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We consider the problem of making expressive, interactive static analyzers compositional. Such a technique

could help bring the power of server-based static analyses to integrated development environments (IDEs),

updating their results live as the code is modified. Compositionality is key for this scenario, as it enables reuse

of already-computed analysis results for unmodified code. Previous techniques for interactive static analysis

either lack compositionality, cannot express arbitrary abstract domains, or are not from-scratch consistent.

We present demanded summarization, the first algorithm for incremental compositional analysis in arbitrary

abstract domains which guarantees from-scratch consistency. Our approach analyzes individual procedures

using a recent technique for demanded analysis, computing summaries on demand for procedure calls. A

dynamically-updated summary dependency graph enables precise result invalidation after program edits,

and the algorithm is carefully designed to guarantee from-scratch-consistent results after edits, even in the

presence of recursion and in arbitrary abstract domains. We formalize our technique and prove soundness,

termination, and from-scratch consistency. An experimental evaluation of a prototype implementation on

synthetic and real-world program edits provides evidence for the feasibility of this theoretical framework,

showing potential for major performance benefits over non-demanded compositional analyses.

CCS Concepts: • Theory of computation → Program analysis; • Software and its engineering →
Formal software verification.

Additional Key Words and Phrases: Abstract interpretation, Incremental computation

1 INTRODUCTION
This paper addresses the problem of developing incremental and demand-driven static analyzers

that simultaneously support real-time user interaction, arbitrarily complex abstract domains, and

compositional analysis. Static analysis is being increasingly deployed for bug finding and verification

in continuous integration (CI) pipelines and automated code review systems [Distefano et al. 2019;

Sadowski et al. 2018]. However, the cost of analyzing large programs means that developers must

wait minutes or sometimes hours to receive analysis results after making changes, depressing fix

rates and ultimately limiting the effectiveness of these tools.

In this paper, we describe an analysis engine that is (1) incremental in that it reuses analysis

results unaffected by program edits, (2) demand-driven in that it performs only the analysis work

needed to respond to client-issued queries, and (3) compositional in that it produces reusable and

composable procedure summaries for interprocedural analysis. Furthermore, our framework makes

no demands on analysis implementors beyond those typical of a batch abstract interpretation

engine — specifically, it supports arbitrary abstract domains, including infinite-height domains

with non-monotonic widening operators.

We formalize incrementality and demand for summary-based abstract interpretation and show

that our approach is sound, terminating, and from-scratch consistent, i.e., that analysis results are
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always at least as precise as reanalyzing the program from scratch. Soundness and termination

are familiar metatheoretic properties from the program analysis literature, whereas from-scratch

consistency has been called “the fundamental correctness property of incremental computation”

in general incremental computation literature [Hammer et al. 2015]. In the context of interactive

program analysis, from-scratch consistency guarantees that there is no loss of precision or flakiness
introduced by incremental or demand-driven infrastructure.

Recent work offers an approach for interactive analysis, making analyses with arbitrary abstract

domains incremental and demand-driven by explicitly reifying abstract interpretation computation

into acyclic dependency structures called demanded1 abstract interpretation graphs (DAIGs) [Stein

et al. 2021a]. This combination of incrementality and demand is desirable for scenarios requir-

ing interactive performance: it avoids unnecessary recomputation of unchanged outputs when

inputs change, and also avoids unnecessary computation of outputs that are never needed by the

client [Hammer et al. 2015, 2014].

Although this technique computes analysis results efficiently and interactively, it is limited to

intraprocedural analysis of imperative programs. Stein et al. [2021a] describe an informal extension

of their whole-program operational approach to interprocedural analysis, but this extension does

not handle recursion at all and is known to have issues in scaling up to large programs. Instead, a

standard approach to scale batch abstract interpretation to large programs is to compute procedure

summaries and then apply these summaries to analyze the whole program compositionally [Black-

shear et al. 2018; Calcagno and Distefano 2011; Distefano et al. 2019; Reps et al. 1995; Schubert et al.

2021].

Ideally, an interactive demanded abstract interpreter could interoperate with a batch composi-

tional analysis seamlessly, updating analysis results locally while drawing on existing procedure

summaries computed on CI servers—with the same arbitrarily complex abstract domains.

Traditional compositional analyses based on the well-known tabulation algorithm combine

“operational” dataflow analysis (i.e., how to interpret commands intraprocedurally to compute the

analysis state at a program point, given the analysis states at predecessor points) with “denotational”

procedure summaries mapping code to a functional or relational abstraction of its semantics (i.e., a

compilation of code to a transformer on analysis states for interprocedural analysis) [Reps et al.

1995; Sharir and Pnueli 1981], but existing dependency-based approaches to incremental or demand-

driven analysis tend to focus on one or the other style of analysis.

In this paper, we show how demanded analysis infrastructure can be extended to tabulation-based

compositional analysis in the presence of arbitrary abstract domains and recursive procedures,

while providing meta-theoretical guarantees including soundness, termination, and from-scratch
consistency of analysis results. From-scratch consistency ensures that incremental results agree

precisely with an underlying batch analysis, and is crucial for reliable deployment in analysis

systems that strive for deterministic and reproducible results.

To address this challenge, we introduce a dependency map that is dynamically extended to

capture the dependencies that arise from using demanded procedure summaries. These dynamic

dependencies also enable our algorithm to detect the self-referential procedure summaries that

arise when analyzing recursive procedures and require a further fixed-point iteration.

Our framework improves over the state-of-the-art in multiple ways. Compared to previous work

on intraprocedural demanded analysis [Stein et al. 2021a], which rely on the restricted structure

of loops in reducible control flow graphs, our approach naturally handles the richly structured

dependency graphs that arise from analyzing interprocedural control flow with recursion.

1
We use “demanded” to describe a computation that is both incremental and demand-driven, following Hammer et al. [2015,

2014] and Stein et al. [2021a], all of which reify dependency graphs to enable real-time interactivity.
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Supporting the analysis of recursive procedures is particularly important in languages with

higher-order or dynamic dispatch, as it is well-known that reasonable approximation in the under-

lying call graph construction can lead to recursion in the program abstraction.

Other recent compositional analysis frameworks [Blackshear et al. 2018; Calcagno and Distefano

2011] have claimed some degree of incrementality, so as to reduce analysis times on CI servers after

a code change. It is true that compositionality naturally yields some degree of incrementality, but

tracking the invalidation of summaries is tricky and can lead to subtle soundness bugs, especially

surrounding virtual calls and incremental changes to dependency structures. Such issues have

manifested in the Infer static analyzer, for example, due to insufficiently conservative dependency

tracking or invalidation of pre-edit summaries using the post-edit dependency structure [Stein

2023]. These works give no formal treatment of incrementality, and are typically deployed in a

non-incremental configuration. A variant of the technique described in this paper has recently

been implemented in the Infer static analyzer, enabling deployment of incremental analysis and

yielding significant (on the order of 3x) analysis speedups in CI [Stein 2023].

This paper aims to formalize and provide a richer understanding of the dependency management

problem that underlies sound and precise incremental and demand-driven analysis.

To our best knowledge, this paper presents the first algorithm for incremental compositional

analysis in arbitrary abstract domains (including infinite-height domains with non-monotonic

widening). Further, it supports demand-driven queries for analysis results, and we provide a full

meta-theory showing soundness, termination, and from-scratch consistency in the presence of

recursive procedures.

In short, we make the following key contributions:

• We introduce a framework for interactive abstract interpretation with demanded summarization,
reifying the dependency structure of a tabulation-based analysis as a dynamically-evolving

demanded summarization graph (DSG) (Section 4). The result is a demand-driven interprocedural

analysis framework that is both incremental and compositional by default.

• We formalize such an analysis as an on-demand evaluation of DSGs, showing that it is sound,

terminating, and from-scratch consistent with the underlying batch analysis (Section 5).

• We describe a prototype implementation of the framework and evaluate it on both synthetic

benchmarks and real bug-fixing edits from open-source Java programs. Our proof-of-concept

evaluation finds that our framework enables real-time interprocedural analysis in rich abstract

domains (Section 6).

• We formalize extensions to the framework that enable memory and computation saving opti-

mizations without compromising its formal guarantees (Section 7). While seemingly simple, we

see that maintaining the summary dependency structure in a sound way is surprisingly subtle.

2 OVERVIEW
In this section, we illustrate demanded summarization by example. Fig. 1 shows a numerical

program (adapted from Sagiv et al. [1996]) in an imperative language, with a recursive procedure p.

Fig. 1 also shows a simple example edit on line 3 of the program, designed to demonstrate some of

our technique’s key features.

Note that throughout this worked example, we assume a standard semantics for variable scoping

and formal/actual parameter binding; our formalism elides these details for the sake of simplicity

and clarity as they are unrelated to the developments in this paper.

For illustration, we consider analysis of the original and edited programs using an interval
abstract domain to bound variable ranges – a textbook example of an infinite height domain with

a non-monotonic widening operator [Cousot and Cousot 1977]. With this domain, the analysis
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1 int x = 0;

2 void main() {

3 - int n = 3;

+ int n = 5;

4 p(n);

5 print(x);

6 }

7 void p(int a) {

8 if (a > 0) {

9 a -= 2;

10 p(a);

11 a += 2;

12 }

13 x = -2 * a + 5;

14 }

Fig. 1. An example program written in an imperative language with recursive procedures, adapted from Sagiv
et al. [1996], along with an edit applied at line 3.

can prove, that 𝑥 = −1 at the exit of main originally, and 𝑥 = −5 at exit after the edit. An efficient

incremental analysis should re-use many intermediate results from analysis of the original program

when re-analyzing the edited version.

Our key goal is to define an analysis framework that simultaneously supports incremental,

demand-driven, and compositional analysis in arbitrary abstract domains. Recent work by Stein

et al. [2021a] supports incremental and demand-driven analysis in arbitrary domains, but only for

intraprocedural analysis; they present an informal extension for interprocedural analysis but it is

not compositional and cannot handle recursion.

We first show the drawbacks of a lack of compositionality for our example, then show how our

demanded summarization approach achieves both compositionality and support for recursion. This

technique enables the use of Stein et al.’s [2021a] fine-grained demanded abstract interpreters at

scale, so we describe the approach using DAIGs to be concrete in our presentation and support

incrementality at the fine granularity of statements. However, the same general approach could be

used to derive an analysis with a coarser procedure-level granularity if instantiated with a standard

batch intraprocedural abstract interpreter.

2.1 Incrementality and Context Sensitivity
Fig. 2 illustrates how an operational2 approach to interprocedural analysis has disadvantages for

incremental analysis. In the operational call-strings approach [Sharir and Pnueli 1981], a procedure

is analyzed separately for each abstract call stack, or call string, in which it is called. Fig. 2 shows

the analysis result for the original program using call strings of length 1; p is analyzed once for

each call site (lines 4 and 10). Using this context-sensitivity policy provides sufficient precision to

prove 𝑥 = −1 at exit.
The downside of the operational approach comes in doing incremental analysis. The operational

approach indexes its results on the calling context under which a procedure is invoked. Hence, if an

edit leads to recomputing facts at some call site of a procedure, the procedure must be re-analyzed

for corresponding contexts. In Fig. 1, the edit on line 3 causes re-computation of the abstract facts

before the call site at line 4. This in turn necessitates invalidation of all analysis facts computed in

p for this call (shown with ✗). Similarly, all facts for p from the recursive call must be invalidated.

This invalidation is wasteful: p was not modified and it invokes no other functions (besides itself),

so results for p should be unaffected by the change.

2
We use “operational” and “denotational” (following Jeannet et al. [2010]), which are analogous to but more general than

the commonly-used “call-strings” and “functional” terminology of Sharir and Pnueli [1981]. In particular, (1) call-strings are

just one instance of a broader class of context-sensitive interprocedural analyses that operationally propagate predicates

along a control-flow graph until a fixed-point is reached, and (2) summaries need not be functions but can be any abstraction

of a procedure’s denotational semantics.
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{𝑥 ↦→ [0, 0] }
int n = 3; int n = 5;
{𝑥 ↦→ [0, 0] ; 𝑛 ↦→ [3, 3] }✗
p(n);
{𝑥 ↦→ [-1, -1] ; 𝑛 ↦→ [3, 3] }✗
print x;
{𝑥 ↦→ [-1, -1] ; 𝑛 ↦→ [3, 3] }✗

main @ context 𝜀

{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ [3, 3] }✗
if (a > 0) {{ · · · }✗
a -= 2;{ · · · }✗
p(a);{ · · · }✗
a += 2;{ · · · }✗

}{ · · · }✗
x = -2 * a + 5;
{𝑥 ↦→ [-1,∞) ; 𝑎 ↦→ [3, 3] }✗

p @ context main

{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ (-∞, 3] }✗
if (a > 0) {{ · · · }✗
a -= 2;{ · · · }✗
p(a);{ · · · }✗
a += 2;{ · · · }✗

}{ · · · }✗
x = -2 * a + 5;
{𝑥 ↦→ [-1,∞) ; 𝑎 ↦→ (-∞, 3] }✗

p @ context p

Fig. 2. The results of a 1-call-string sensitive abstract interpretation (typifying the operational approach to
interprocedural analysis) of the program in an interval domain [Cousot and Cousot 1977]. Those abstract
states invalidated by the line-3 edit are marked by a ✗, and blue arrows represent interprocedural analysis
dependencies.

A denotational2 interprocedural analysis computes a transformer for each procedure – typically,

some two-state relational abstraction or Hoare triple(s) over the procedure, which can then be

applied at callsites when the abstract state is compatible with a summary’s initial state. This is

the “functional approach” of Sharir and Pnueli [Sharir and Pnueli 1981], and such analyses are

often referred to as “summary-based,” “compositional,” or “modular.” Note that a denotational

interprocedural analysis need not analyze each procedure precisely once, but may compute and

tabulate multiple partial procedure summaries.

Fig. 3 shows the result of our demanded summarization approach, which is a denotational,

tabulation-based approach to interprocedural analysis for our example. For the moment, ignore

the edit and arrows between the boxes, which are part of explaining our approach further below.

