
Program Analysis, in
Industry and Academia
Manu Sridharan

My Journey

This talk
My personal journey in industrial research /
industry / academia

For a great overview of CS PhD jobs, see
Kathleen Fisher's PLMW@PLDI'19 talk:
http://bit.ly/careerOptions

My focus: program analysis at scale
Static analysis
Type systems and type inference

http://bit.ly/careerOptions

Grad School
2002-2007

Ras Bodik
(my advisor)

Problem Space: Pointer Analysis
Finds values for pointer variables
Crucial building block

"What gets called by x.m()?"
"What code uses untrustedInput()?"

Others formulated C pointer analysis as a
CFL-reachability problem
Ras's suggestion (~January 2003): Java
pointer analysis using CFL-reachability

Target programs: Benchmarks
Standard suites used in performance papers

SpecJVM98
Dacapo

Tried to use "real-world" clients
E.g., proving safety of downcasts
Atypical for pointer analysis papers at the time

"Large" programs
Hundreds of thousands of lines (with libraries)
I learned later they weren't that big…

Making progress
Took a while (> 1 year) to ramp up

Understanding the (extensive) literature
Learning the engineering "tricks"

A few false starts, paper rejections
Spent multiple months on an idea that didn't work

Insight: Java analysis has a "balanced
parentheses" structure
Led to a refinement-based technique with
improved scalability and precision

9

High-Level Example

• Must merge some objects (decidability)
• Too much merging: precision loss
• Too little merging: space explosion (typically exponential)
• Our technique: unmerge through refinement

v1: Vector

v2: Vector

a1: Object[]

a2: Object[]

s1: String

s2: String

sn: String

b1: Boolean

bm: Boolean

…

…

x

y

p = (String)x.get(i);

q = (Boolean)y.get(i);

a: Object[]

s: String

b: Boolean

Safe!

Safe!

May Fail

May Fail

Single execution (dynamic)All executions (static)

Branching out
Idea: balanced parentheses for slicing
Implemented with Steve Fink from IBM

Ras had long collaborated with IBM
Used newly open-source WALA framework

Wrote a fun paper ("Thin Slicing")
Realized how much I enjoy close
collaboration...

IBM Research
2008-2013

Balance in Industrial Research
Some work should "pay the bills"

Applying research results to a product
Lower risk (but still publishable!)
Tangible impact

Other work should be forward looking
Speculative, but with a story for eventual impact
Sometimes turns into "pay the bills" work

I really enjoyed this balance!
Get to have a portfolio of impact

Information flow vulnerabilities
Untrusted data used in sensitive operation

E.g., SQL injection
Leaking of confidential data

E.g., showing exception stack traces

(paying the bills)

https://www.xkcd.com/327/

Target programs: Customer code
Much different than what I saw in grad school
Enormous!

Dozens of library jars in classpath
Even building class hierarchy had to be optimized

Often based on complex frameworks
No main() method in application
Framework calls into app based on XML config
Hard to analyze!

Technique: hybrid thin slicing

The real world
Many heuristics needed for huge programs

Cutoffs, timeouts, etc.
Hard to build robustly

Frameworks led to many missed issues
Tools sell by doing well in "proof-of-concept"

Sales engineer tries tool on customer code
Find some bugs, don't miss obvious ones
"Verifying" the code not relevant

So, design analysis to work well in PoCs

Eventual approach
No whole-program pointer analysis!

Use simple class hierarchy + local tracking of
data flow and aliasing

Built a sophisticated tool F4F to make
modeling of frameworks easier

Successful product (still sold today)

Shifting gears: JavaScript
~2011, heard from Julian Dolby about
challenges in analyzing JavaScript web apps

We started studying challenges in core static
analysis for JavaScript

Forward looking: no particular customer

Reflective code

Java: x.f = y
If no f field, compile error

JavaScript: x[e] = y
Computed field name

If field doesn’t exist, create it!

Disaster for pointer analysis

Used in real world 😐

var e = “blur,focus,load”.split(“,”);
// e is [“blur”,”focus”,”load”]
for (var i=0;i<e.length;i++) {
var o = e[i];
jQuery.fn[o] = function() { … };
jQuery.fn[“un”+o] = function() { … };
jQuery.fn[“one”+o] = function() { … };

}

Techniques
Improvements to traditional pointer analysis

Correlation tracking
Dynamic determinacy analysis

Scalable, approximate (unsound) call graphs
Used to pay the bills! AppScan JS analysis

Samsung Research
2013-2016

Shifting gears: Performance

A push for running JS / web apps on devices
Performance was lagging behind

Dynamic features hard to optimize
Hard to run JIT, GC with resource constraints

Goal: ahead-of-time compilation for JS

Target programs: web apps
Often, not much client code

Many had < 10,000 LoC

But, relied on complex frameworks
And web browser itself is complex!

When optimizing, can’t be unsound

Technique: type inference
Defined a type system for a rich subset of JS

Enabled efficient code generation

Defined a (global) type inference algorithm, to
handle extant code

Built a full compiler backend (compiled to C)

Uber
2017-2018

Uber Apps

App
reliability:
critical

Rider app crash: can’t
get home

Driver app crash: can’t
earn

Using apps involves
payments

Apps take significant
time to patch

App
reliability:
crucial

Target programs: our own code
We can rewrite code to work well with tool!

Goal: integrate with development process
Fast, modular analysis
Understandable error messages

Can require reasonable annotation burden

Technique: Pluggable Types
Idea: add extra type checking to compiler

Leveraging source code annotations

Pioneered by Checker Framework

NullAway: fast, practical NPE prevention
Engineered for speed
Soundness tradeoffs to reduce annotations
Runs on every Android build at Uber
https://github.com/uber/NullAway,
https://arxiv.org/abs/1907.02127

https://github.com/uber/NullAway
https://arxiv.org/abs/1907.02127

Example: Nullability

static void log(Object x) {
System.out.println(x.toString());

}
static void foo() {

log(null);
}

Error: cannot pass null to @NonNull
parameter x

Example: Nullability

static void log(@Nullable Object x) {
System.out.println(x.toString());

}
static void foo() {

log(null);
}

Error: de-referencing x may
yield NPE

Example: Nullability

static void log(@Nullable Object x) {
if (x == null) return;
System.out.println(x.toString());

}
static void foo() {

log(null);
}

Other Uber projects
Type-based detection of multithreading bugs

Specialized to stream APIs
Also running on every Android build

Optimization of Swift protocols
12% speedup in app startup
Upstreamed to Apple

Auto-deletion of stale feature flags
Stale flags hurt reliability, code readability
Hundreds of flags removed

UC Riverside
2019-present

What’s next?
I still like to pay the bills!

Make time for open-source hacking
Polish tools, within reason

Invest in teaching / advising
Research: greater risk / time horizon
Find good collaborators!

Students, faculty (Riverside / elsewhere), industry

Tips
Be aware of “adjacent” areas

Read broadly (papers, Hacker News, …)
Make time for it

Networking and visibility matters!
Talk to people
Do open source, give talks (with video)

Value in different perspectives on a problem
The “right”, academic solution
Dealing with existing code as-is
Working with developers

Thanks!

