoring before.

IV. DETECTION AND REPAIR ARCHITECTURE

The Arodnap repair pipeline (fig. 3) integrates static leak
analysis (RLC), inference (RLCI), code transformation, and
repair (RLFixer). It begins by combining RLCI and RLC to
surface both inferred @MustCall obligations on user-defined
classes and resource leak warnings. Leveraging these outputs,
the pipeline applies a suite of lightweight Code Transforma-
tions — marking eligible fields final, converting fields to local
variables, and injecting missing close() finalizers into wrapper
classes (section IV-A). It then re-invokes inference and RLC
to produce updated, more actionable leak warnings.

An enhanced RLFixer consumes the improved warnings and
specifications from the transformed code to synthesize concrete
code patches (section IV-B3). (The original RLFixer requires
a developer to manually apply its fix hints.)

Using RLCI to infer ownership annotations leads to a new
class of warnings (about possible overwrites of fields containing
resources) that the original RLFixer did not need to consider.
We enhanced both RLC itself and RLFixer to allow Arodnap
to handle these warnings; as this problem is logically distinct,
section IV-C describes the necessary modifications separately.

Finally, Arodnap validates the patches with both static
and dynamic checks (section IV-D): it recompiles, re-runs
RLCI+RLC to ensure the warning is eliminated, and runs the
project’s JUnit tests to confirm test outcomes are preserved.

A. Code Transformations

Static code transformations play a central role in our pipeline
by reshaping code to improve analyzability and fixability. These
transformations preserve program semantics while clarifying
ownership structure and exposing resource lifecycles. Each
transformation is designed to be sound and grounded in
software engineering best practices.
IV-A1 Field Transformations for Immutability Mutable
resource-holding fields introduce risks in resource management.
If a resource field is reassigned without closing the previous
value, the original resource may become unreachable, causing
a leak. By marking some such fields as final and making
other fields local, Arodnap eliminates the possibility of
reassignment and makes lifecycle tracking simpler and safer.
Section IV-C describes further enhancements to RLC and
RLFixer for cases where these transformations do not apply.

Preventing Reassignment Arodnap adds the final modifier
to a private field if the field is only assigned once. For
instance fields, the assignment must occur at object construction
time [17, §8.3.1.2]. This requires that all assignments to the



1 -private ServerSocket serverSocket;
2 +private final ServerSocket serverSocket;
3

4 public MyClass(int port) {
5 + ServerSocket tempSocket = null;
6 try {
7 - serverSocket = new ServerSocket(port);
8 + tempSocket = new ServerSocket(port);
9 } catch (IOException e) {

10 e.printStackTrace();
11 + } finally {
12 + serverSocket = tempSocket;
13 }
14 }

Fig. 4: Using a temporary variable for final assignment

field occur at its declaration (via an initializer), or within
constructors, or within one instance initializer block (exactly
one of the possibilities), and only once along any path. This is
closely related to the notion of effectively final [17, §4.12.4],
though that is defined only for local variables. Static fields
are similar. When the field assignment occurs inside try–
catch, Arodnap introduces a temporary variable (fig. 4) to
satisfy Java’s final-field assignment rules. Use of final aligns
with standard principles to prefer immutability and improves
lifecycle tracking in tools like RLC and RLFixer.

Validation: This transformation is semantics-preserving: the
Java compiler rejects subsequent writes to final fields. Arodnap
applies this transformation even without an RLC warning.

Reducing Scope Arodnap converts a private resource field
into a method-local variable when a simple syntactic check
finds an unconditional assignment to the field that precedes any
reads in that method (including inside try–catch), and there
is no externally callable setter that assigns to the field. This
shortens the variable’s lifetime and improves precision in static
ownership reasoning. This transformation follows the principle
of minimal variable scope [18].

Validation: This transformation is sound except when the
field is reflectively accessed. Because reflective accesses do
occur in practice, Arodnap validates these changes using the
static and dynamic protocol in §IV-D. Arodnap applies this
transformation even when there are no RLC warnings.
IV-A2 Adding Finalizers to Wrapper Classes for Ownership
Visibility Wrapper classes that hold resources in fields may
erroneously fail to define a public cleanup method like close(),
e.g., TempFileWriter in fig. 2a. The absence of a cleanup method
prevents RLC inference from inferring the field is owning, as
its rule for inferring ownership requires an attempt to dispose of
the resource field [11]. Arodnap injects a close() method into
each such class C and adds implements AutoCloseable (fig. 2b).
RLFixer can later insert calls to the method to fix leak warnings
on C objects.

This transformation is only applied when a resource is
allocated within a constructor for class C and then assigned to
an instance field within the same constructor. We found that in
practice, such code strongly suggests that C owns the resource,
despite C lacking a cleanup method. Arodnap discovers such

1 public class FileEventProxy {
2 private Scanner scanner;
3 public FileEventProxy(InputStream in) {
4 this.scanner = new Scanner(in);
5 }
6 public boolean hasNextEvent() {
7 return scanner.hasNextLine();
8 }
9 // other uses

10 }

Fig. 5: A resource accessor class uses, but does not own or close,
a resource.

constructors by parsing leak warnings from RLC. With the
transformation, RLC inference determines the field is @Owning,
shifting responsibility for closing the resource to clients of C.

Validation: Since the close() method is new, no clients
of C will have invoked it previously. Declaring implements

AutoCloseable merely exposes a standard cleanup interface
(enabling optional try-with-resources).

B. Enhancements to RLFixer

We extended RLFixer in two ways to improve its ability to
repair leaks involving resource-holding fields (sections IV-B1
and IV-B2). We also added support for concrete patch materi-
alization (section IV-B3).
IV-B1 Support for Inferred Finalizers RLC inference some-
times determines that an existing class method, which may have
any name, is a finalizer and annotates the code accordingly.
However, RLFixer only supports adding calls to methods named
close. To address these cases, we extended RLFixer with the
ability to insert calls to any finalizer method. The enhanced
RLFixer parses inferred @MustCall annotations on user-defined
classes to determine which methods should be treated as
finalizers. If a class C is annotated with @MustCall("shutdown"),
our extended RLFixer treats shutdown as the finalizer method
for C objects. This change broadens RLFixer’s resource model:
any class with an inferred finalizer is now treated as a resource
wrapper. This allows RLFixer to produce repairs for classes it
would previously ignore.
IV-B2 Field Containment Analysis RLFixer avoids introduc-
ing use-after-close errors by checking if resources escape into
fields or data structures before generating a fix [10]. However,
RLFixer allows a resource to be written into a field of an object
it determines to be a resource alias. An object is a possible
resource alias if its class contains a resource field, assigns
to that field in its constructor, and defines a cleanup method.
Identified resource alias objects are then considered during
RLFixer’s escape analysis to ensure that they themselves do
not escape into other fields.