What to note now is that copies of p are distinguished by the abstract fact reaching p’s entry,

e.g., {𝑥 ↦→ [0, 0];𝑎 ↦→ [3, 3]}. In this summary-based approach, clearly editing line 3 does not

impact the results for p, as the tabulated summaries are independent of specific callers. Hence, only

results in main need to be invalidated. Our challenge lies in adapting the denotational approach

to build incremental and demand-driven analyses for arbitrary abstract domains with interactive

performance and provable correctness and precision guarantees.

2.2 Demanded Abstract Interpretation
In the work of Stein et al. [2021a], incremental and demand-driven analysis is achieved via demanded

abstract interpretation graphs, or DAIGs. These structures reify analysis computation in a graph

that makes dependencies among analysis results and program statements explicit, and support two

key analysis operations: queries and edits. A query can be raised for the analysis result at some

program point 𝑝 . The query is answered by computing analysis results at all points backward-

reachable from 𝑝 in the DAIG, which captures all dependencies. Intermediate results are cached to

speed up computation of future queries. In response to a program edit, analysis results that are

forward-reachable from the edit point(s) in the DAIG (those results dependent on edited statements)

are dirtied; these dirtied results may be recomputed in response to a future query.

These techniques – and the “demanded” terminology
1
– draw heavily on the incremental compu-

tation literature and can be seen as specializing traditional graph-based incremental computation

techniques to the setting of intraprocedural abstract interpretation [Hammer et al. 2015, 2014; Stein

et al. 2021a].
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{𝑥 ↦→ [0, 0] }
int n = 3; int n = 5;
{ . . .}✗ {𝑥 ↦→ [0, 0] ; 𝑛 ↦→ [5, 5] }
p(n);
{ . . .}✗ {𝑥 ↦→ [-5, -5] ; 𝑛 ↦→ [5, 5] }
print x;
{ . . .}✗ {𝑥 ↦→ [-5, -5] ; 𝑛 ↦→ [5, 5] }

main @ {𝑥 ↦→ [0, 0] }

{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ [3, 3] }
if (a > 0) {

a -= 2;
p(a);
a += 2;

} x = -2 * a + 5;
{𝑥 ↦→ [-1, -1] ; 𝑎 ↦→ [3, 3] }

p @ {𝑥 ↦→ [0, 0] ; 𝑎 ↦→ [3, 3] }

{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ (-∞, 3] }
if (a > 0) {

a -= 2;
p(a);
a += 2;

} x = -2 * a + 5;
{𝑥 ↦→ [-1,∞) ; 𝑎 ↦→ (-∞, 3] }

p @ {𝑥 ↦→ [0, 0] ; 𝑎 ↦→ (-∞, 3] }

{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ [5, 5] }
if (a > 0) {
a -= 2;
p(a);
a += 2;

} x = -2 * a + 5;
{𝑥 ↦→ [-5, -5] ; 𝑎 ↦→ [5, 5] }

p @ {𝑥 ↦→ [0, 0] ; 𝑎 ↦→ [5, 5] }

✗

++

Fig. 3. Demanded summarization applied to the program and edit of Fig. 1, with some non-procedure-
entry/exit abstract states in the summaries of p elided for clarity. As in Fig. 2, blue edges denote interprocedural
analysis dependencies.
After the edit at line 3, the previously-computed summaries of p (on the right half of this figure) are still valid
and can be used to produce the additional p summary needed to reanalyze main.
The summary dependency edge labeled by a ✗ is removed when the callsite it points to is dirtied by the edit.
When a new query is issued at the exit of main, only the green states must be recomputed, instantiating a
new partial summary of p and two new dependencies (labeled by +) in the process.

Wewill avoid delving into the details and complexities of intraprocedural analysis in this paper for

clarity of presentation and to show that demanded summarization has no fundamental dependency

on the specific intraprocedural analysis used to produce summaries.

2.3 Demanded Summarization
Our new approach to incremental, demand-driven, compositional interprocedural analysis is based

on demanded summarization graphs (DSGs), which embody three key ideas. First, each denotational

procedure summary is computed using a DAIG, which is a node in the DSG. Each individual DAIG

is guaranteed to be from-scratch consistent [Stein et al. 2021a]. Second, at a procedure call, a new

DAIG summary must be computed on demand; an edge in the DSG tracks where the summary

is applied. To ensure from-scratch consistency, a procedure summary is only applied at call sites

after computation of that summary has converged. Finally, recursion is handled via an additional

fixed-point computation within the recursive procedure, designed carefully to maintain from-scratch

consistency.

The key difficulty addressed by the DSG semantics is the interleaving of intraprocedural analysis

(within DAIGs) and interprocedural analysis (orchestrated amongst a collection of DAIGs) in a way

that is sound, terminating, and from-scratch consistent.

The dependency structures induced by general interprocedural control flow — wherein proce-

dures may have many recursive calls in arbitrary position, possibly nested in loops and intermingled

with calls to other procedures — require fundamentally different handling than cyclic intraprocedu-

ral control flow.
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{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ (-∞, 3] }
if (a > 0) {
{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ [0, 3] }
a -= 2;
{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ [-2, 1] }
p(a);
{???}
a += 2;
{???}

} {???}
x = -2 * a + 5;
{???}

p @ {𝑥 ↦→ [0, 0] ; 𝑎 ↦→ (-∞, 3] }

{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ (-∞, 3] }
if (a > 0) {
{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ [0, 3] }
a -= 2;
{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ [-2, 1] }
p(a);
{⊥}
a += 2;
{⊥}

} {𝑥 ↦→ [0, 0] ; 𝑎 ↦→ (-∞, 0] }
x = -2 * a + 5;
{𝑥 ↦→ [5,∞) ; 𝑎 ↦→ (-∞, 0] }

p @ {𝑥 ↦→ [0, 0] ; 𝑎 ↦→ (-∞, 3] }

{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ (-∞, 3] }
if (a > 0) {
{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ [0, 3] }
a -= 2;
{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ [-2, 1] }
p(a);
{𝑥 ↦→ [5,∞) ; 𝑎 ↦→ [-2, 1] }
a += 2;
{𝑥 ↦→ [5,∞) ; 𝑎 ↦→ [0, 3] }

} {𝑥 ↦→ [0,∞) ; 𝑎 ↦→ (-∞, 3] }
x = -2 * a + 5;
{𝑥 ↦→ [-1,∞) ; 𝑎 ↦→ (-∞, 3] }

p @ {𝑥 ↦→ [0, 0] ; 𝑎 ↦→ (-∞, 3] }

{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ (-∞, 3] }
if (a > 0) {
{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ [0, 3] }
a -= 2;
{𝑥 ↦→ [0, 0] ; 𝑎 ↦→ [-2, 1] }
p(a);
{𝑥 ↦→ [-1,∞) ; 𝑎 ↦→ [-2, 1] }
a += 2;
{𝑥 ↦→ [-1,∞) ; 𝑎 ↦→ [0, 3] }

} {𝑥 ↦→ [-1,∞) ; 𝑎 ↦→ (-∞, 3] }
x = -2 * a + 5;
{𝑥 ↦→ [-1,∞) ; 𝑎 ↦→ (-∞, 3] }

p @ {𝑥 ↦→ [0, 0] ; 𝑎 ↦→ (-∞, 3] }

(a) (b) (c)

Fig. 4. In-place fixed-point computation of the self-referential summary of Fig. 1, showing how analysis
converges on the control-flow cycle between its recursive return site and procedure exit location.

Fig. 3 shows how the example of Fig. 1 is analyzed using a DSG. Each box in the diagram

represents a DAIG, while the blue edges represent interprocedural summary dependencies: a

DSG essentially consists of a collection of independent procedure summary DAIGs overlaid by an

interprocedural dependency graph.

Assume an initial query for the analysis state at the exit of main when 𝑥 = 0 at main’s entry. Our

approach first creates a corresponding DAIG (labeled main @ {𝑥 ↦→ [0, 0]}) to perform this analysis.

Intraprocedural analysis proceeds until it reaches the call p(n) with fact {𝑥 ↦→ [0, 0];𝑛 ↦→ [3, 3]}.
Handling the call and finishing the analysis of main requires first computing a summary for p, so

we instantiate a new DAIG for p (at top right of Fig. 3, after performing formal/actual parameter

binding on the abstract state).

Recursion. Analysis within the DAIG for p with initial fact {𝑥 ↦→ [0, 0];𝑎 ↦→ [3, 3]} reaches a
recursive call p(a). Here, we recognize the call as recursive and apply widening before instantiating

another DAIG over p, yielding initial state {𝑥 ↦→ [0, 0];𝑎 ↦→ (−∞, 3]} (at bottom right of Fig. 3).

Analysis in this new DAIG once again reaches the recursive callsite, but widening of the entry state

has converged to {𝑥 ↦→ [0, 0];𝑎 ↦→ (−∞, 3]}.
Now, we must analyze the control-flow path(s) after the recursive call in the final (self-referential)

DAIG, as we need a converged summary before we can propagate back to callers. Further, a fixed

point may be required to converge on the exit state.

To obtain a converged exit state, we run a carefully-designed fixed-point analysis within the final

DAIG, using intraprocedural dirtying to iterate. The process is illustrated step-by-step in Fig. 4.

It starts by injecting ⊥ as the post-state of the final recursive call (step (a)), since no dataflow has

yet reached the exit. Propagating to the exit yields a fact {𝑥 ↦→ [5,∞];𝑎 ↦→ (−∞, 0]}, due to the join
with the non-recursive path. To iterate, we dirty the post-state of the recursive call within the DAIG,

update the post-state to this new fact, and then re-query the exit state (step (b)). We continue this

process one more time (step (c)), and see the exit state converges to {𝑥 ↦→ [−1,∞];𝑎 ↦→ (−∞, 3]}.
Finally, the fully-analyzed rightmost DAIG of Fig. 4 can be applied as a summary in the DAIG

that initially demanded it (at top right of Fig. 3), which can then be fully analyzed and applied as a

summary in the main DAIG. We add interprocedural dependency edges to the DSG to track each of

these summary applications: the blue edges not marked by a + in Fig. 3. Finally, we finish analyzing

main and return the query result {𝑥 ↦→ [−1,−1];𝑛 ↦→ [3, 3]}.
Incremental Updates. Now, when the edit is made to main, its downstream dependencies (the

states marked by ✗ in Fig. 3) are dirtied in the main DAIG, but no other DAIG is affected because

the main summary has no dependencies. Suppose another query is issued for the exit abstract

state of main: we now reach the p(n) callsite with no applicable summary and so instantiate a

new DAIG for p with initial state {𝑥 ↦→ [0, 0];𝑎 ↦→ [5, 5]}, at bottom left of Fig. 3. However, the
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previously-computed summary
3
with precondition {𝑥 ↦→ [0, 0];𝑎 ↦→ [3, 3]} can now be used at

the recursive callsite p(a), allowing analysis to complete without recomputing a fixed point over

the recursive procedure. Once again, summary applications are tracked by dependency edges to

enable precise dirtying in response to future edits.

From-scratch consistency. From-scratch consistency requires computing exactly the same result

on an edited program as a batch analysis. Hence, our approach strictly orders computation of

analysis results, including integration of summaries into callers, enabling from-scratch consistency

for arbitrary domains. The DSG algorithm guarantees that the requested summary for p will only

be integrated into main once summary computation has completely converged.

In tabulation analyses like the IFDS algorithm [Reps et al. 1995], intermediate summary results

may be propagated to callers before all paths through a procedure are completely analyzed. So, for

p, a summary result for the non-recursive path could be propagated to callers before the recursive

call is fully analyzed. For an IFDS problem, the variance in propagation ordering does not impact

the final analysis result, since the join operation is always set union. However, since our framework

supports infinite abstract domains with non-monotonic widening operators (like the interval

domain), variance in propagation order could cause differences in the final analysis result.

Demanded Summarization and Compositional Analysis. When a new summary is required to

analyze a procedure call, demanded summarization instantiates a new DAIG with the requisite

initial abstract state and issues a query for the abstract state at its exit. Within an instantiated

DAIG, we can reuse results to respond to future queries and efficiently dirty results in response to

program edits. However, instantiated DAIGs cost memory, so a balance must be struck between

the granularity of cached analysis results and memory usage.

We can tune this balance by condensing DAIGs to two-state summaries, remembering the entry

and exit states — essentially a Hoare triple over the procedure — while discarding all intermediate

analysis facts that contributed to said triple. This is formalized in Section 7, where we show that

from-scratch consistency is preserved under this transformation.

A demanded summarization-based analysis can also be initialized with procedure summaries

computed from a batch compositional analysis, provided that dependencies between summaries

are preserved to enable dirtying after edits. This addresses the motivating problem of connecting

server-based compositional analysis with interactive analysis in the IDE.

3 PRELIMINARIES: ABSTRACT INTERPRETATION
In this section, we fix syntax, semantics, and terminology for programs and abstract interpreters.

These are intentionally standard and define a typical interface for a batch summary-based batch

abstract interpretation engine (see e.g. Padhye and Khedker [2013] for a similar formulation of the

approach, which can be understood as an extension of Reps et al. [1995] to abstract interpretation).

By design, all constructions are generic in the underlying abstract domain and statement language,

and can be instantiated to a wide range of analysis problems and imperative programming languages.