We identified two issues with RLFixer’s escape reasoning.
First, RLFixer is too conservative in the presence of resource
accessor objects that use a resource but do not take ownership
of it. A resource accessor object takes a resource as a
constructor argument and uses it during its lifetime, but does
not close the resource. For example, in fig. 5, a FileEventProxy

object uses the InputStream passed to its constructor but does



not close it. RLFixer does not treat resource accessors as aliases
of the underlying resource, since they cannot be used to close
the resource. So, RLFixer treats passing a resource into a
resource accessor as a field escape, preventing repair. However,
as long as a resource accessor does not outlive the underlying
resource, it should not preclude a repair.

Second, RLFixer’s checking is unsound, as it does not check
whether objects may escape further via reads of resource
alias fields. For example, consider a class Wrapper with a field
InputStream s and a method getStream() that returns s. Even
if Wrapper meets RLFixer’s resource alias conditions outlined
above, it may not be safe to close the resource passed to
Wrapper in the original scope, since the resource may leak
further via getStream(); RLFixer does not check this condition.
We did not observe this unsoundness in the NJR dataset [12],
but addressing this issue remains important for overall safety.

To handle these issues, we introduced sound support for
resource accessors via field containment analysis, a lightweight
extension to RLFixer’s escape analysis. Field containment
analysis checks that resources stored in a field do not further
escape to some long-lived data structure. Field containment
analysis is used both to identify resource accessors and to
soundly check for resource aliases. Field containment analysis
is again used when introducing fixes for non-final field
overwrites; see Section IV-C2.

Definition IV-B2.1 (Field containment). An instance field f of
a class C is contained iff for every C object c, there is no data
flow from c.f into any field, array, or data structure whose
lifetime may exceed that of c.

Our analysis conservatively checks for field containment.
We require the field f is private, to limit the initial scope of
analysis to C. Then, for each read of f within C, we check if
the value read from f may flow into some field, array, or data
structure, re-using the extant RLFixer escape analysis [10].

Given our field containment analysis, we enhanced RLFixer’s
identification of resource aliases as follows. During resource
alias identification, the enhanced RLFixer also runs field
containment analysis to ensure that further escapes from the
field of the resource alias are not possible. Further, if a class
meets all requirements for being a resource alias but lacks a
finalizer method (which can be close or any method inferred via
@MustCall), our enhanced RLFixer categorizes it as a resource
accessor. We enhanced RLFixer’s escape analysis to treat
resource accessor objects identically to resource aliases, except
that a resource accessor cannot be used to close a resource.

As an example, suppose a leaking resource is stored in a
FileEventProxy object (fig. 5). With RLFixer’s original logic,
this would prevent a leak repair due to a field escape. With
our enhancement, RLFixer can soundly show that the object is
a resource accessor, as field containment analysis on the field
scanner proves the resource does not leak further via the field.
Then, as long as the FileEventProxy object does not escape,
the repair can be applied, as seen in fig. 6.

An alternative to introducing resource accessors would
have been to insert a close method into FileEventProxy

1 InputStream s = new FileInputStream("file.txt");
2 FileEventProxy proxy = new FileEventProxy(s);
3 + try {
4 // use proxy
5 + } finally {
6 + s.close();
7 + }

Fig. 6: Fix for a client of fig. 5, enabled by handling of resource
accessors.

(section IV-A2), making it a resource alias. However, such
a change is unnecessary to repair the leak: the resource is
passed into the constructor, so the client can close it (contrast
with fig. 2b where the resource is allocated in the constructor).
Adding support for resource accessors leads to less intrusive
changes, avoiding insertion of unnecessary close methods into
types that do not require them.
IV-B3 Patch Materialization While RLFixer produces struc-
tured, parameterized repair hints, they are purely textual, e.g.,

Add following code below line 22 (WriterFile.java):
finally{ try{ <NEW_VARIABLE>.close(); } }

// where variable <NEW_VARIABLE> points to the resource
from line 17.

Arodnap extends RLFixer with a deterministic patch materi-
alizer that takes (i) the RLC warning, (ii) the corresponding
RLFixer hint, and (iii) the relevant source, and then (a) parses
the compilation unit into an AST, (b) locates the edit sites
indicated by the hint, and (c) applies template-guided AST
rewrites to realize the repair (e.g., wrapping with try–finally
or try-with-resources when legal, or inserting a close() call).
The modified AST is pretty-printed and diffed against the
original file to produce a concrete patch.

C. Field Overwrite Handling

RLC issues an owning field overwrite warning when a
resource field is reassigned without first being closed. The
assignment potentially causes a leak by making the original
resource unreachable. Arodnap addresses this issue in two
ways: by eliminating false positives in safe constructor-based
assignments, and by safely inserting closure logic before
actual reassignments. The original RLFixer — which runs RLC
without any annotations — did not need to consider this case.
RLC only issues these warnings if at least one field is annotated
as @Owning (in Arodnap, by inference).
IV-C1 Filtering False Positives on Constructor Assignments
Previously, RLC would report an overwrite warning for any
write to a non-final resource field in a constructor, even when it
was the first write to the field. We improved RLC to not issue
a warning if 6 conditions apply. The field (1) is private, (2) has
no initializer at its declaration, and (3) is not written in any
instance initializer block. (4) The assignment occurs directly in
the constructor body. The constructor (5) writes the field exactly
once and (6) neither delegates via this(...) nor performs
any method calls before the assignment. These constraints
conservatively guarantee, based on Java’s initialization order,
that the assignment is the first write to the field, not an overwrite.



1 + if (socket != null) {
2 + try {
3 + socket.close();
4 + } catch (IOException e) {
5 + e.printStackTrace();
6 + }
7 + }
8 socket = new Socket();

Fig. 7: Example repair for field overwrite.