A procedure ⟨𝐿, 𝐸⟩ is a reducible control-flow graph over an unspecified statement language Stmt
with procedure call edges of the form ℓ−-[call 𝜌]� ℓ ′, where ℓ is the location preceding the call and

3
Note that this summary is actually more precise than the one that would have been computed by from-scratch batch

analysis of the updated program. A DSG may apply a compatible summary whose precondition is stronger than the

result of widening at recursive callsites without loss of precision, though its result may actually be more precise than

from-scratch batch analysis if it does so. Although this optimization strictly improves analysis precision, it technically

violates from-scratch consistency and as such is not applied in our formal system.
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ℓ ′ is the return site:

statements 𝑠 ∈ Stmt
locations ℓ ∈ Loc

control-flow edges 𝑒 ∈ Edge ::= ℓ−-[𝑠]� ℓ ′

| ℓ−-[call 𝜌]� ℓ ′

procedures ⟨𝐿, 𝐸⟩ ∈ Proc = P(Loc) × P(Edge)
A program is a labeled collection of such procedures with a distinguished “main” entry-point.

procedure labels 𝜌 ∈ Label ∋ 𝜌main

programs 𝑃 : Label ↩→ Proc

We denote by 𝐿
𝜌

𝑃
, 𝐸

𝜌

𝑃
, entry𝑃 (𝜌) and exit𝑃 (𝜌) respectively the program-location set, control-flow

edge set, entry location, and exit location of 𝜌 . We also write 𝜌ℓ
𝑃
for the unique 𝜌 containing ℓ

and 𝐸∗
𝑃
for the set of all control-flow graph (CFG) edges in 𝑃 , and elide 𝑃 subscripts where they

are clear from context. This core language considers direct calls without parameters or return

values for ease of presentation only and is not a fundamental limitation. In Section 6, we discuss

implementation considerations when applying our approach to Java programs. However, note that

our formal framework does not directly model mutual recursion or higher-order control flow.

Concrete Semantics. To define a concrete semantics of this language, we assume a denotational

semantics for statements:

concrete states 𝜎 ∈ Σ (with initial state 𝜎0)

concrete semantics J·K : Stmt → Σ→ Σ⊥

concrete stacks 𝜅 ∈ 𝐾 ::= 𝜀 | 𝑒 :: 𝜅
where the function J·K gives a denotational interpretation of non-callsite program statements

over concrete program states 𝜎 (with ⊥ being an invalid state and Σ⊥ = Σ ∪ {⊥}). Concrete call
stacks 𝜅 are used to keep track of return sites in procedure calls. A state-collecting semantics

J·K∗
𝑃
: Loc → P(Σ × 𝐾) for this language with procedure calls can be defined as a fixed-point over

the concrete transfer function J·K.
Abstract Semantics.An abstract interpreter for procedures of this language is a tuple ⟨Σ♯, 𝜑0, J·K♯, ⊑

,⊔,∇⟩ consisting of an abstract domain Σ♯
equipped with distinguished initial state 𝜑0, partial

order ⊑, join ⊔, and widening ∇, as well as an abstract semantics (i.e., transfer function) J·K♯ that
interprets statements as functions over abstract states, all subject to the usual soundness conditions.

That is, we require that (1) Σ♯
forms a semi-lattice under ⊑ with join ⊔ and bottom element ⊥, (2) ∇

satisfies the ascending chain condition, and (3) 𝜑0 and J·K♯ are sound with respect to their concrete

counterparts 𝜎0 and J·K.
A solution to an intraprocedural abstract interpretation problem is a pre-fixed-point of the

abstract transfer function over the flow graph ⟨𝐿, 𝐸⟩, with the join ⊔ applied at locations in 𝐿 with

in-degree ≥ 2 and the widening ∇ applied infinitely often on cycles. It is well-known that such a

solution can be computed by worklist iteration, and that such a solution is sound if the transfer

function is locally-sound [Cousot and Cousot 1977].

Just as we defined the concrete state-collecting semantics J·K∗
𝑃
for this language with procedure

calls as a fixed-point over the concrete transfer function, we can define an abstract state-collecting

semantics J·K♯∗
𝑃

as a fixed-point over abstract semantic functions. However, such a definition does

not correspond to a computable analysis, since the space 𝐾 of concrete stacks is unbounded.

A standard solution to this issue is to apply the call-strings approach [Sharir and Pnueli 1981],

abstracting concrete stacks by truncating instead of extending them indiscriminately in the equation

for procedure entry locations.
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3.1 Intraprocedural Demanded Abstract Interpretation
In this section, we define semantic judgments for intraprocedural demand-driven analysis and

incremental edits, and make some assumptions about their behavior. This treatment is based on

the demanded abstract interpretation graphs (DAIGs) of Stein et al. [2021a], but is intentionally

abstract in the underlying details of intraprocedural analysis.

This “black-box” description is meant to facilitate a clear and understandable presentation of

interprocedural analysis in the sections to follow, and to demonstrate that the demanded summa-

rization algorithm does not depend on specific implementation details of DAIGs and generalizes in

principle to other producers of procedure summaries.

A DAIGD reifies an abstract interpretation computation into a structure that supports interactive

program analysis, that is, demand-driven queries and incremental edits [Stein et al. 2021a]. Partial

analysis results are stored in reference cells that are assigned unique names 𝑛 ::= ℓ | 𝑛1·𝑛2 | . . . .
The location name ℓ corresponds to the cell that, when demanded, stores the fixed-point invariant

at location ℓ , and the product name ℓ ·ℓ ′ stores the statement 𝑠 (or procedure call call 𝜌) labeling

the control-flow edge from ℓ to ℓ ′. A DAIG is then a directed acyclic hypergraph where reference

cells are nodes and where edges are labeled by abstract interpreter operations (e.g., J·K♯, ⊔, ∇) that
specify the operation to apply when its output cell is queried. Demanded abstract interpretation is

captured by two DAIG-rewriting judgments:

demand-driven queries D ⊢ 𝑛 ⇒ 𝜑 ;D′
incremental edits D ⊢ 𝑛 ⇐ 𝑣𝜀 ;D′

Queries. The judgment formD ⊢ 𝑛 ⇒ 𝜑 ;D′ is read as “a query for the abstract state named by 𝑛 in

DAIG D yields result 𝜑 by demanded abstract interpretation with updated DAIG D′.” A demanded

abstract interpretation [Stein et al. 2021a] computes a result 𝜑 to store in the cell named by 𝑛 by

evaluating backwards-reachable dependencies of cell 𝑛 in DAIG D while unrolling fixed-point

computations on demand to maintain the DAIG acyclicity invariant and eventually resulting in D′.
We assume that this querying judgment is sound, terminating, and from-scratch consistent with

respect to the underlying abstract interpretation.

Edits. The judgment form D ⊢ 𝑛 ⇐ 𝑣𝜀 ;D′ is read as “an edit that writes value 𝑣 (or the empty

symbol 𝜀) to the cell named by 𝑛 in DAIG D yields updated DAIG D′ with cells depending on 𝑛

marked as ‘dirty’.” Demanded abstract interpretation supports incremental edits by eagerly “dirtying”

those results forward-reachable from the edit to cell 𝑛 in DAIG D (e.g., writing a statement 𝑠 to

a control flow edge from ℓ to ℓ ′ is given by D ⊢ ℓ ·ℓ ′ ⇐ 𝑠 ;D′) . We assume that this dirtying

judgment is conservative in the sense that all potentially-affected abstract states are dirtied. Since

incremental dirtying is eager and demand-driven query evaluation is lazy, dirtied results are only

recomputed if needed for a future query.

3.2 Summarization and Tabulation
Instead of abstracting concrete stacks and propagating abstract data flow in the resulting inter-

procedural control-flow graph, an alternative approach is to build compositional summaries for

each procedure (i.e., the functional approach [Sharir and Pnueli 1981]). Procedure summaries can

be built by defining relational, two-state abstract domains (e.g., [Jeannet et al. 2010; Yorsh et al.

2008]) or by tabulating pairs of abstract states [Padhye and Khedker 2013; Reps et al. 1995; Sharir

and Pnueli 1981]. In either case, the goal is to compute procedure summaries {𝜑} 𝜌 {𝜑 ′} for each
procedure 𝜌 that can be applied at call sites ℓ−-[call 𝜌]� ℓ ′.
A tabulation approach works by propagating intraprocedural dataflow through the procedure

control-flow graph using the abstract transfer function J·K♯, join ⊔, and widen ∇ until it encounters
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a procedure call, at which point either (1) corresponding procedure summaries have already been

computed and can simply be applied, or (2) new summaries are required, so the process continues

recursively. Convergence is guaranteed through suitable applications of widening
4
at recursive

calls.

This approach operates over a worklist of Σ♯ × Loc pairs (i.e., a procedure-entry abstract state

and a program location) and computes for each encountered (𝜑, ℓ) an abstract state 𝐼 (𝜑, ℓ), which
is best understood as the post-condition of a Hoare triple with pre-condition 𝜑 over the valid paths

to ℓ from the entry of the containing procedure. Thus, when ℓ is a procedure exit location exit(𝜌),
the abstract state 𝐼 (𝜑, ℓ) is equivalent to a procedure summary {𝜑} 𝜌 {𝐼 (𝜑, ℓ)}, which can be used

to interpret calls to 𝜌 in compatible abstract states.

4 DEMANDED SUMMARIZATION
In this section, we describe demanded summarization, which generates procedure summaries on

demand using a tabulation-style interprocedural abstract interpretation. Demanded summarization

bridges the gap between operational-style demanded abstract interpretation and denotational-style

procedure summaries.

One can of course construct a single operational-style dependency structure over the interpro-

cedural control-flow graph that results from connecting call sites ℓ−-[call 𝜌]� ℓ ′ to procedures 𝜌
(i.e., with ℓ transitioning to entry(𝜌) and exit(𝜌) to ℓ ′) with a suitable context abstraction such as

𝑘-limited call strings. However, as illustrated in Section 2, this global dependency structure induced

by context-sensitive analysis is overly conservative for programs with good procedural abstraction

and thus leads to poor incremental reuse.

Instead, we employ distinct intraprocedural dependency structures for each procedure summary,

instantiated on demand. In particular, we assume that an initial DAIG D init
𝜌,𝜑 can be constructed for

any procedure 𝜌 with initial abstract state 𝜑 stored in cell entry(𝜌) and with otherwise uninitialized

abstract-state cells; that is, D init
𝜌,𝜑 reifies the computational structure of analyzing procedure 𝜌 , but

with no actual analysis work performed yet beyond filling in the abstract state at entry(𝜌).
Although Stein et al. [2021a] give a mechanism to reify intraprocedural analysis computation,

procedure call CFG edges must also be translated somehow. To do so, we extend slightly the DAIG

syntax and semantics of Section 3.1 as follows. In Fig. 5, we show how a CFG edge ℓ−-[call 𝜌]� ℓ ′ is
encoded by a new kind of DAIG edge with label 𝜌 connecting the abstract state reference cell ℓ to

that of ℓ ′. This label 𝜌 indicates that the function to compute ℓ ′ from ℓ is described by a summary

of procedure 𝜌 , which we can view as a (higher-order) reference to another DAIG for 𝜌 . However,

since the intraprocedural DAIG semantics of Stein et al. [2021a] have no means to evaluate such an

edge, queries can now get “stuck” with a value for ℓ but no way to compute a value for ℓ ′.
Querying a DAIGD for the value of a cell 𝑛 thus may result in either an abstract state to store in

𝑛 (if no interprocedural analysis is required) or getting stuck and demanding a procedure summary.

To capture this second possibility – when intraprocedural analysis is unable to proceed without

some procedure summary – we introduce a judgment form

demanding a procedure summary D ⊢ 𝑛 𝑛′
⇝ (𝜌, 𝜑) ;D′

4
Throughout this paper, we fix a strategy of widening at every recursive call, for simplicity and clarity of presentation. Our

general approach is compatible with other widening strategies, too, but we choose not to introduce that degree of freedom

into the formalism and instead present the simple and conservative widen-everywhere strategy. It is also not clear that

arbitrary widening strategies give rise to from-scratch consistent implementations, if the choice of whether or not to widen

depends on some information not preserved in the incremental setting.
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D D′

(a) (b)
ℓ

ℓ′

call 𝜌

ℓ

ℓ′
𝜌

𝑛

𝜑
ℓ

ℓ′
𝜌

𝑛

Intraprocedural analysis demanding a summary for 𝜌 : D ⊢ 𝑛
ℓ
′
⇝ (𝜌, 𝜑) ;D′

Fig. 5. Translating and abstractly interpreting a procedure-call CFG edge. Dotted arrow (a) shows how a CFG
edge of the form ℓ−-[call 𝜌]� ℓ′ is encoded into a corresponding DAIG edge labeled by 𝜌 (both in shaded
boxes). Intuitively, a procedure-labeled DAIG edge corresponds to computing a summary of procedure 𝜌
by instantiating a DAIG for 𝜌 as needed. Dotted arrow (b) shows the effect of a subsequent query for a cell
named 𝑛 that depends transitively on the value at ℓ′. The query for the value of 𝑛 is blocked by needing to
apply a summary for 𝜌 , which is captured by the judgment shown above for demanding a summary.

which indicates that a query for the value named by 𝑛 in D is stuck, unable to compute (and

store at the return site 𝑛′) the result of a call to 𝜌 with abstract state 𝜑 and where D′ reflects any
intraprocedural analysis evaluation in D before it got stuck on the 𝜌-labeled edge.

Example 4.1. Fig. 5 gives a visual example of this judgment D ⊢ 𝑛
ℓ
′
⇝ (𝜌, 𝜑) ; D′. The middle

box, labeled by D, shows a fragment of an initial DAIG containing a call to some procedure 𝜌 ,

upon which some analysis state named 𝑛 transitively depends. A query for the value of 𝑛 triggers

analysis computation (and caching of results) up to the cell ℓ preceding the call site, at which it

gets “stuck”, needing a summary of 𝜌 in initial state 𝜑 in order to compute an invariant at ℓ ′ and
continue. The partially-analyzed state is reflected in DAIG D′, shown in the right box.

In the rest of this section, we introduce demanded summarization graphs (DSGs), which enable

these partial computations stuck on demanding a callee summary to get “unstuck.” Evaluation of

DSGs interleaves intraprocedural DAIG evaluation with procedure summary synthesis. Procedure

summaries are synthesized by instantiating and/or evaluating DAIGs for procedures on demand.

A demanded summarization graph (DSG) G = ⟨D∗,Δ⟩ consists of a DAIG for each partially-

or fully-computed summary of a procedure 𝜌 with initial abstract state 𝜑 , which we denote by

D∗ (𝜌, 𝜑). Thus, there may be multiple instantiated DAIGs for a procedure 𝜌 , each with a differ-

ent initial abstract state. Crucially for incremental analysis (cf. Section 4.2), it also maintains a

demanded summarization dependency map Δ that records interprocedural analysis dependencies

from applying procedure summaries.