The first write to a field cannot cause a leak since the field
has no previous value.
IV-C2 Safe Reassignment Fixing via Pre-Close Insertion
For cases where a resource field f is legitimately reassigned
outside a constructor, we devised a new repair that inserts a
conditional close of the field’s current value just before the
reassignment, thereby preventing a leak. Care must be taken to
ensure that this repair does not introduce a use-after-close error
due to some other outstanding pointer alias for the resource.
Arodnap only applies this transformation when the following
conditions hold:
1) f is a private field of the enclosing class C.
2) All writes to f assign it a newly-allocated resource (e.g.,

new Socket(...)).
3) Field containment (Def. IV-B2.1) holds for f , i.e., the

resource never escapes the class from f .
Condition 1 limits the scope of analysis, while conditions 2
and 3 ensure there cannot be other references to the resource
that outlive the method re-assigning the field. When these
conditions are met, enhanced RLFixer safely inserts the repair
shown in fig. 7. This fix closes the previously held resource
before overwriting it, preventing a leak. It is possible that the
resource was already closed, and hence the inserted call is a
duplicate. But, this does not cause problems in practice, because
Java close methods are typically specified to be idempotent
and hence safe to repeat (see, e.g., the java.io.Closeable#close

documentation [19]). This repair template simply prints the
stack trace of any exception thrown by close(), but the behavior
in the catch block could easily be customized (e.g., to re-throw
the exception or perform logging).

D. Patch Validation: Static and Dynamic

Arodnap validates each materialized patch with two gates:
IV-D1 Static Validation. The project must recompile cleanly,
and a re-run of RLCI+RLC on the patched code must confirm
that the originally reported leak at the patched site is eliminated.
IV-D2 Dynamic Validation. Arodnap executes the project’s
JUnit test suite and checks that no previously passing test fails
post-patch (i.e., no new regressions relative to the pre-patch
baseline).

V. IMPLEMENTATION

Arodnap builds on the Checker Framework’s Resource
Leak Checker (RLC) [5]. The Checker Framework distribution
includes RLCI [11]. We wrote Error Prone [20] plugins for field
transformations: converting fields to be final and converting

resource fields to locals. Arodnap injects wrapper-finalizers
using JavaParser [21]. For static analysis, field containment
and escape analyses are run on WALA’s SSA intermediate
representation [22]. We also fixed RLFixer’s source-to-IR
matching logic to correctly map warnings within nested and
anonymous classes, enabling more repairs. The full pipeline
targets Java 11.

VI. EXPERIMENTAL SETUP

Our evaluation of Arodnap in detecting and repairing re-
source leaks aimed to answer the following research questions:
RQ1 How effective is Arodnap in reducing and repairing leak

warnings compared to RLC+RLFixer?
RQ2 How effective is Arodnap compared to

RLCI+RLC+RLFixer (adding inference [11] to
the RLC+RLFixer combination, without our other
improvements)?

RQ3 How much do the different components of Arodnap
contribute to its effectiveness?

RQ4 For leaks that cannot be repaired by Arodnap, what is
the root cause?

A. Dataset

The evaluation uses 285 of the 293 Java 8 projects in the
NJR-1 dataset [12], with each project averaging 6,028 non-
blank, non-comment lines of Java code. 8 projects are excluded
due to timeouts during RLC inference. This same benchmark
was used to evaluate RLFixer [10], though they did not exclude
any projects because they did not run inference. The projects
cover a wide range of domains.

The NJR-1 benchmark is an unlabeled snapshot of open-
source Java projects; it does not contain ground-truth defects
annotations. Our evaluation depends on resource-leak warnings
reported by RLC, which is a sound tool. Many files have no
resource leaks; our evaluation shows that Arodnap not only
repairs leaks but does not break files that have no leaks.

B. Configurations

We evaluated three configurations to answer RQ1 and RQ2:
1) RLC+RLFixer: RLC without resource specification infer-

ence and the original RLFixer without our enhancements
(for RQ1).

2) RLCI+RLC+RLFixer: RLC with specification inference
but unmodified RLFixer (for RQ2).

3) Arodnap: As in fig. 3.
All configurations are evaluated after patch materialization
(section IV-B3) and validation (section IV-D), for fairness.

C. Weighted Fix Count

RLC inference and Arodnap’s code transformations often
cause leak warnings to shift from uses of library resources
to uses of corresponding wrapper types, as discussed in
section II-B (see the discussion of fig. 1). While this shifting
makes the leak warnings more actionable and useful, from an
experimental point of view it makes comparisons across our
configurations difficult, since a single warning on a library



Configuration
Leak warnings Fixed warnings Repair

rateCL XE XR FCL FXE

RLC+RLFixer
1909 783

41%
1909 0 0 783 0

RLCI+RLC+
RLFixer

2213 760
50%

1537 320 356 755 5

Arodnap
2136 1014 68%

1446 243 447 952 62

Fig. 8: Leak resolution breakdown across configurations. “Fixed
warnings” values are weighted fix counts (section VI-C).

resource in one configuration could be shifted to multiple
warnings about wrapper type objects in another. Consistent
with Shadab et al. [11], we see an increase in the number of
total leaks when inference is enabled (see fig. 8).

To conservatively account for these differences, we define a
weighted fix count. For each leak warning (see section III) on a
library resource, we determine how many of its shifted warnings
were successfully repaired. If k out of n shifted sites are fixed,
we assign a weighted fix score of k/n to that leak. Non-shifted
leak warnings (i.e., leaks reported on library resources) are
assigned a score of 1 if fixed or 0 if not. The weighted fix count
ensures that each root library leak contributes in proportion to
the fraction of its associated warnings that are fixed, regardless
of shifting due to inference and transformations.

In the general case, mapping a shifted leak warning back
to a library leak warning can be quite challenging and require
inter-procedural data flow analysis. And for leak warnings
on non-final field overwrites (section IV-C), there may be
multiple library resources possibly leaked by the overwrite.
In our experiments, we used a combination of automatic and
manual analysis to compute the shifted leak warning mapping,
and we separately categorized non-final field overwrites to
avoid the complications of mapping those warnings.

VII. EVALUATION

A. Results

To compare different configurations (section VI-B), we
partition leak warnings into three categories. Let Worig be
the warnings produced by RLC alone on the original code.
Let Wxform be the warnings produced by RLC immediately
before the enhanced RLFixer is run (at point 6 in fig. 3), after
mapping any shifted leak warnings (section III) back to their
corresponding library leak warning. Line-number changes do
not affect whether two warnings are considered the same.
• Core Leaks (CL) are Worig∩Wxform. These are warnings

produced by RLC directly indicating a library resource or
wrapper object is leaking.

• Transformation-Exposed (XE) warnings are Wxform \
Worig. These new warnings appear as a result of inference
and transformation. The dominant warning type in this cate-
gory is overwrites of non-final @Owning fields (section IV-C),
where @Owning was added by RLCI inference.

• Transformation-Resolved (XR) warnings are Worig \
Wxform. These warnings do not need repair: they were
false positives that were fixed by semantics-preserving
transformations or by adding resource specifications. To be
treated as resolved, a warning must no longer appear and no
warnings on wrappers can be mapped to it (section VI-C).
It is possible that the resource from a resolved warning
could reappear as a non-final field overwrite warning, but
we manually inspected a sample of 50 XR warnings and
never observed this to occur.

The warning universe is:

T = CL + XE+XR

and the resolution rate is

R =
FCL + FXE +XR

T

where FCL and FXE denote the leaks actually fixed in each
category.

Figure 8 presents our main results. For RLC+RLFixer, Utture
et al. [10] reported a 51% average fixable rate for RLC warnings.
However, this calculation excluded RLC warnings that RLFixer
could not map to a WALA IR instruction, preventing repair.
Counting all reported leaks, we found the actual fix rate for
RLFixer for RLC warnings was 41%.

For RLCI+RLC+RLFixer, which just adds RLC inference
to RLC+RLFixer, 320 new warnings are reported due to
inference (the XE category), nearly all due to overwrites of
non-final fields marked as @Owning by inference. At the same
time, inference leads to 357 of the original warnings being
resolved, raising the resolution rate from 41% to 50%. The
resolution was significantly due to inference discovering 352
wrapper types, with 498 @Owning fields total.

In Arodnap we observe a significantly larger 1014 leaks
repaired (952 core and 62 inference exposed) and 447 warnings
resolved, pushing the resolution rate to 68%. Arodnap discovers
443 wrapper types and 627 @Owning fields. This is a significant
increase over RLCI+RLC+RLFixer, due to our injection of
close methods. At the same time, the raw XE count drops from
320 in RLCI+RLC+RLFixer to 243, despite the increase in
the number of @Owning fields. This decrease is due to the false-
positive filtering of section IV-C1, which significantly reduces
the number of XE warnings. Overall, by exposing wrapper
types and significantly enhancing repair capabilities related to
wrappers, Arodnap resolves over two-thirds of all reported leak
warnings, significantly improving on other configurations.

Note that the weighted fix count metric (section VI-C) used
for fig. 8 is intentionally conservative: that is, it understates
Arodnap’s effectiveness at repairing leaks of wrappers. In
particular, consider a case where a warning about single library
resource in a wrapper class is mapped to ten uses of that
wrapper class. In this case, if Arodnap fixed 5 of the 10
warnings, it would only get credit for fixing 0.5 = 5/10 of
a warning. To illustrate Arodnap’s effectiveness for wrappers
more directly, in RLCI+RLC+RLFixer, RLFixer could repair
only 28 of 543 core leaks on wrappers (5%); Arodnap



Configuration
Leak warnings Fixed warnings Repair

rateCL XE XR FCL FXE

Arodnap
2136 1014 68%

1446 243 447 952 62

− Code Transformations
2151 1005 64%

1537 253 361 951 54

− RLFixer Enhancements
2148 799 57%

1477 253 418 755 44

− Field Overwrite Handling
2216 972 63%

1478 324 414 967 5

Fig. 9: Ablation study: impact of disabling components of Arodnap.
“Fixed warnings” values are weighted fix counts (section VI-C).

repairs 412 of 838 warnings (49%), an order-of-magnitude
improvement in repair effectiveness.

B. Ablation Study

To measure the contribution of individual components of
Arodnap (RQ3), we conduct an ablation study using Arodnap
as a base and selectively disabling key modules:
1) Code Transformations (section IV-A),
2) RLFixer Enhancements (section IV-B),
3) Field Overwrite Handling (section IV-C).
The results are shown in Figure 9. The numbers are non-trivial
to interpret, as disabling certain features may change the total
number and location of warnings reported (see section VI-C),
which has downstream impacts on repair effectiveness. We
explain the results for each configuration below.

When code transformations were disabled, we saw the same
number of wrapper types discovered as in RLCI+RLC+RLFixer,
as finalizer methods are not inserted. This led to 81 fewer
resolved warnings on library resources (they instead appear as
core leaks), decreasing the resolution rate to 64%. The raw
number of core wrapper leak warnings decreases from 838 in
Arodnap to 543 with code transformations disabled, with only
152 of them being repaired instead of 412. The magnitude
of this improvement is understated in Figure 9 due to use of
weighted fix counts (previously discussed in section VII-A).

When disabling RLFixer enhancements, repair effectiveness
is significantly decreased (from 1025 fixed leaks to 814),
reducing the resolution rate to 57%. Finally, with field overwrite
handling disabled, we see an increase of 81 in XE leaks, due
to the lack of filtering of false positives from constructors. And,
there is a decrease in repaired XE leaks (from 62 to 5), due to
absence of our new repair pattern for field overwrites, leading
to an overall reduction of the resolution rate to 63%.

Overall, we see that all components of Arodnap contribute
significantly to its effectiveness.

C. Run time

We run our experiments on an Ubuntu 20.04.6 LTS cloud
VM with 16 vCPUs and 60 GB RAM. Across our evaluation
set, the end-to-end Arodnap pipeline averages 582 seconds per
project (fig. 10). On average, the second RLCI+RLC pass
takes less time than the initial/final RLCI+RLC run because

Stage Mean time (s)

RLCI+RLC (first pass) 211
Code transformations 15
RLCI+RLC (second pass) 78
Enhanced RLFixer 52
Patch validation 226

Total (per project) 582

Fig. 10: Breakdown of per-project average run time.

we execute this second pass only on projects where a code
transformation was applied.