A demanded summarization dependency 𝛿 has the form (𝜌 ′, 𝜑 ′) 𝑛←↪ (𝜌, 𝜑), which indicates that

the return-site abstract state named by 𝑛 inD∗ (𝜌 ′, 𝜑 ′) depends upon the summary DAIGD∗ (𝜌, 𝜑).
Note that this is a very fine-grained dependency: not only do we record that procedure 𝜌 ′ depends
on procedure 𝜌 , but also the relevant precondition states and the specific point 𝑛 in the analysis of

𝜌 ′ which depends on a summary of 𝜌 .

We denote byDG𝜌,𝜑 the DAIGD mapped to by (𝜌, 𝜑) in DSGG. We useG[D/(𝜌, 𝜑)] as shorthand
for ⟨D∗ [D/(𝜌, 𝜑)],Δ⟩, that is, G with the DAIG summarizing 𝜌 in initial state 𝜑 updated to D.
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demanded summarization graphs G ::= ⟨D∗,Δ⟩
intraprocedural analysis states D∗ ::= 𝜀 | D∗; (𝜌, 𝜑) ↦→ D
summary dependency edges 𝛿 ∈ Dep ::= (𝜌 ′, 𝜑 ′) 𝑛←↪ (𝜌, 𝜑)
summary dependency maps Δ ::= 𝜀 | Δ ; 𝛿

G ⊢ {𝜑} 𝜌 {𝜑 ′} ; G′

Summarize

G ⊢𝜑 exit(𝜌) ⇓ 𝜑 ′ ; G′

G ⊢ {𝜑} 𝜌 {𝜑 ′} ; G′

Fig. 6. A demanded summarization graph (DSG) G is a collection D∗ of intraprocedural DAIGs overlaid by
an interprocedural demanded summarization dependency map Δ. The demanded summarization dependency
map Δ captures the essence of demanded summarization; it is progressively extended to capture the dynamic
dependencies from using procedure summaries during demand-driven query evaluation that are later needed
for incremental dirtying. The summarization judgment G ⊢ {𝜑} 𝜌 {𝜑 ′} ; G′ makes explicit the interpretation
of operational DAIG analysis results as denotational procedure summaries (i.e., Hoare triples over procedures).

Similarly, we denote by Δ𝜌,𝜑 the set of dependencies in Δ on the procedure-𝜌 summary with initial

state 𝜑 and use G[𝛿] as shorthand for ⟨D∗,Δ;𝛿⟩, that is, G with an added summary-dependency

edge 𝛿 .

In Section 4.1, we define demand-driven query evaluation using the judgment form

demanding an abstract state in a DSG G ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G′

that says, “Given a DSG G, a query for the abstract state at ℓ under pre-condition 𝜑 for ℓ ’s enclosing

procedure returns result 𝜑 ′ and updated DSG G′.”

Example 4.2 (DSG Queries). In the example of Fig. 3, analyzing the program after the edit

corresponds to a derivation of the query evaluation judgment G ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G′, where:
- G is the DSG representing the analysis state immediately after the program edit is processed. G
contains the two previously-computed summaries of p on the right side of the figure, and also

the partially-computed summary of main after dirtying (see Section 3.1) from the edit.

- 𝜑 is the initial abstract state, 𝜑 ′ the final abstract state, and ℓ the exit location for main.

- G′ is the fully-evaluated DSG after the query is complete. G′ contains both previously-cached

summaries of p, a now-fully-computed summary of main, and the freshly-computed summary of

p (shown beneath the main summary).

Fig. 6 shows a G ⊢ {𝜑} 𝜌 {𝜑 ′} ; G′ judgment form that makes explicit our interpretation of DAIG

analysis results as composable procedure summaries. In particular, the Summarize rule shows how

a composable procedure summary {𝜑} 𝜌 {𝜑 ′} (i.e., a Hoare triple) for the procedure 𝜌 is implied by

a DSG query result computed at the exit of the corresponding DAIG (i.e., G ⊢𝜑 exit(𝜌) ⇓ 𝜑 ′ ; G′).
Intuitively, this rule captures reifying the denotational procedure summary through the operational

fixed-point computation therein, applying local transfer functions and/or summary transformers.

4.1 Demand-DrivenQuery Evaluation in DSGs
Abstract interpretation in DSGs is demand-driven by default: analysis results are computed only

as needed to answer queries. A query requests the abstract state at a specific program location ℓ
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under some procedure-entry precondition 𝜑 , and may be issued directly by a developer through

their IDE, programmatically by a client analysis, or internally in service of another query.

4.1.1 Queries. Queries in DSGs are governed by the G ⊢𝜑 ℓ ⇓ 𝜑 ′ ;G′ judgment form, introduced in

the previous section and defined inductively by the Q-* (for “query”) inference rules of Fig. 7.

We explain the inference rules in turn. The Q-Instantiate rule is used to instantiate a DAIG for a

procedure on demand. More specifically, if the current DSG does not have a DAIG for the procedure

𝜌ℓ containing ℓ with pre-condition 𝜑 (i.e., (𝜌ℓ , 𝜑) ∉ dom(D∗)), Q-Instantiate instantiates a new
DAIG D init

𝜌ℓ ,𝜑
for 𝜌ℓ , with entry abstract state 𝜑 , and then re-issues the query for location ℓ in this

extended DSG.

The Q-Delegate rule applies when the relevant DAIG is already available in the DSG and can

handle the query on its own, i.e., without getting stuck due to dependence on another procedure

summary. In this case, an intra-procedural DAIG query (discussed previously in Section 3.1) suffices

to compute the result. Note that if the queried abstract state had previously been computed, no

analysis computation is performed and the analysis state is unchanged.

Finally, the Q-Apply-Summary rule handles the case when a procedure summary must be applied

to handle a query. This rule does the heavy lifting of composing analysis results by applying

summaries and tracking interprocedural analysis dependencies. Its first premise states that the

query-relevant DAIG DG
𝜌ℓ ,𝜑

is unable to produce a result by intraprocedural analysis, as the result

transitively depends upon a call to 𝜌 in abstract state 𝜑 ′ at the call site. The second premise uses an

auxiliary summary query judgment form for

computing and applying summaries G ⊢ (𝜌, 𝜑) 𝑛
f (𝜌 ′, 𝜑 ′) ; G′ .

It says, “In DSG G and in procedure 𝜌 with pre-condition 𝜑 , a query at the return site 𝑛 is resolved

with a procedure summary over 𝜌 ′ with pre-condition 𝜑 ′, yielding updated G′.” We discuss the

rules for handling such summary queries in detail in Section 4.1.2.

Example 4.3 (Summary queries). In Fig. 3, each interprocedural dependency edge corresponds

to a derivation of a summary query judgment G ⊢ (𝜌, 𝜑) 𝑛
f (𝜌 ′, 𝜑 ′) ; G′. These summary queries

arise as subderivations of a larger analysis query derivation, where

- G is the interprocedural analysis state in which intraprocedural analysis got stuck requiring a

procedure summary to continue;

- 𝜌 ′ is the callee function and 𝜑 ′ the entry abstract state of the summary at the edge’s source;

- 𝑛 is the name of the return-site abstract state of the callsite at the edge’s destination;

- 𝜌 is the caller function and 𝜑 the entry abstract state of the summary containing that callsite; and

- G′ is the interprocedural analysis state extending G with any newly-computed summaries, and

the return-site abstract state computed and stored at 𝑛.

The summary query judgment inQ-ApplySummary’s premises demands a summary of the invoked

procedure 𝜌 with pre-condition 𝜑 ′, applying it to resolve the post-state 𝑛 of a call in the summary

DAIG indexed by (𝜌ℓ , 𝜑). Once a compatible summary is applied for the call to 𝜌 in the updated

DSG G′, the query for location ℓ is reissued, just like with Q-Instantiate.

Note the connection between stuck intraprocedural analysis (denoted with

𝑛
⇝) and interproce-

dural summary queries (denoted with

𝑛
f) in Q-Apply-Summary’s premises – whenever analysis is

unable to proceed without some procedure summary, this rule computes or fetches the requisite

summary, applies it, and then analysis proceeds through the third premise.

4.1.2 SummaryQueries. The complexity of interprocedural analysis thus lies in computing sum-

maries with the judgment form G ⊢ (𝜌, 𝜑) 𝑛
f (𝜌 ′, 𝜑 ′) ; G′ defined inductively with the SQ-* (for

“summary query”) rules of Fig. 7.
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G ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G′Q-Instantiate

(𝜌ℓ , 𝜑) ∉ dom(D∗)
⟨D∗; (𝜌ℓ , 𝜑) ↦→D init

𝜌ℓ ,𝜑
,Δ⟩ ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G

⟨D∗,Δ⟩ ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G

Q-Delegate

DG
𝜌ℓ ,𝜑
⊢ ℓ ⇒ 𝜑 ′ ;D G′ = G[D/(𝜌ℓ , 𝜑)]

G ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G′

Q-Apply-Summary

DG
𝜌ℓ ,𝜑
⊢ ℓ 𝑛
⇝ (𝜌, 𝜑 ′) ;D

G[D/(𝜌ℓ, 𝜑)] ⊢ (𝜌ℓ , 𝜑) 𝑛
f (𝜌, 𝜑 ′) ; G′ G′ ⊢𝜑 ℓ ⇓ 𝜑 ′′ ; G′′

G ⊢𝜑 ℓ ⇓ 𝜑 ′′ ; G′′

G ⊢ (𝜌, 𝜑) 𝑛
f (𝜌 ′, 𝜑 ′) ; G′

SQ-Other-Proc

𝜌 ≠ 𝜌 ′ G ⊢ {𝜑 ′}𝜌 ′
{
𝜑post

}
; G′

DG′𝜌,𝜑 ⊢ 𝑛 ⇐ 𝜑post ;D
G′′ = G′ [D/(𝜌, 𝜑)] [(𝜌, 𝜑) 𝑛←↪ (𝜌 ′, 𝜑 ′)]

G ⊢ (𝜌, 𝜑) 𝑛
f (𝜌 ′, 𝜑 ′) ; G′′

SQ-Other-Pre

𝜑 ′ @ 𝜑 G ⊢ {𝜑∇𝜑 ′}𝜌
{
𝜑post

}
; G′

DG′𝜌,𝜑 ⊢ 𝑛 ⇐ 𝜑post ;D
G′′ = G′ [D/(𝜌, 𝜑)] [(𝜌, 𝜑) 𝑛←↪ (𝜌, 𝜑∇𝜑 ′)]

G ⊢ (𝜌, 𝜑) 𝑛
f (𝜌, 𝜑 ′) ; G′′

SQ-Self

𝜑 ′ ⊑ 𝜑 DG𝜌,𝜑 ⊢ 𝑛 ⇐ ⊥ ;D G[(𝜌, 𝜑) 𝑛←↪ (𝜌, 𝜑)] ⊢ fix(𝜌, 𝜑);G′

G ⊢ (𝜌, 𝜑) 𝑛
f (𝜌, 𝜑 ′) ; G′

G ⊢ fix(𝜌, 𝜑);G′F-Converge

G ⊢ {𝜑} 𝜌 {𝜑 ′} ; G′ R𝜌,𝜑 (G′) = ∅
G ⊢ fix(𝜌, 𝜑);G′

F-Step

G ⊢ {𝜑} 𝜌 {𝜑 ′} ; G′ {(𝑛1, 𝜑1) . . . , (𝑛𝑘 , 𝜑𝑘 )} = R𝜌,𝜑 (G′) ≠ ∅
D0 = DG

′
𝜌,𝜑 D𝑖−1 ⊢ 𝑛𝑖 ⇐ 𝜑𝑖∇𝜑 ′ ;D𝑖 for 1 ≤ 𝑖 ≤ 𝑘 G′ [D𝑘/(𝜌, 𝜑)] ⊢ fix(𝜌, 𝜑);G′′

G ⊢ fix(𝜌, 𝜑);G′′

where R𝜌,𝜑 (⟨D∗; (𝜌, 𝜑) ↦→ D,Δ⟩) =
{
(𝑛 , D(𝑛))

����� (𝜌, 𝜑) 𝑛←↪ (𝜌, 𝜑) ∈ Δ
∧ D(exit(𝜌)) @ D(𝑛)

}
Fig. 7. Operational semantics rules governing analysis computation in DSGs. The query judgment form
G ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G′ is read as “a query against DSG G for the abstract state at location ℓ with procedure-entry
abstract state 𝜑 yields result 𝜑 ′ and updated DSG G′.”
It is defined via mutual recursion with a summary query judgment form G ⊢ (𝜌, 𝜑) 𝑛

f (𝜌′, 𝜑′) ; G′ for demand-
ing and applying summaries, and a fixed-point judgment form G ⊢ fix(𝜌, 𝜑);G′ for fixed-point computations
on self-referential summaries of recursive procedures.
The shorthand R𝜌,𝜑 (G) describes the set of recursive-call return sites that do not over-approximate the
procedure-exit abstract state in the DAIG summarizing 𝜌 under pre-condition 𝜑 .
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Let us first consider the simpler case of a non-recursive call to a different procedure 𝜌 ′ from the

current caller 𝜌 with an abstract state 𝜑 ′ at the call site, handled by the SQ-Other-Proc rule. In the

second premise, we compute a Hoare-style summary G ⊢ {𝜑 ′} 𝜌 ′
{
𝜑post

}
; G′ of the callee; since

these judgment forms are mutually inductively defined, deriving this second premise can involve

arbitrary additional analysis computations.

Then, we write 𝜑post to the return site 𝑛 in the third premise and add the fine-grained demanded

summarization dependency (𝜌, 𝜑) 𝑛←↪ (𝜌 ′, 𝜑 ′) to G′′, expressing that the value at the return site 𝑛

now depends on the {𝜑 ′} 𝜌 ′
{
𝜑post

}
summary. Critically, if the applied summary is ever invalidated

by incremental edits, then the return site 𝑛 must also be invalidated.

The next two rules SQ-Other-Pre and SQ-Self implement an incremental and demand-driven

tabulation with (directly
5
) recursive procedures. Note that both rules derive judgments in which a

query in (𝜌, 𝜑) depends on some summary of the same procedure 𝜌 .