D. Patch Validation

As discussed in section IV-B3, Arodnap automatically
generates code patches for each repair and validates them
using the protocol in section IV-D. In contrast, prior work [10]
validated only a subset of RLFixer-generated hints. In 59 cases
with especially complex code structures (49 deeply nested
control flow; 10 patch conflicts), automatic materialization did
not yield a compilable patch; for those, we applied the RLFixer
hints manually, following the hint template. After automatic
materialization, we ran static and dynamic validation for all
patches generated by Arodnap with all functionality enabled,
and found that over 99% of the patches were validated.

Static validation. For Arodnap, the generated patches
eliminate the reported leak in 99.1% of cases (1016/1025).
Patch materialization failed in 9/1025 attempts, chiefly due to
finalizer visibility (private close() methods) and cases where
the repair template structure was insufficient.

Dynamic validation. Across 285 projects, 11,929 previously
passing JUnit tests were re-run; 7 newly failed post-repair (an
≈ 0.06% failure rate). Five failures were due to the field-to-
local conversion, as those fields were accessed elsewhere via
reflection. The other two cases stemmed from control-flow-
dependent resource acquisition and finalizer injection closing
resources in the wrong order. As a caveat, the overall code
coverage of these tests is low (12.9% statement coverage),
and hence only 11% of Arodnap’s patches (107/1,014) were
executed by the tests.

In short, we successfully validated nearly all repairs gener-
ated by Arodnap; static / dynamic validation and code review
should be performed before such repairs are merged.

E. Example Fixed Leaks

As in the motivating example (fig. 2), Arodnap’s transforma-
tions make ownership explicit and can shift warnings to more
actionable sites (section VI-C). We highlight two additional
patterns taken from the NJR dataset that prior logic did not
repair but Arodnap now fixes.
VII-E1 Safe Pre-close Before Field Overwrite Reassigning
a resource field can leak the prior value. When the field is
private, every write stores a freshly allocated resource, and
no aliases can escape, Arodnap inserts a conditional cleanup
before the write (fig. 11).
Why this was hard before. Without containment and ownership



1 class AbstractParserTables {
2 private Writer f = null;
3

4 String toSourceFile(String fileName) {
5 File file = new File(fileName);
6 + if (f != null) {
7 + f.close();
8 + }
9 f = new BufferedWriter(new FileWriter(file));

10 // ...
11 }
12 }

Fig. 11: Inserting a pre-close before overwriting a resource field.
Adapted from benchmark url270fc4f5ee_ykcilborw_Joust_tgz, file
AbstractParserTables.java.

1 class Task extends TimerTask {
2 private final Puppeteer m_Puppeteer;
3 public Task(Puppeteer puppeteer) { m_Puppeteer =

puppeteer; }
4 public void run() { // uses m_Puppeteer};
5 }
6

7 class ActorsTest {
8 void startPuppeteer() {
9 - Puppeteer puppeteer = new Puppeteer("localhost");

10 - (new java.util.Timer("Puppeteer")).schedule(new
Task(puppeteer), 0, 1000);

11 + Puppeteer puppeteer = null;
12 + try {
13 + puppeteer = new Puppeteer("localhost");
14 + (new java.util.Timer("Puppeteer")).schedule(new

Task(puppeteer), 0, 1000);
15 + } finally {
16 + if (puppeteer != null) puppeteer.finish();
17 + }
18 }
19 }

Fig. 12: Client-side try/finally for a resource accessor that
does not own the resource. Adapted from benchmark
urlc98c3b97d2_Trimax_venta_tgz, file ActorsTest.java.

information, a pre-close risks use-after-close via surviving
aliases, so prior repair avoids inserting it.
VII-E2 Containment Proves an Accessor, Enabling Client–
Side Repair As shown in fig. 12, the user-defined class Task

caches an incoming resource in a private field, never lets it
escape, and exposes no finalizer. Treating such a class as an
owner blocks repair; with containment, we classify it as an
accessor and fix at the client startPuppeteer.
Why this was hard before. Without containment, the wrapper
is conservatively treated as a potential owner or rejected for
lacking a finalizer, so no safe fix is emitted. Containment shows
the field does not escape; the client-side try/finally is then
sound under our ownership model.

F. Remaining Unfixed Leaks: Case Study

To address RQ4 and better understand Arodnap’s limitations,
we manually inspected 100 randomly chosen locations of
resource leak warnings that remained unfixed by Arodnap.

63% of the unrepaired cases would require more global
analysis and/or transformation to repair. In 49 cases, we found
that the resource truly escaped the local scope of the warning

to some longer-lived object or data structure. Repairing such
cases could require significant changes across the codebase
and advances in verification reasoning to prove safety. In 14
other cases, there was an overwrite of an owning field where
the checks of section IV-C could not prove it was safe to close
the field before the overwrite. In most of these cases, the field
was not private, or a resource stored in the field was passed
in from outside the enclosing class, so more global analysis
would be required to prove safety of the repair.

The remaining 37% of unrepaired cases could be addressed
with further engineering improvements to RLFixer that are
orthogonal to our contribution. In 28 cases, the repair could
not be performed due to the need for more complex repair
templates in RLFixer, e.g., to handle resources allocated in
loops or exceptions thrown from a constructor after a field
assignment. Finally, the remaining 9 cases could not be repaired
due to remaining limitations in RLFixer’s logic to match leak
warnings to WALA IR instructions.

VIII. LIMITATIONS AND THREATS TO VALIDITY

VIII-1 Limitations Currently, Arodnap cannot repair leak
warnings related to creation of fresh obligations on wrappers
with non-final @Owning fields. (RLC expresses this with a
@CreatesMustCallFor annotation [5].) An overwrite of such a
field could “reset” the obligation on a wrapper after its finalizer
method has already been called, necessitating another finalizer
call. RLC is currently very imprecise in reasoning about such
cases, and hence the reports are not amenable to repair; Shadab
et al.’s work on inference also ignored such warnings [11].

Arodnap’s transformations are sound and conservative, and
therefore they miss some opportunities. Invoking the injected
finalizer can interact with framework lifecycles; we therefore
inject it only when there is a relevant RLC warning. For pre-
close on reassigned fields, we apply the edit only when the
field is private, every write stores a freshly allocated resource,
and field containment (section VII-E2) holds; otherwise we
skip to avoid alias-related use-after-close risks.
VIII-2 Threats to Validity Regarding external validity, our
evaluation is conducted on 285 Java 8 benchmarks from
the NJR-1 dataset, which was used in prior resource leak
repair research [10]. While the dataset is diverse, our results
may not fully generalize to programs targeting more modern
Java versions, Android applications, or other programming
ecosystems with different resource management idioms.

Regarding internal validity, to compare leak warnings across
configurations, we use an automated mapping process that
matches leaks on wrapper types to the corresponding leaking
library resources (section VI-C). When the automation failed
to establish a match, we manually completed the mapping.
There may still be minor inconsistencies in our mapping, due
to imperfect alias resolution or complex control flow.

Beyond the correctness of Arodnap’s implementation, our
results rely on the correctness of RLC, RLCI, RLFixer, and
supporting tools like JavaParser and WALA. Limitations or
bugs in any of these components may affect the accuracy of
detection or the applicability of repairs. We have validated all



of our generated repairs against RLC (section VII-D), a strong
consistency check for the full Arodnap pipeline.

IX. RELATED WORK

The research most related to our work spans static analysis
for defect detection, specification inference, and automated
program repair (APR). We discuss these areas in turn.

Static Analysis for Detection. Static analysis techniques
have long been employed to detect resource management
errors. RLFixer [10] was specifically tested with the Infer
[3], SpotBugs [4], CodeGuru [23], PMD [24], and RLC [5]
leak detectors. These techniques were built based on earlier
research on static leak detection for Java like that of Torlak and
Chandra [25]. Other languages have their own leak detection
tools, e.g., the Clang Static Analyzer [26] for C/C++. Our work
focuses on repair of leaks reported by RLC, as its corresponding
inference technique [11] uniquely and automatically exposes
key information needed to repair leaks on wrapper types.

Specification Inference. The inference technique for
RLC [11] is built on the whole-program inference framework
of Kellogg et al. [27]. Other recent approaches to annotation
inference have been based on black-box search [28], infor-
mation retrieval [29], and machine-learning [30], [31], [32].
Arodnap uses the extant RLC inference without modification,
and improved inference techniques could be easily incorporated.
Recent work on mining API-level resource patterns — e.g.
MiROK’s large-scale extraction of acquisition-release pairs [33],
MAPO’s protocol mining [34] — provides a complementary
source of cleanup specifications that could be used to extend
the applicability of Arodnap in the future.

Automated Repair Techniques. Automated repair has been
studied across multiple paradigms, and we categorize the most
relevant work into static template-based repair and machine
learning-driven repair.

Static Analysis Template-Based Repair. Template-driven
static APR has evolved along two complementary lines. First,
general-purpose systems such as GENPROG [7], SEMFIX [35],
and COCONUT [36] explore very large patch spaces via
mutation or semantic search guided by test outcomes. Because
resource leaks seldom manifest as failing tests, these techniques
are largely ineffective in our setting [10]. Van Tonder and
Le Goues showed that separation-logic proofs can facilitate
synthesis of verified patches for heap anomalies, including
leaks, in C programs [8]. Second, a broad ecosystem of domain-
specific static APR tools shows that carefully crafted templates
plus static reasoning can repair defects even when no failing
tests exist. MEMFIX formulates C memory-deallocation faults
(leaks, double-frees, use-after-frees) as an exact-cover problem
over allocation-free pairs and solves it with a SAT solver [37].
ARC applies a genetic search that mutates Java synchronization
constructs to eliminate deadlocks and data races, then prunes
excess locks for performance [38]. NPEFIX dynamically guards
or substitutes risky dereferences to avert null-pointer crashes
in Java [39]. Our tool Arodnap is a domain-specific approach
targeted at extending repair of resource leaks to wrapper types.

LLM-Based Repair Techniques. Recent work couples static
analysis with large-language-model (LLM) patch generation.
INFERFIX augments INFER warnings with retrieval-based con-
text before feeding them to a fine-tuned LLM, achieving strong
results on test-oriented benchmarks [40], while FIXRLEAK
deploys a prompt-engineering workflow at Uber that turns
static leak warnings into try-with-resources rewrites for Java
services [1]. Neither of these approaches is applicable to the
wrapper type leaks targeted by Arodnap. Transformer-based
systems such as TFIX [41], CURE [42], and RECODER [43]
learn edit patterns from historical commits. These models
excel at syntactic and localized edits but often lack deep inter-
procedural reasoning, limiting their potential effectiveness for
wrapper type leaks. Our approach applies code transformations,
inference, and targeted static analysis to discover and repair
leaks involving wrapper types across a large program scope.

Android Resource Leaks. For Android, datasets such as
DROIDLEAKS curate real resource-leak defects and are widely
used for evaluation [44]. Analyses like PLUMBDROID detect
and automatically repair Android resource leaks by reasoning
over event-driven control flow and lifecycle callbacks [45].
While not leak-specific, FIXDROID is an Android Studio
assistant that flags security/privacy pitfalls and offers quick
fixes [46]. Arodnap, by contrast, targets general Java projects
and wrapper-based ownership patterns. Its analyses and trans-
formations operate at the language level and are agnostic
to Android-specific lifecycles, making these lines of work
complementary rather than overlapping.

X. CONCLUSION

Arodnap is a technique and tool that extends resource leak
repair for Java to apply to resource wrappers. Java programs
often store resources in fields of wrappers, and repairing leaks
of such resources requires techniques targeted at the wrapper
types and their fields. Arodnap demonstrates that new static
analysis techniques, not just better integration, are needed to
close the gap on resource leak repair for wrappers. Through
a combination of code transformations, new repair templates,
and enhanced reasoning about fields during both leak detection
and repair, Arodnap achieved a leak resolution rate of 68%,
improving over the 41% rate of the prior state of the art.

ACKNOWLEDGEMENTS

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Agree-
ment No. HR00112590132, the National Science Foundation
under grants CCF-2223826, CCF-2312262, CCF-2312263, and
CNS-2120070, a gift from Oracle Labs, and a Google Research
Award.

REFERENCES

[1] Z. Zhang, A. Utture, M. Sridharan, and J. Palsberg, “FixrLeak: GenAI-
based resource leak fix for real-world Java programs,” in Machine
Learning for Systems Workshop at 38th NeurIPS, 2024.