In the case where the callsite state 𝜑 ′ is not included in the pre-condition of this procedure DAIG

𝜑 (i.e., 𝜑 ′ @ 𝜑) in SQ-Other-Pre, we demand another summary of 𝜌 with pre-condition 𝜑∇𝜑 ′, which
yields post-condition 𝜑post, allowing analysis to proceed in the same manner as in the non-recursive

case with SQ-Other-Proc. This summary is guaranteed to be compatible (i.e., 𝜑 ′ ⊑ 𝜑∇𝜑 ′), but we
need to apply widening in the abstract pre-condition to ensure that this iterative demanding of

new summaries for procedure 𝜌 converges. Intuitively, applying SQ-Other-Pre corresponds to a

demanded unrolling of recursive calls a finite (but a priori unbounded) number of times determined

by the widening operator ∇.
In the other case (i.e., the SQ-Self rule), the summary of procedure 𝜌 that we need is the same

one that we are currently demanding — a self-referential summary. That is, the recursive-call–site
state 𝜑 ′ is contained in the pre-condition 𝜑 of this summary that is currently being demanded (i.e.,

𝜑 ′ ⊑ 𝜑). When a procedure summary depends on itself, some special care must be taken to compute

a fixed point along the control-flow cycle(s) formed between the procedure exit and recursive

return site(s), as illustrated in Fig. 4. This fixed-point computation is implemented by a judgment

form for

demanding a self-referential summary G ⊢ fix(𝜌, 𝜑);G′ ,
which says, “In DSG G, the fixed point of a self-referential summary of procedure 𝜌 with pre-

condition 𝜑 yields an updated DSG G′.”
Note that the summarization, abstract state query, summary resolution, and self-referential

summary fixed-point iteration judgments are mutually recursively defined, so any number of

summaries can be produced, cached and/or memo-matched upon in the process.

4.1.3 Fixed-points. The SQ-Self rule initializes this fixed-point iteration, which is then implemented

by the F-* (for “fixed-point”) rules. Since analysis has yet to reach the procedure exit, we initialize

the call’s return state at 𝑛 with ⊥ in the second premise and then demand a fixed-point for this

self-referential summary (𝜌, 𝜑) in the third. Note that this self dependency is made explicit with

the self-referential demanded summarization dependency (𝜌, 𝜑) 𝑛←↪ (𝜌, 𝜑) extending G.
The fixed-point computation of a self-referential procedure summary can now be described using

the machinery defined to this point. At each step, we demand a summary for procedure 𝜌 with

pre-condition 𝜑 , that is, G ⊢ {𝜑} 𝜌 {𝜑 ′} ;G′. The shorthand R𝜌,𝜑 (G′) then yields the set of recursive

return sites whose abstract state is not over-approximated by the procedure-exit state 𝜑 ′ in the

procedure DAIG indexed by (𝜌, 𝜑). When this set is empty (F-Converge), the fixed-point iteration

has converged. Otherwise, some return sites 𝑛𝑖 have abstract state 𝜑𝑖 not over-approximated by

the procedure-exit state 𝜑 ′, so F-Step applies, widening 𝜑 ′ onto each return-site state before taking

5
Note that we assume that there is no mutual recursion (e.g., each strongly-connected component in the call graph is

compiled to a directly recursive procedure).
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another step in the fixed-point iteration. Importantly, the widened state 𝜑𝑖∇𝜑 ′ is written to cell 𝑛

using the dirtying-on-an-edit judgment, meaning forward-reachable nodes from 𝑛 in the procedure

DAIG get dirtied.

Example 4.4 (Fixed-points). As a concrete example, such a fixed-point computation is instantiated

in Fig. 4, showing the steps taken to produce a procedure summary of p using Summarize.

In the initial (left-most) state, Q-Apply-Summary is needed because intraprocedural analysis is

stuck at a callsite. Then, each transition in the figure applies the DSG evaluation semantics as

follows:

(a) To satisfy Q-Apply-Summary’s second antecedent – i.e. to apply a procedure summary – we must

derive one of the SQ-* rules; in this case SQ-Self applies, since the callee and caller are the same

and the callsite abstract state is smaller than the caller initial state. SQ-Self writes ⊥ to the return

site, then continues analysis (via the summarization judgment in the first antecedent of both F-*

rules) to the procedure exit in order to derive a fixed-point judgment.

(b) Since the analysis hasn’t yet converged (i.e. 𝑅𝜌,𝜑 (G′) is non-empty, since the ⊥ abstract state at

the return site is smaller than the exit state), F-Step applies. The exit state is widened into the

return site, and another fixed-point judgment must be derived to satisfy the final antecedent so

analysis runs to the procedure exit as before.

(c) Since analysis still hasn’t converged, F-Step applies again, analogously to step (b). At this point,

the return site abstract state is larger than the exit state, so F-Converge applies and the derivation

is complete.

Note that the “steps” here are not sequential composition in the style of small-step operational

semantics but rather nested derivations in the style of big-step operational semantics; each step is

a sub-derivation of the prior using the semantics of Fig. 7.

This example demonstrates the interplay between the three judgment forms governing analysis

queries in DSGs: to summarize a procedure, we query for the procedure-exit abstract state; in order

to get to the procedure exit, we must derive procedure summaries; when those summaries are

self-referential, we must derive a fixed-point.

Note that these interleavings can be far more complex in general: some (possibly recursive) callee

procedure summaries may be computed as further subderivations of each judgment form.

4.2 Incremental Edits in DSGs
When the program under analysis is edited, a DSG must discard those analysis results that are

potentially affected while retaining as many cached results as possible for future incremental

reuse. This operation is given by an operational semantics over analysis states G, just as with
demand-driven query evaluation. The judgment form G ⊢𝜌 𝑛 ⇐ 𝑠 ; G′ of Fig. 8 defines the impact

of an edit that modifies the statement named by 𝑛 in procedure 𝜌 , discarding facts from DSG G to

yield G′. Note that although this judgment as-written only applies to CFG-structure-preserving

statement modifications, the extension to statement insertions and deletions is straightforward: we
insert or remove the DAIG region corresponding to the edit, then dirty G from its exit (merging

the entry and exit location of deleted regions).

It is also important to notice that no special handling of edits involving procedure calls is needed

– the transitive dirtying operation is based on the summary dependencies of the pre-edit program,

as recorded in Δ, and any relevant changes to the program’s call structure will be reflected in

summary dependencies the next time the procedure is analyzed. This is not just an optimization; it

is crucial for correct and from-scratch consistent demanded analysis.

The top-level program edit rule E-Delegate is required since there may be multiple extant

summary DAIGs for the edited procedure 𝜌 , each with its own entry abstract state. E-Delegate
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G ⊢𝜌 𝑛 ⇐ 𝑠 ; G′
E-Delegate

G0 = ⟨D∗,Δ⟩ {𝜑1, . . . , 𝜑𝑘 } = {𝜑 | (𝜌, 𝜑) ∈ dom(D∗)}
G𝑖−1 ⊢𝜌,𝜑𝑖

𝑛 ⇐ 𝑠 ; G𝑖 for 1 ≤ 𝑖 ≤ 𝑘
G0 ⊢𝜌 𝑛 ⇐ 𝑠 ; G𝑘

G ⊢𝜌,𝜑 𝑛 ⇐ 𝑠𝜀 ; G′
D-DemandedSummaries

⟨𝐷∗,Δ⟩ ⊢𝜌 ′,𝜑 ′ 𝑛′ ⇐ 𝜀 ; G G ⊢𝜌,𝜑 𝑛 ⇐ 𝑠𝜀 ; G′

⟨D∗,Δ; (𝜌 ′, 𝜑 ′) 𝑛′←↪ (𝜌, 𝜑)⟩ ⊢𝜌,𝜑 𝑛 ⇐ 𝑠𝜀 ; G′

D-DAIG

Δ𝜌,𝜑 = ∅ D∗ (𝜌, 𝜑) ⊢ 𝑛 ⇐ 𝑠𝜀 ;D′ Δ′ =
{
𝛿

��� (𝜌, 𝜑) 𝑛′←↪ (𝜌 ′, 𝜑 ′) = 𝛿 ∈ Δ ∧ D′ (𝑛′) = 𝜀
}

⟨D∗,Δ⟩ ⊢𝜌,𝜑 𝑛 ⇐ 𝑠𝜀 ; ⟨D∗ [D′/(𝜌, 𝜑)],Δ\Δ′⟩

Fig. 8. Operational semantics rules governing edits to a program under analysis. The program-edit judgment
form G ⊢𝜌 𝑛 ⇐ 𝑠 ; G′ is read as “G is updated to G′ by an edit that writes statement 𝑠 at the position named
by 𝑛 in procedure 𝜌”, and is defined in terms of the dirtying judgment form G ⊢𝜌,𝜑 𝑛 ⇐ 𝑠𝜀 ; G′, which applies
edits or propagates changes across demanded summarization dependencies.

simply delegates the dirtying of each such DAIG to the D-* rules in Figure 8, using judgment form

G ⊢𝜌,𝜑 𝑛 ⇐ 𝑠𝜀 ; G′ to dirty a specific DAIG.

Rule D-DemandedSummaries is the inductive case for dirtying demanded summarization depen-

dencies: when a fact named by 𝑛′ in the 𝜌 ′, 𝜑 ′ DAIG depends upon the 𝜌, 𝜑 DAIG we are currently

dirtying, we drop the dependency edge, dirty from 𝑛′ in the 𝜌 ′, 𝜑 ′ DAIG, and continue recursively.

Once all demanded summarization dependencies have been processed in that manner, the D-DAIG

base case can be applied, dirtying any affected analysis results in the relevant DAIG (and their

dependency edges Δ′).
Formalizing incremental and demand-driven interprocedural analysis in this manner exposes

questions of what is minimal dirtying and maximal incremental reuse. The analysis semantics we

have described and implemented in this section dirty all (transitive) callers of any edited procedure,

as those analysis results depend on a summary which has been dirtied. This is optimal in the sense

that it dirties exactly those results potentially invalidated by an edit, and our query semantics are

optimal in the sense that they lazily compute only what is needed to resolve a query.

However, those callers depend on the summary triple only, not the underlying procedure imple-

mentation. As such, it is possible that by re-demanding the exit location of the callee, a DSG may

discover that a particular edit does not change the summary post-condition and thus dirtying need

not propagate to callers. On the other hand, this eager re-demanding may not have been needed to

respond to any future query.

5 FROM-SCRATCH CONSISTENCY
We now define and give proof sketches for several critical meta-theoretic properties of demanded

summarization graphs, namely termination of queries and edits, from-scratch consistency with the

underlying batch abstract interpreter, and soundness with respect to the concrete semantics. Proofs

are elided here, but can be found in Appendix A.
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Definition 5.1 (DSG Semantic Consistency). We say that a DSG G = ⟨D∗,Δ⟩ is semantically
consistent when it is syntactically well-formed and consistent with the program structure and

underlying abstract interpretation semantics.

- Each constituent DAIGD∗ (𝜌, 𝜑) is well-formed and consistent with the corresponding procedure

CFG 𝑃 (𝜌) and intraprocedural abstract semantics ⟨Σ♯, 𝜑, J·K♯, ⊑,⊔,∇⟩.
- Each return-site abstract state has a corresponding dependency edge from its callee in Δ. That is,
if 𝑛 names a non-empty ref cell in some D = D∗ (𝜌, 𝜑) with a 𝜌 ′-labeled edge to 𝑛 from 𝑛′, then
either

- (𝜌, 𝜑) 𝑛←↪ (𝜌 ′,D(𝑛′)) ∈ Δ (when 𝜌 ≠ 𝜌 ′) or
- (𝜌, 𝜑) 𝑛←↪ (𝜌 ′, 𝜑∇D(𝑛′)) ∈ Δ (when 𝜌 = 𝜌 ′).

- Dependency edges (𝜌 ′, 𝜑 ′) 𝑛←↪ (𝜌, 𝜑) in Δ are consistent with the relevant DAIGs, in that

- D∗ (𝜌 ′, 𝜑 ′) (𝑛) = D∗ (𝜌, 𝜑) (exit(𝜌)) (when 𝜌 ≠ 𝜌 ′) or
- D∗ (𝜌 ′, 𝜑 ′) (𝑛) ⊒ D∗ (𝜌, 𝜑) (exit(𝜌)) (when 𝜌 = 𝜌 ′).

- Analysis results in DAIGs are equal to the corresponding invariants produced by batch tabulation,

where the domains coincide: for all D∗ (𝜌, 𝜑) (ℓ) where (𝜑, ℓ) ∈ dom(𝐼 ), DG𝜌,𝜑 (ℓ) = 𝐼 (𝜑, ℓ).

Lemma 5.1 (Consistency Preservation). IfG is semantically consistent (with respect to a program
𝑃 ) then:
if G ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G′ then G′ is semantically consistent, and
if G ⊢𝜌 𝑛 ⇐ 𝑠 ; G′ then G′ is semantically consistent (with respect to the edited version of 𝑃 ).

Preservation of each of the four conditions of semantic consistency can be shown by induction

on the derivations of the query and edit judgments, and ensures that the theorems to follow are

applicable to the sequences of queries and edits made during an interactive analysis session.

Theorem 5.2 (Termination). Queries and edits terminate:

• For all 𝜑 , ℓ ∈ 𝐿, and consistent G, there exist 𝜑 ′ and G′ such that G ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G′.
• For all 𝑠 , 𝑛, 𝜌 , and consistent G where 𝑛 names a CFG edge in 𝐸𝜌 , there exists a G′ such that
G ⊢𝜌 𝑛 ⇐ 𝑠 ; G′.

In other words, any query or edit against a consistent DSG has a finite corresponding big-step

evaluation. The edit-termination condition (the second bullet point) is straightforward: Δ and 𝑘 are

both finite in E-Delegate because G is consistent, and each of its premises terminates because the

only recursive dirtying rule D-DemandedSummaries decreases in Δ.
The query-termination condition is more complicated, but can be shown by induction on the

number of transitive callees of the procedure 𝜌ℓ in which the query is issued, which decreases at

all non-recursive calls. At recursive calls, termination relies on the convergence of the underlying

abstract interpreter’s widening operator.

Theorem 5.3 (From-Scratch Consistency). Query results are equal to the corresponding invari-
ant computed by tabulation: if G is semantically consistent, G ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G′, and (𝜑, ℓ) ∈ dom(𝐼 )
then 𝜑 ′ = 𝐼 (𝜑, ℓ).

Intuitively, query results are from-scratch consistent due to (1) the from-scratch consistency of

intraprocedural analysis in DAIGs, and (2) the fact that summary triples derived by G⊢{𝜑}𝜌 {𝜑 ′} ;G′
are identical to the summary edges produced by a batch tabulation and are applied at call sites only

when their pre-condition matches the caller abstract state.

Corollary 5.4 (Soundness). Query results are sound with respect to the concrete semantics:
If G ⊢ ℓ ⇓ 𝜑 ; G′ and G is semantically consistent then 𝜎 |= 𝜑 for all 𝜎 ∈ JℓK∗
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Soundness is a strictly weaker condition than from-scratch consistency: since demanded query

results are the same as would be computed from-scratch by the batch analysis that is sound, so too

are demanded query results.

6 IMPLEMENTATION & EVALUATION
In this section, we describe a prototype analysis framework based on DSGs and evaluate it on

synthetically generated benchmarks as well as a corpus of bug-fix program edits drawn from

open-source Java applications.

A core challenge in empirically evaluating an incremental or demand-driven analysis is the

dearth of publicly-available data on real-world program edits and analysis queries.

Although some previous research on incremental and demand-driven program analysis has

demonstrated considerable performance benefits, it has typically been applied to carefully restricted

programming languages or synthetically-generated program edits [Stein et al. 2021a; Szabó et al.

2021].
6
Our aim is to show that demanded summarization can provide comparable performance

benefits, while also supporting interprocedural analysis, procedure summarization, recursion, and

the associated complexities.

On the other hand, some existing work [Arzt and Bodden 2014; Erhard et al. 2022] has been

evaluated on open-source commit histories, providing stronger evidence of applicability to real

edits but making it significantly more difficult to meaningfully evaluate interactive performance

since there are fewer data points and the edits are of much coarser granularity.

Our Approach.We aim to cover both bases using two distinct sets of benchmarks: a synthetic

corpus (Section 6.2) is designed to evaluate the scalability and efficacy of the demanded summariza-

tion algorithm, while an open-source corpus (Section 6.3) demonstrates the generalizability of these

results to more realistic programs and edits and the practicability of incremental analysis infras-

tructure. Taken together, these experiments demonstrate the promise of demanded summarization

as a framework for reliable interactive static analysis tools.

Since this paper’s contribution is a domain-generic framework, we choose standard abstract

domains throughout this section; our aim is to evaluate the scalability and generalizability of the

technique rather than the particulars of any given abstract domain. Nonetheless, we instantiate the

framework with several different domains – including some with infinite height and non-monotonic

widening operators – throughout the evaluation so as to demonstrate its genericity.

6.1 Implementation
We implemented a prototype analysis framework in approximately 7000 lines of OCaml code, split

roughly evenly between frontend infrastructure and analysis logic. The framework’s frontend,

intermediate representations, and core analysis engine are all designed to support incremental

edits and demand queries. The implementation and experimental setup are publicly available on

Github [Stein et al. 2021b].

Frontend. We use the tree-sitter incremental parsing library to interpret source-level changes at

the granularity of concrete syntax tree nodes [Brunsfeld 2021]. In practice, we consider program

edits that add or delete procedures or modify their headers; add, modify, or delete statements; and

modify the headers of loops and conditionals. These concrete syntax tree edit scripts can then be

interpreted in-place on our control-flow graph IR and analysis data structures.

6
Notably, every program in the corpus of Section 6.3 includes some recursive procedure(s) and is thus out of reach of of

Stein et al. [2021a]’s operational DAIG approach, and both Stein et al. [2021a] and Szabó et al. [2021] are evaluated on

synthetic sequences of edits.



Interactive Abstract Interpretation with Demanded Summarization 1:21

In order to resolve virtual calls, we rely on an upfront application-only callgraph computed

using the WALA [WALA 2021] analysis library. A virtual call with multiple potential targets is

interpreted as non-deterministic choice over direct calls to each target.

WALA does not provide incremental callgraphs, but techniques (e.g., [Schubert et al. 2021]) exist

for incremental callgraph construction, which we could adopt in the future. Our use of an upfront

callgraph is meant simply to exclude virtual call resolution issues from these experiments, since

it is largely orthogonal to this paper’s core contributions on abstract interpretation and dataflow

analysis.

Analysis. The core analysis engine of our framework is a fairly direct implementation of the

demanded summarization graph G: we keep a map from procedure identifiers and procedure-entry

abstract states to DAIGs, which we issue queries against, instantiate, and produce summaries for as

needed to respond to extrinsically-provided queries.

Our intermediate representation of programs is similar to the control-flow graph language 𝑃

of Section 3, the main difference being support of formal/actual parameter binding and variable

scoping. These details are elided from the formalism for the sake of simplicity and clarity, but can

in practice be handled using standard techniques without any major change to the underlying

system as formalized in this paper.

The analysis engine is domain-agnostic: it is parameterized over an abstract domain module

which provides standard abstract domain operations (essentially ⟨Σ♯, 𝜑0, J·K♯, ⊑,⊔,∇⟩) but can be

implemented in a general-purpose language and needs not be aware of incrementality or demand.

We have instantiated the implementationwith interval and octagon domains based on the APRON

numerical domain library [Jeannet and Miné 2009] and a simple list-segment shape analysis domain,

all of which are of infinite height and have non-monotonic widenings. To better exercise our analysis

on object oriented programs in Section 6.3, we also implemented a finite domain tracking nullability

of variables and heap addresses, using allocation sites to abstract memory locations.

Throughout this section, we consider four variants of the demanded summarization algorithm

to re-analyze each program after an edit:

- Batch analysis, wherein the program is analyzed exhaustively from scratch when the program

changes;

- Incremental analysis, which analyzes the program exhaustively and eagerly when the program

changes, but reuses results from the previous version where possible;

- Demand-Driven analysis, which computes only those summaries that are required to respond to

a client-issued query, but discards all analysis state when the program changes; and

- Demanded (i.e., incremental and demand-driven) analysis, which both reuses previous-version

results and also computes only those summaries that are required to respond to queries.

The four variants amount to configuration options in our analysis framework: essentially, the

incremental analyses apply the edit semantics of Fig. 8 while the demand-driven analyses apply

the query semantics of Fig. 7.

6.2 Scalability: Synthetic Benchmarks
In order to evaluate the scalability and responsiveness of the demanded summarization approach,

we analyze a synthetic workload of program edits and queries in each of the four configurations

described above.

We instantiate the analysis framework for these experiments with an octagon domain backed by

the APRON library [Jeannet and Miné 2009]; octagons are a popular relational numerical abstract

domain, and APRON is a widely used implementation and thus has performance characteristics
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Analysis Time (sec)

mean p50 p95 p99

Batch 16.4 1.1 118.8 149.3

Incremental 9.5 0.1 79.0 116.0

Demand-driven 6.9 0.3 32.8 130.9

Demanded 2.7 <0.1 10.3 36.6

Fig. 9. Summary-based octagon analysis run times on the synthetic benchmarks described in Section 6.2.
The cumulative distribution plot shows the fraction of analysis runs (𝑦 axis) completed by each analysis
configuration within some time interval (𝑥 axis): ordered from top to bottom at the right of the plot, the lines
represent demanded, demand-driven, incremental, and batch analysis. The table shows corresponding summary
statistics for each configuration, including the mean, median, 95th percentile, and 99th percentile analysis
costs.

representative of many real-world domains. Furthermore, the infinite height lattice and non-

monotonic widening operator of the octagon domain render it out of the reach of most existing

incremental or demand-driven analysis techniques.

Programs are generated in an imperative language with arithmetic, booleans, conditional branch-

ing, while-loops, and recursive (but not mutually recursive) procedure calls. Each edit selects a

random program location at which to add a loop, procedure call, conditional, or statement with

probability 5%, 10%, 10%, and 75% respectively; statements and expressions are generated proba-

bilistically from their respective grammars, and procedure call edits introduce a new procedure as

their target 5% of the time.

These hyperparameters are chosen to simulate the structure of typical programs and edits thereof,

allowing us to evaluate the performance characteristics of each analysis configuration with much

more data and at a larger scale than is possible with real code and human subjects. Despite our

efforts to produce realistically-structured synthetic programs, possible disparity with real-world

control-flow structure is an inevitable threat to validity in these experiments. However, we argue

that the statement-language abstract semantics and domains are less critical, acting as a constant

factor throughout but not affecting the bottom-line comparisons between analysis configurations.

We analyze 8 separate trials of 2500 edits in each configuration, beginning with a program

consisting only of a no-op main procedure and seeding the random number generators such that

the same edits are analyzed by each analysis variant. Given the probabilistic grammar described

above, this produces programs that are roughly 3000 significant lines of code on average at the end

of each trial. In the demand-driven configurations, we issue three random queries between each

edit.

The results are shown in Fig. 9 in the form of a continuous distribution plot and a table of summary

statistics. Both incremental analysis and demand-driven analysis offer a significant improvement

over the batch analysis baseline, both in terms of their average analysis cost and worst-case runtime

at the 95th and 99th percentiles. However, demanded summarization, by combining incremental

and demand-driven techniques, yields analysis results in 2.7 seconds on average and significantly

mitigates the worst-case analysis costs at the tail of the distribution.
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Of course, this performance improvement comes at the cost of an increased memory footprint.

Profiling the memory usage of each configuration across the experiments, we find sub-linear

increases for batch and demand-driven analysis, up to 450 and 347 MB respectively after 2500

edit/analysis iterations. Since both configurations discard all analysis results every iteration, this

total memory footprint is roughly what is needed to analyze the full program (batch) and the

transitive dependencies of a random query (demand-driven).

On the other hand, both the incremental and demanded configurations consume memory approx-

imately linear in the size of the edit history, growing to 11.1 and 24.1 GB respectively after 2500

edit/analysis iterations. Though this is too large for most local development environments, it is

feasible in a CI environment and could be tuned to hardware constraints using the memory-saving

optimizations described in Section 7.2 without sacrificing the formal guarantees of demanded

summarization.

As a whole, these experiments demonstrate that the combination of incremental and demand-

driven techniques leveraged by demanded summarization is well-suited to interactive use, even in

this setting of tabulation-based interprocedural analysis over recursive procedures.

6.3 Generalizability: Open-Source Corpus
We run our prototype analysis framework on a subset of the BugSwarm dataset, which consists

of program pairs drawn from open-source applications and their continuous integration histo-

ries [Tomassi et al. 2019]. Each program pair consists of a “fail” version in which a CI failure was

observed, and a subsequent “pass” version in which the failure is corrected.

We restrict our attention to pairs where the edit is in application code (rather than configuration

or tests), affects between 1 and 200 lines of code, and the failure is not a compilation failure. On

average, each program is 45 kLOC and consists of around 5000 distinct procedures. They make

extensive use of Java language features including exceptions and a wide variety of control-flow

mechanisms, but we do not consider programs that make use of lambda expressions or method

references.

Table 1 shows the result of analyzing ten Java program pairs from the BugSwarm dataset using

the interval analysis and nullability analysis described in Section 6.1. The interval abstract domain

is widely used in practice for numerical analysis problems, but is difficult to handle incrementally

due to its infinite height and non-monotonic widening operator, while the nullability abstract

domain is finite but more well-suited to the analysis of the object oriented programs found in the

data set. For the demand-driven configurations, we select query locations that correspond to the

failures observed in the initial program version or as near as possible in our internal representation.

These demand queries aim to emulate the natural use-case of querying at the alarm location after

making an edit to address the alarm, for example to enable interactive and responsive IDE features

built on top of an abstract interpreter.

Note that we do not purport to statically identify each of the failures and prove their fixes

correct; the bugs are varied and complex, and the design of domains to reason precisely about their

semantics is outside the scope of this paper. We use the BugSwarm corpus as a source of real-world
bug-fixing edits, investigating the potential analysis cost savings that can be realized by demanded

summarization in realistically-structured programs under actual patterns of queries and edits.

The analysis results are shown in Table 1, which presents symbolic metrics of analysis cost in

terms of abstract states computed during reanalysis, in addition to wall-clock time and average

peak memory usage.

We see that batch analysis requires computing tens to hundreds of thousands of abstract states

for each program edit. Both incremental analysis and demand-driven analysis represent significant

improvements over the batch approach, but exhibit high variability: depending on the location and
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Table 1. Statistics about programs, edits, and analysis thereof in the open-source corpus, showing the relative
degrees of reuse that are achieved by each analysis configuration. Artifacts refer to BugSwarm program pairs,
for which we report final program size (in kLOC), program edit size (eLOC), and application-only callgraph
size (|CG|).
We analyze each program pair in three domains: the interval (Itv.), octagon (Oct.), and nullability domains
(N) described in Section 6.1. Then, we report for each analysis configuration the number of abstract states
computed during reanalysis after applying the edit, in raw terms (#𝜑) for batch analysis and as a percentage
(%𝜑) of the batch analysis baseline for each other configuration, as well as the amount of time required.
Lastly, we report the average peak memory usage of the analysis for each analysis configuration.