[2] M. Christakis and C. Bird, “What developers want and need from program
analysis: An empirical study,” in ASE 2016: Proceedings of the 31st
Annual International Conference on Automated Software Engineering,
Singapore, Singapore, Sep. 2016, pp. 332–343.



[3] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,
P. W. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez,
“Moving fast with software verification,” in NFM 2015: 7th NASA Formal
Methods Symposium, Pasadena, CA, USA, Apr. 2015, pp. 3–11.

[4] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in OOPSLA
Companion: Companion to Object-Oriented Programming Systems,
Languages, and Applications, Vancouver, BC, Canada, Oct. 2004, pp.
132–136.

[5] M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst, “Lightweight and
modular resource leak verification,” in ESEC/FSE 2021: The ACM 29th
joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), Athens, Greece, Aug.
2021, pp. 181–192.

[6] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in ICSE
2013, Proceedings of the 35th International Conference on Software
Engineering, San Francisco, CA, USA, May 2013, pp. 672–681.

[7] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE TSE, vol. 38, no. 1,
pp. 54–72, Jan. 2012.

[8] R. van Tonder and C. Le Goues, “Static automated program repair for
heap properties,” in ICSE 2018, Proceedings of the 40th International
Conference on Software Engineering, Gothenburg, Sweden, May 2018,
pp. 151–162.

[9] M. Ghanavati, D. Costa, J. Seboek, D. Lo, and A. Andrzejak, “Memory
and resource leak defects and their repairs in Java projects,” Empirical
Softw. Engg., vol. 25, no. 1, pp. 678–718, Jan. 2020. [Online]. Available:
https://doi.org/10.1007/s10664-019-09731-8

[10] A. Utture and J. Palsberg, “From leaks to fixes: Automated repairs for re-
source leak warnings,” in OOPSLA 2023, Object-Oriented Programming
Systems, Languages, and Applications, Cascais, Portugal, Oct. 2023, pp.
159–171.

[11] N. Shadab, P. Gharat, S. Tiwari, M. D. Ernst, M. Kellogg, S. Lahiri, A. Lal,
and M. Sridharan, “Inference of resource management specifications,”
Proc. ACM Program. Lang., vol. 7, no. OOPSLA2, article #282, pp.
1705–1728, Oct. 2023.

[12] J. Palsberg and C. V. Lopes, “NJR: A normalized Java resource,” in
Proceedings of the 2018 ACM SIGPLAN International Conference on
Software Engineering Companion (ISSTA Companion/ECOOP), 2018,
pp. 1–7. [Online]. Available: https://doi.org/10.1145/3236454.3236501

[13] “Arodnap: Repairing leaks in resource wrappers,” https://doi.org/10.5281/
zenodo.15542576.

[14] “Arodnap,” https://github.com/typetools/arodnap.
[15] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D. Ernst,

“Practical pluggable types for Java,” in ISSTA 2008, Proceedings of the
2008 International Symposium on Software Testing and Analysis, Seattle,
WA, USA, July 2008, pp. 201–212.

[16] M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst, “Accumulation
analysis,” in ECOOP 2022 — Object-Oriented Programming, 33rd
European Conference, Berlin, Germany, June 2022, pp. 10:1–10:31.

[17] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java
Language Specification, Java SE 8 ed. Boston, MA: Addison Wesley,
2014.

[18] J. Bloch, Effective Java Programming Language Guide. Boston, MA:
Addison Wesley, 2001.

[19] “Javadoc for close method of java.io.Closeable,” https://docs.oracle.com/
javase/8/docs/api/java/io/Closeable.html#close--, accessed: 2025-05-26.

[20] “Error prone,” https://errorprone.info, 2012–2025, google compiler plug-
in that flags common Java mistakes at compile time.

[21] JavaParser Project, “JavaParser,” 2019, accessed: 2025-05-27. [Online].
Available: https://javaparser.org

[22] IBM, “T.J. Watson Libraries for Analysis (WALA),” 2006, accessed:
2025-05-27. [Online]. Available: http://wala.sourceforge.net

[23] “Amazon CodeGuru Security,” 2025, accessed: 2025-05-28. [Online].
Available: https://aws.amazon.com/codeguru/

[24] The PMD Development Team, “PMD: A multilanguage static code
analyzer,” https://pmd.github.io/, 2024, accessed: 2025-05-21.

[25] E. Torlak and S. Chandra, “Effective interprocedural resource leak
detection,” in ICSE 2010, Proceedings of the 32nd International
Conference on Software Engineering, Cape Town, South Africa, May
2010, pp. 535–544.

[26] “Clang static analyzer,” https://clang-analyzer.llvm.org/, accessed: 2024-
05-18.

[27] M. Kellogg, D. Daskiewicz, L. N. D. Nguyen, M. Ahmed, and M. D.
Ernst, “Pluggable type inference for free,” in ASE 2023: Proceedings
of the 38th Annual International Conference on Automated Software
Engineering, Luxembourg, Sep. 2023, pp. 1542–1554.

[28] N. Karimipour, J. Pham, L. Clapp, and M. Sridharan, “Practical
inference of nullability types,” in Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2023, San
Francisco, CA, USA, December 3-9, 2023, S. Chandra, K. Blincoe,
and P. Tonella, Eds., 2023, pp. 1395–1406. [Online]. Available:
https://doi.org/10.1145/3611643.3616326

[29] J. Wu and C. Lemieux, “QuAC: Quick attribute-centric type inference
for Python,” Proc. ACM Program. Lang., vol. 8, no. OOPSLA2, pp.
2040–2069, 2024. [Online]. Available: https://doi.org/10.1145/3689783

[30] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep learning
type inference,” in ESEC/FSE 2018: The ACM 26th joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), Lake Buena Vista, FL, USA, Nov.
2018, p. 152–162.

[31] Y. Peng, C. Gao, Z. Li, B. Gao, D. Lo, Q. Zhang, and M. Lyu, “Static
inference meets deep learning: a hybrid type inference approach for
Python,” in ICSE 2022, Proceedings of the 43rd International Conference
on Software Engineering, Pittsburgh, PA, USA, May 2022, pp. 2019–
2030.

[32] M. Pradel, G. Gousios, J. Liu, and S. Chandra, “TypeWriter: neural type
prediction with search-based validation,” in ESEC/FSE 2020: The ACM
28th joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), Sacramento,
CA, USA, Nov. 2020, pp. 209–220.