Batch Incremental Dem.-Driven Demanded

artifact kLOC eLOC |CG| Domain #𝜑 (s) %𝜑 (s) %𝜑 (s) %𝜑 (s)

2021a 32.3 4 1233

Itv. 7029 0.20 12.5 0.02 28.0 0.10 0.2 <0.01

Oct. 6441 0.31 4.7 0.02 24.4 0.11 7.3 0.11

Null 13972 0.20 7.6 0.01 16.6 0.05 1.0 <0.01

2021b 147.6 56 2920

Itv. 12199 0.25 1.1 0.01 0.3 <0.01 0.0 <0.01

Oct. 12495 0.40 1.0 0.01 0.3 <0.01 0.0 <0.01

Null 19558 0.24 0.7 <0.01 0.2 <0.01 0.0 <0.01

2021c 15.8 4 1599

Itv. 17084 0.40 0.2 <0.01 48.7 0.27 <0.1 <0.01

Oct. 17165 0.74 0.3 0.03 48.7 0.54 0.2 0.01

Null 88160 2.61 <0.1 0.01 31.2 0.84 <0.1 <0.01

2021d 45.7 134 3866

Itv. 35395 1.35 <0.1 0.02 0.0 <0.01 0.0 <0.01

Oct. 37257 3.20 <0.1 0.03 0.0 <0.01 0.0 <0.01

Null 348760 16.59 <0.1 <0.01 0.0 <0.01 0.0 <0.01

2021e 36.2 8 7379

Itv. 73322 6.88 <0.1 0.03 3.4 0.09 <0.1 <0.01

Oct. 74026 29.86 0.1 0.12 3.2 0.17 <0.1 <0.01

Null 542853 29.01 <0.1 0.04 0.6 0.08 <0.1 <0.01

2021f 39.4 4 8212

Itv. 77954 6.94 0.1 0.04 5.6 0.23 0.0 <0.01

Oct. 79909 40.63 0.1 0.06 3.2 0.18 0.0 0.01

Null 622602 33.71 1.5 5.91 0.8 0.12 <0.1 0.02

2021g 39.6 8 8260

Itv. 78906 6.57 <0.1 0.03 2.4 0.07 <0.1 <0.01

Oct. 80877 28.62 <0.1 0.04 2.4 0.12 <0.1 <0.01

Null 627081 33.69 <0.1 0.01 0.5 0.07 <0.1 <0.01

2021h 63.8 4 10048

Itv. 100112 6.70 17.9 1.12 63.9 5.25 0.6 0.18

Oct. 97850 24.87 19.5 4.29 62.7 18.98 18.9 4.80

Null 1533103 88.17 16.1 23.69 87.2 73.13 14.7 23.11

2021i 23.5 4 2559

Itv. 23377 0.73 0.4 0.01 2.3 0.02 0.3 <0.01

Oct. 22982 2.90 0.4 0.02 2.4 0.03 0.3 <0.01

Null 85782 1.79 0.2 <0.01 0.7 0.01 <0.1 <0.01

2021j 15.2 20 3558

Itv. 44604 3.70 0.1 0.02 0.0 <0.01 0.0 <0.01

Oct. 39856 8.0 0.1 0.03 0.0 <0.01 0.0 <0.01

Null 96125 2.49 <0.1 <0.01 0.0 <0.01 0.0 <0.01

Batch Incremental Dem.-Driven Demanded

average 45.9 25 4963

Itv. 46998 3.37 3.2 0.13 15.5 0.60 0.1 0.02

Oct. 46886 13.95 2.6 0.47 14.7 2.02 2.7 0.50

Null 397800 20.85 2.6 2.97 13.8 7.43 1.6 2.31

average peak memory usage (MB) 667.6 693.1 233.1 252.4
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relative proximity of queries, edits, and their dependencies, both approaches can incur significant

analysis cost, averaging around 3% and 15% respectively of that required for batch analysis.

Demanded summarization, which combines aspects of incremental and demand-driven analysis,

consistently requires only <1% as much analysis work as the batch baseline, although there are some

outliers where the relative locations of the program edits and demand queries require performing

a larger fraction of the analysis work. Notably, the edit and fix locations in one artifact (2021h)

cause the demanded configuration to perform comparably to the non-demand-driven incremental

configuration, since the bug fix location depends on a large fraction of the program under analysis.

The peak memory usage of both non-demand-driven configurations is significantly higher than

both demand-driven configurations, since they require analyzing a smaller fraction of the program,

while adding incrementality increases peak memory usage by 4-8%. This degree of overhead is

approximately as expected: incrementality allows some summaries to be persisted that would

otherwise be dropped, but the overhead is small when looking at a single edit. Note also that

an optimized batch analysis framework would use less memory than our batch configuration;

nonetheless, the memory footprint of all of these configurations is sufficiently small to fit on

modern consumer hardware.

The consistent trends in symbolic metrics across these three different domains is an indication that

the rough proportion of reuse and analysis cost savings can generalize when the DSG framework

is instantiated with different abstract domains.

7 SUMMARY TABULATION &WEAKENING
The previous sections describe demanded summarization: a framework for incremental and demand-

driven abstract interpretation of recursive interprocedural programs in arbitrary abstract domains.

However, the algorithm and formalism described to this point present some opportunities for

optimization. This section addresses some practical concerns that will arise in the implementation

of a future analysis framework based on the theory of demanded summarization. Note that the

techniques formalized in the remainder of this section are not applied in the implementation of our

experimental evaluation (Section 6).

First, since our approach makes extensive use of caching and memoization, it must inevitably

confront memory limitations. However, there is no means to do so in the operational semantics of

Section 4. We develop and formalize in Section 7.1 some techniques to gracefully handle memory

pressure in DSGs by discarding intermediate analysis state and keeping input/output procedure

summaries, and show that this extension preserves the metatheoretic results of Section 5.

Then, though we fix a policy of maximizing precision in the previous sections to ensure from-

scratch consistency, it may be desirable in practice to weaken or merge summaries during analysis

so as to maximize incremental reuse. We formalize this notion in Section 7.2 and show that while it

clearly violates from-scratch consistency, it does preserve soundness and termination.

These extensions to the semantics of Section 4 correspond to well-known optimizations which

are more-or-less standard practice in batch summary-based abstract interpreters (e.g., [Calcagno

and Distefano 2011; Fähndrich and Logozzo 2010; Padhye and Khedker 2013]). The purpose of this

section is to relate them to our formalism and show how they preserve or weaken the metatheoretic

results of Section 5, thus providing tunable parameters in the design space of practical interactive

analysis tools based on demanded summarization.

We also discuss some subtleties of interprocedural dependency structures highlighted by these

changes.
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7.1 Summary Tabulation for Memory Pressure
Given infinite memory, an incremental analysis could simply store all previously-computed results

forever, keeping them on hand in case they are ever needed. This is essentially what is formalized

in Section 4. DAIGs are instantiated and added to D∗ by Q-Instantiate and, though their contents
are dirtied in response to edits by the semantics of Fig. 8, they are never disposed of themselves.

This design keeps the presentation simple, but it is infeasible in practice. This section extends the

DSG formalism to explicitly account for memory-conserving operations, showing that soundness,

termination, and from-scratch consistency are preserved under the extension.

We introduce a judgment form G d G′ to describe transformations of analysis state that can be

applied at will by an analyzer. It is possible of course to encode these operations as extensions to the

query evaluation (G ⊢𝜑 ℓ ⇓ 𝜑 ′ ;G′) or edit (G ⊢𝜌 𝑛 ⇐ 𝑠 ;G′) semantics, but such an approach ties the

memory-freeing operations to analysis client interactions and complicates proofs of termination

(by admitting infinite derivations that alternate between computing and discarding analysis facts).

The most direct such transformation is simply to discard procedure summary DAIGs that are

not depended upon by others; this is, however, more heavy-handed than desired in most cases. In

particular, note that DAIGs contain cached intermediate results at the granularity of individual

semantic functions, but summary application in DSGs operates at the granularity of procedures.

Thus, instead of discarding an entire DAIG, an analyzer may exploit the fact that only its entry

and exit abstract states are needed to summarize calls, by caching those two states and discarding

any intermediate results.

We can extend the syntax and semantics of DSGs to express and reason about this direct

summarization. Formally, we first add a summary table T to demanded summarization graphs,

leaving the other components unchanged.

summary tables T ::= 𝜀 | T ; {𝜑} 𝜌 {𝜑 ′}
summary table-equipped DSGs G ≜ ⟨D∗,Δ,T⟩

A summary table T is a collection of summary triples {𝜑} 𝜌 {𝜑 ′} not backed by any DAIG in

D∗. For the most part, the operational semantics of Figs. 7 and 8 just work with DSGs replaced by

summary table-equipped analogues and tables T threaded through the rules accordingly.

However, some additional rules are needed to tabulate and apply summaries. As such, we

reproduce the modified rules and provide the new rules in in Fig. 10, highlighting the modifications

relative to Section 4 in green.

First, we add a rule Tabulate to the G d G′ judgment form, allowing the analyzer to drop a

fully-solved DAIG D and replace it by an equivalent Hoare-style summary triple at any point.

Tabulate

D(exit(𝜌)) = 𝜑 ′

⟨D∗; (𝜌, 𝜑) ↦→ D, Δ, T⟩ d ⟨D∗, Δ, T ; {𝜑} 𝜌 {𝜑 ′}⟩
Note that the dependency map Δ is unchanged when we drop a DAIG D and tabulate the

corresponding triple {𝜑} 𝜌 {𝜑 ′}. Thus, any analysis fact that depended on D now depends on the

summary triple, and any DAIG or summary triple that contributed to D also contributed to the

summary triple.

Then, we add an additional inference rule S-Apply, which allows the tabulated Hoare triples in

T to resolve summary queries and be applied at procedure call sites.

The procedure summarization judgment G ⊢ {𝜑} 𝜌 {𝜑 ′} ; G′ effectively abstracts away the

two different types of cached results in our summary table-equipped DSGs: Summarize (Section 4)

interprets fully-solved DAIGs as summaries, while S-Apply (Fig. 10) interprets rows of the summary

table T as summaries.
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D-Summary

Δ𝜌,𝜑 = ∅ Δ′ = { 𝛿 | (𝜌, 𝜑) _

←↪ (_, _) = 𝛿 ∈ Δ }
⟨𝐷∗, Δ, T ; {𝜑} 𝜌 {_}⟩ ⊢𝜌,𝜑 _⇐ _ ; ⟨𝐷∗, Δ/Δ′, T⟩

Q-Instantiate

(𝜌ℓ , 𝜑) ∉ dom(D∗) {𝜑} 𝜌ℓ {_} ∉ T
⟨D∗; (𝜌ℓ , 𝜑) ↦→D init

𝜌ℓ ,𝜑
,Δ,T⟩ ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G

⟨D∗,Δ,T⟩ ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G

S-Apply

G = ⟨_, _,T ; {𝜑} 𝜌 {𝜑 ′}⟩
G ⊢ {𝜑} 𝜌 {𝜑 ′} ; G

E-Delegate

G0 = ⟨D∗,Δ⟩ {𝜑1, . . . , 𝜑𝑘 } =
{
𝜑

����� (𝜌, 𝜑) ∈ dom(D∗)∨ {𝜑} 𝜌 {_} ∈ T

}
G𝑖−1 ⊢𝜌,𝜑𝑖

𝑛 ⇐ 𝑠 ; G𝑖 for 1 ≤ 𝑖 ≤ 𝑘
G0 ⊢𝜌 𝑛 ⇐ 𝑠 ; G𝑘

Fig. 10. Modifications and additions to demanded summarization query and edit semantics required to
handle explicit summary tables T . Additions are highlighted in green, and all rules not shown here are
unchanged from Section 4. As before, underscores denote un-constrained metavariables.

Next, we add a premise {𝜑} 𝜌ℓ {_} ∉ T to the Q-Instantiate rule, preventing the instantiation of

a DAIG which shadows a summary already in T . Similarly, we tweak the definition of {𝜑1, . . . , 𝜑𝑘 }
in the E-Delegate rule of the edit judgment, ensuring that when a procedure is edited, not only

DAIGs but also summary triples over that procedure are dirtied. Both modifications consist of

checking whether a summary exists in T in addition to the original check whether it exists in D∗.
Finally, we add a rule D-Summary to the dirtying judgment, which is analogous to the D-DAIG rule

but discards a summary triple instead of dirtying a DAIG. Note, though, that instead of dropping

only those interprocedural dependencies Δ′ for now-dirtied intermediate results inD (as in D-DAIG)

we drop all backward dependencies of the discarded triple.

Applying the Tabulate transformation allows a DSG-based analyzer to selectively coarsen its

memoized results, achieving a significantly smaller memory footprint at the cost of fine-grained

incremental reuse in cases where there is an edit inside a method whose DAIG has been dropped.

Metatheory.Moreover, extending demanded summarization graphs G with summary tables T
as described here does not affect analysis results, since summaries in T are created by Tabulate,

applied by S-Apply, and dirtied by D-Intraproc-Summary under exactly the conditions that apply to

corresponding DAIGs in D∗.
We do not reproduce the theorems and proofs in full here, as they are largely unchanged from

Section 4, but they are available in Appendix B. The key modification required is an additional

condition for semantic consistency (Definition 5.1), stating that whenever a summary triple is in T ,
all of the dependency edges that would be required to compute that summary from scratch are in

Δ. By ensuring that summary triples in T are accompanied by the proper dependencies, we can

guarantee that they are invalidated as needed in response to semantically-relevant edits in other

procedures.

Condensing DAIGs down to input/output summaries with Tabulate provides a semantic foun-

dation that can be used to implement memory conservation mechanisms without jeopardizing

hard-won guarantees of soundness, termination, and from-scratch consistency. Similar approaches

to reducing memory usage by intelligently discarding some analysis results have been shown to

significantly improve performance in IFDS-based analysis frameworks [Arzt 2021].
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Classic cache replacement strategies allow an interactive analysis engine to intelligently discard

or condense DAIGs at set intervals or whenever memory usage crosses some threshold. For example,

the least-recently or least-frequently used DAIGs can be reduced to two-state summaries, treating

the DSG as an LRU/LFU cache of intermediate analysis results and reducing the overall memory

footprint of the DSG without incurring any runtime cost unless/until the summary is affected by a

program edit.

Beyond the practical applicability of these operations, the relative simplicity and straightfor-

wardness of the extension indicates the generality and foundational nature of the DSG approach.

For example, we believe that the DSG approach could be adapted to operate over custom relational

domains rather than state domains, essentially replacing the DAIG intraprocedural analysis black-

box with a different mechanism that produces such summaries, while tracking interprocedural

dependencies in much the same way as we describe here.