[33] C. Wang, Y. Lou, X. Peng, J. Liu, and B. Zou, “Mining
resource-operation knowledge to support resource leak detection,” in
Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2023, 2023, pp. 986–998. [Online]. Available:
https://doi.org/10.1145/3611643.3616315

[34] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Mining
and recommending api usage patterns,” in Proceedings of the
23rd European Conference on ECOOP 2009 — Object-Oriented
Programming, ser. Genoa, 2009, pp. 318–343. [Online]. Available:
https://doi.org/10.1007/978-3-642-03013-0_15

[35] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “SemFix:
Program repair via semantic analysis,” in 2013 35th International
Conference on Software Engineering (ICSE), 2013, pp. 772–781.

[36] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “CoCoNuT:
combining context-aware neural translation models using ensemble for
program repair,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2020, 2020, pp.
101–114. [Online]. Available: https://doi.org/10.1145/3395363.3397369

[37] J. Lee, S. Hong, and H. Oh, “MemFix: static analysis-based
repair of memory deallocation errors for C,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2018, 2018, pp. 95–106. [Online]. Available:
https://doi.org/10.1145/3236024.3236079

[38] D. Kelk, K. Jalbert, and J. S. Bradbury, “Automatically repairing
concurrency bugs with ARC,” in Proceedings of the International
Conference on Multicore Software Engineering, Performance, and
Tools - Volume 8063, ser. MUSEPAT 2013, 2013, pp. 73–84. [Online].
Available: https://doi.org/10.1007/978-3-642-39955-8_7

[39] J. Lee, S. Hong, and H. Oh, “NPEX: repairing Java null pointer
exceptions without tests,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22, 2022, pp. 1532–1544.
[Online]. Available: https://doi.org/10.1145/3510003.3510186

[40] M. Jin, S. Shahriar, M. Tufano, X. Shi, S. Lu, N. Sundaresan, and
A. Svyatkovskiy, “InferFix: End-to-end program repair with LLMs,” in
Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2023, 2023, pp. 1646–1656. [Online]. Available:
https://doi.org/10.1145/3611643.3613892

[41] B. Berabi, J. He, V. Raychev, and M. Vechev, “TFix: Learning to fix
coding errors with a text-to-text transformer,” in Proceedings of the
38th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, M. Meila and T. Zhang, Eds., vol.

https://doi.org/10.1007/s10664-019-09731-8
https://doi.org/10.1145/3236454.3236501
https://doi.org/10.5281/zenodo.15542576
https://doi.org/10.5281/zenodo.15542576
https://github.com/typetools/arodnap
https://docs.oracle.com/javase/8/docs/api/java/io/Closeable.html#close--
https://docs.oracle.com/javase/8/docs/api/java/io/Closeable.html#close--
https://errorprone.info
https://javaparser.org
http://wala.sourceforge.net
https://aws.amazon.com/codeguru/
https://pmd.github.io/
https://clang-analyzer.llvm.org/
https://doi.org/10.1145/3611643.3616326
https://doi.org/10.1145/3689783
https://doi.org/10.1145/3611643.3616315
https://doi.org/10.1007/978-3-642-03013-0_15
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1145/3236024.3236079
https://doi.org/10.1007/978-3-642-39955-8_7
https://doi.org/10.1145/3510003.3510186
https://doi.org/10.1145/3611643.3613892


139. PMLR, 18–24 Jul 2021, pp. 780–791. [Online]. Available:
https://proceedings.mlr.press/v139/berabi21a.html

[42] W. Zhong, C. Li, J. Ge, and B. Luo, “Neural program repair: Systems,
challenges and solutions,” in Proceedings of the 13th Asia-Pacific
Symposium on Internetware, ser. Internetware ’22, 2022, pp. 96–106.
[Online]. Available: https://doi.org/10.1145/3545258.3545268

[43] Q. Zhu, Z. Sun, Y.-a. Xiao, W. Zhang, K. Yuan, Y. Xiong, and
L. Zhang, “A syntax-guided edit decoder for neural program repair,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2021, 2021, pp. 341–353. [Online].
Available: https://doi.org/10.1145/3468264.3468544

[44] Y. Liu, J. Wang, L. Wei, C. Xu, S.-C. Cheung, T. Wu, J. Yan, and
J. Zhang, “DroidLeaks: a comprehensive database of resource leaks
in Android apps,” Empirical Software Engineering, vol. 24, no. 6, pp.
3435–3483, 2019.

[45] B. N. Bhatt and C. A. Furia, “Automated repair of resource leaks
in Android applications,” J. Syst. Softw., vol. 192, no. C, Oct. 2022.
[Online]. Available: https://doi.org/10.1016/j.jss.2022.111417

[46] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl,
“A stitch in time: Supporting Android developers in writing secure code,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1065–1077. [Online]. Available:
https://doi.org/10.1145/3133956.3133977

https://proceedings.mlr.press/v139/berabi21a.html
https://doi.org/10.1145/3545258.3545268
https://doi.org/10.1145/3468264.3468544
https://doi.org/10.1016/j.jss.2022.111417
https://doi.org/10.1145/3133956.3133977

	Introduction
	Background
	Static Leak Detection with the Resource Leak Checker
	Inference for Resource Management Annotations
	Semi-Automated Repair with RLFixer

	Example Repair
	Detection and Repair Architecture
	Code Transformations
	Field Transformations for Immutability
	Adding Finalizers to Wrapper Classes for Ownership Visibility

	Enhancements to RLFixer
	Support for Inferred Finalizers
	Field Containment Analysis
	Patch Materialization

	Field Overwrite Handling
	Filtering False Positives on Constructor Assignments
	Safe Reassignment Fixing via Pre-Close Insertion

	Patch Validation: Static and Dynamic
	Static Validation.
	Dynamic Validation.


	Implementation
	Experimental Setup
	Dataset
	Configurations
	Weighted Fix Count

	Evaluation
	Results
	Ablation Study
	Run time
	Patch Validation
	Example Fixed Leaks
	Safe Pre-close Before Field Overwrite
	Containment Proves an Accessor, Enabling Client-Side Repair

	Remaining Unfixed Leaks: Case Study

	Limitations and Threats to Validity
	Limitations
	Threats to Validity


	Related Work
	Conclusion
	References