7.2 Summary Weakening for Reuse
In order to apply a summary at a procedure call, the core DSG operational semantics laid out in

Section 4 require that its precondition exactly matches the callsite abstract state
7
. However, an

analysis implementation may wish to maximize the reuse of previously computed summaries by

applying a compatible one with a weaker-than-needed precondition instead. This is analogous to

the use of monotonicity constraints in Datalog-based incremental analyses to reuse facts when

there is an ⊑-increasing change to some input [Szabó et al. 2018].

This optimization is enabled by adding the following inference rule to the summarization

judgment G ⊢ {𝜑} 𝜌 {𝜑 ′} ; G′:

S-Conseqence

𝜑 ⊏ 𝜑 ′ G ⊢ {𝜑 ′} 𝜌 {𝜑 ′′} ; ⟨D∗,Δ ,T ⟩
G ⊢ {𝜑 } 𝜌 {𝜑 ′′} ; ⟨D∗,Δ′,T ′⟩

where Δ′ = Δ; (𝜌, 𝜑) ←↪ (𝜌, 𝜑 ′)
and T ′ = T ; {𝜑} 𝜌 {𝜑 ′′}

Ignoring the demanded summarization graphs (i.e. everything before a turnstile or after a semi-

colon), this rule is precisely the familiar Hoare logic rule of consequence for preconditions [Hoare

1969]. Although it would be sound to do so, we don’t include the dual postcondition rule (nor

combine the two into one rule) as there is no benefit to applying it in our framework — it would

simply produce less-precise analysis results.

The primed extensions of Δ and T in the conclusion of S-Conseqence serve to avoid a subtle

issue: without them, when this rule is used to weaken a summary, the Q-Apply-Summary rule adds

a dependency edge corresponding to the weakened (conclusion) summary rather than the stronger

(premise) summary from which it was derived. As a result, when the premise summary is dirtied

the analysis would unsoundly fail to propagate that change to the callsite where its weakened

form was applied. This shortcoming is fully addressed, though, by adding the derived triple to T ,
along with a dependency edge in Δ on the (weaker) premise triple, since dirtying will transitively

propagate the change through the derived triple {𝜑} 𝜌 {𝜑 ′′} in T ′.8 This does require that 𝜑 and

𝜑 be strictly ordered, as Δ′ would contain spurious self-loops if they were equal. This is not a

significant restriction, since “weakening” a summary to itself has no real benefit.

Weakening summaries by applying S-Conseqence preserves the soundness of analysis results by
the same reasoning that it is sound to apply the consequence rule in a standard Hoare logic. That is,

7
modulo widening, in the case of recursive calls

8
The issue can also be addressed without summary tables T by folding S-Conseqence directly into Q-Apply-Summary

and adjusting its dependency map accordingly. We present it this way for the sake of clarity, keeping some separation of

concerns between judgment forms.
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the weaker triple {𝜑 ′} 𝜌 {𝜑 ′′} in its premise implies the stronger triple inferred as its conclusion:

since 𝜑 ⊏ 𝜑 ′, any concrete state modelling 𝜑 also models 𝜑 ′ and is thus guaranteed to be mapped

by the semantics of 𝜌 to a state modelling 𝜑 ′′.
However, introducing the S-Conseqence rule comes at the cost of from-scratch consistency for

demanded analysis. To see why, consider an edit immediately before a procedure call that has been

summarized with triple

{
𝜑pre

}
𝜌
{
𝜑post

}
, and suppose that the edit results in a stronger precondition

𝜑 ′
pre

for the call. It is sound to reuse the previously computed summary via S-Conseqence, deriving

the same postcondition 𝜑post for the call as before. However, it is possible that a from-scratch

recomputation with the newly strengthened precondition may have produced a stronger summary{
𝜑 ′
pre

}
𝜌
{
𝜑 ′
post

}
, so from-scratch consistency has been violated.

Thus, weakening of summaries represents a tradeoff and a tunable parameter for the design of

practical analysis tools based on demanded summarization. In some circumstances, the benefit (i.e.

computational savings due to increased summary reuse) may be well worth the cost of weaker

precision guarantees; in others, the predictable behavior and maximal precision of a from-scratch

consistent demanded analysis are more important.

8 RELATEDWORK
Compositional Analysis. Sharir and Pnueli [1981] defined the functional, compositional approach to

interprocedural analysis, and much work has followed in its footsteps. Previous approaches have

achieved compositionality by tabulating function summaries [Naeem et al. 2010; Padhye and Khed-

ker 2013; Reps et al. 1995; Sagiv et al. 1996] or by deriving two-state relational summaries [Calcagno

et al. 2011; Chatterjee et al. 1999; Cousot and Cousot 2002; Dillig et al. 2011; Jeannet et al. 2010;

Madhavan et al. 2015; Montagu and Jensen 2020; Salcianu 2006; Yorsh et al. 2008]. Of these, the batch

analysis formulation underlying our technique is most similar to that of Padhye and Khedker [2013].

Their work tabulates function summaries keyed on a “value context,” consisting of a procedure

name and entrypoint abstract state, similar to our formulation. Further, the worklist algorithm

described in that paper also tracks dependencies between such contexts, similar to the Δ component

of DSGs (Section 4), to propagate interprocedural data flow from procedure exits to caller return

sites. To perform demanded analysis and ensure from-scratch consistency, our approach rigorously

defines invalidation and recomputation of such dependencies, and also exerts more fine-grained

control over iteration ordering during analysis.

Monadically-parameterized semantics can also be used to define reusable abstract interpreter

metatheory, offering compositionality of soundness proofs and generality over a family of different

interprocedural analyses [Darais et al. 2017; Keidel and Erdweg 2019; Sergey et al. 2013]. Darais

et al. [2017] cache analysis results during batch evaluation of a monadic interpreter, but rely on a

finite abstract domain to ensure termination of the fixed-point computation and do not address

incremental or demand-driven evalutation of their abstract interpreter.

Deductive verification systems [Barnett et al. 2011; Filliâtre and Marché 2007; Jacobs et al. 2011;

Leino 2010; Müller et al. 2016] have long used compositionality to provide a real-time verification

experience [Leino andWüstholz 2015], generally with user-supplied pre- and post-conditions.While

we have focused on tabulation in this paper to directly support common one-state abstractions, the

two-state relational approach is conceptually the same to support for demanded analysis, except

with DAIG reference cells storing two-state relations instead of single-state abstractions.

Our use of “operational” and “denotational” rather than the traditional “context-sensitive” and

“functional” for Sharir and Pnueli [1981]’s two approaches to interprocedural analysis is borrowed

from Jeannet et al. [2010], whose lucid treatment of the topic makes a convincing case for these

more generalized terms.
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Recent static analyses have achieved large scalability gains on CI servers through composi-

tionality [Blackshear et al. 2018; Calcagno and Distefano 2011; Distefano et al. 2019; Fähndrich

and Logozzo 2010]. This compositionality suggests an incremental deployment model in which

procedures are reanalyzed only when they are affected by an edit [Calcagno et al. 2011].

However, naive approaches to such incrementality have yielded unreliable and/or unsound

results, so existing industrial deployments of these compositional analyses have largely eschewed

incremental reuse of summaries in practice. This work has directly enabled the development of

rigorous incremental infrastructure for such analyses, though: a variant of demanded summarization

maps is now implemented in the Infer static analyzer [Calcagno and Distefano 2011]. These

developments have produced significant analysis speedups in continuous integration (on the order

of 3x across all analyses, and up to 10x at the 95th percentile for certain workloads) as well as

a near-total elimination of the unreliability and flakiness that characterized earlier iterations of

incremental analysis in Infer [Stein 2023].

Incremental Analysis. Incremental variants of many standard compiler analyses have been studied

and developed in order to support responsive continuous compilation and structured editors/in-

tegrated development environments. These include dataflow analyses [Carroll and Ryder 1988;

Pollock and Soffa 1989; Ryder 1983; Zadeck 1984], pointer analyses [Gupta et al. 1993; Liu and

Huang 2022; Lu et al. 2013], and attribute grammars [Demers et al. 1981; Reps 1982; Reps et al. 1983;

Söderberg and Hedin 2012], which combine parse trees with semantic information and can encode

many analyses including dataflow.

Recent work has also contributed incremental versions of several broader classes of program

analysis, including IFDS/IDE dataflow analyses [Arzt and Bodden 2014; Do et al. 2017] and analysis

DSLs based on extensions to Datalog [Szabó et al. 2018, 2021, 2016] These specialized approaches

offer very effective solutions for these particular classes of program analysis, but place restrictions

on abstract domains that rule out arbitrary abstract interpretations in infinite-height domains,

for example by requiring domains to fall in the IFDS/IDE subset or by requiring that all domain

operations are monotonic.

Some recent work by Van der Plas et al. [2020, 2023] and Garcia-Contreras et al. [2021] has

explored similar approaches to incrementalization of compositional dataflow analyses, tracking and

reifying inter-procedural dependencies and supporting infinite-height abstract domains. Notably,

Van der Plas et al. [2023] interleave invalidation with (eager) recomputation, potentially saving a

great deal of recomputation over our approach when an edit does not affect a procedure’s semantics,

as alluded to in Section 4.2, and Garcia-Contreras et al. [2021] also offer a demand-driven interface,

analyzing only the dependencies of a given “goal” in constrained Horn clause programs. The

main benefit of our approach over these closely-related works is its from-scratch consistency,

offering analysis designers/implementers strong precision guarantees and simplifying debugging

and deployment as a result.

These approaches are automatic (in that they require no user-provided specifications or loop

invariants) and sound, but make no guarantee of from-scratch consistency and in fact violate it

in some cases in order to maximize incremental reuse. On the other hand, Leino and Wüstholz

[2015] propose a fine-grained incremental verification technique for the Boogie language, which

verifies user-provided specifications of imperative procedures. Since these specifications include

loop invariants, their algorithm can avoid altogether the issues and complexities introduced by

cyclic dependencies.

Demand-Driven Analysis. Demand-driven techniques for classical dataflow analysis are similarly

well-studied. The intra-procedural problem was studied by Babich and Jazayeri [1978]. Several ex-

tensions to inter-procedural analysis have been presented, for example by Reps [1994], Duesterwald

et al. [1995], Horwitz et al. [1995], and Sagiv et al. [1996], and applied to problems such as array



Interactive Abstract Interpretation with Demanded Summarization 1:31

bounds check elimination, parallel communication optimization, and integration testing [Bodík

et al. 2000; Duesterwald et al. 1996; Yuan et al. 1997].

As with the incremental variants discussed in the previous section, these works are focused on

finite domains (or, in the case of Sagiv et al. [1996], infinite domains of finite height).

Other types of static analysis (i.e. neither dataflow analysis nor abstract interpretation) can

also be performed on-demand. Any analysis expressible as a context-free language reachabil-

ity (CFL-reachability) problem can be computed in a demand-driven fashion as a “single-source”

problem [Reps 1998]. As such, several papers have presented demand-driven algorithms for flow-

insensitive pointer analysis [Heintze and Tardieu 2001; Späth et al. 2016; Sridharan et al. 2005]. Ref-

erence attribute grammars (RAGs) are declarative specifications of properties over ASTs (including

potentially-cyclic flow analyses) which can be evaluated incrementally and on-demand [Magnusson

and Hedin 2007; Söderberg and Hedin 2012]. Termination of RAG evaluation requires that all cyclic

computations converge to a fixed-point in finitely-many iterations [Farrow 1986; Magnusson and

Hedin 2007]; this convergence property holds for finite domains with monotone operators but may

also be achieved through other means (e.g. widening). Unlike RAG-based approaches to dataflow

analysis, our approach comes with proofs of termination and from-scratch consistency, and specifies

the exact conditions required to ensure termination in infinite-height domains with non-monotone

widening operators.

Incremental computation. Our technique is heavily influenced by dependency graph-based tech-

niques for general incremental and self-adjusting computation [Acar et al. 2008, 2002; Demers

et al. 1981; Hammer et al. 2009; Reps 1982]. Some recent work in this area has also explored dy-

namic dependency tracking similar to our own, but applied to build systems rather than static

analysis [Konat et al. 2018].

In particular, we draw on insights from the demanded computation graphs of Adapton [Hammer

et al. 2015, 2014], which extends traditional graph-based incremental computation techniques to

support interactive demand-driven computations and provide robust formal guarantees.

By reifying the partial order of computation dependencies in a demanded computation graph
(DCG), this line of work provides a powerful and general approach to the design and implementation

of efficient interactive systems. However, its low-level primitives make it difficult to express the

complex fixed-point computations over cyclic control-flow graphs and recursive call structures

that are found in arbitrary abstract interpretations [Stein et al. 2021a]. This work takes a great

deal of inspiration from demanded computation graphs, but specializes the language of demanded

computations to abstract interpretation, both with syntactic structures and with query and edit

semantics that dynamically modify the dependency graph to model program analysis computation.

9 CONCLUSION
We have described a novel framework for interactive abstract interpretation that simultaneously

supports demand-driven queries, incremental handling of program edits, and compositional applica-
tion of procedure summaries — all in the context of supporting arbitrary complex abstract domains

with non-monotonic widening operators and recursive procedures.

The key innovation in our framework is demanded summarization, which instantiates demanded

abstract interpretation graphs (DAIGs) on demand to synthesize summaries as needed for a com-

positional interprocedural analysis, where a significant technical challenge is soundly handling

self-referential summaries that naturally arise from demanded summarization of recursive proce-

dures. Our evaluation provides evidence of demanded summarization’s scalability and responsive-

ness using synthetic benchmarks, and of its generalizability using real-world edits drawn from

open-source Java programs. Together, these experiments provide evidence of the feasibility of this
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approach as an interactive interface to compositional summary-based analyses with arbitrarily

complex abstract domains.
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A PROOFS FOR SECTION 5 (FROM-SCRATCH CONSISTENCY)
Definition A.1 (DSG Semantic Consistency). We say that a DSG G = ⟨D∗,Δ⟩ is semantically

consistent when it is syntactically well-formed and consistent with the program structure and

underlying abstract interpretation semantics.

- Each constituent DAIGD∗ (𝜌, 𝜑) is well-formed and consistent with the corresponding procedure

CFG 𝑃 (𝜌) and intraprocedural abstract semantics ⟨Σ♯, 𝜑, J·K♯, ⊑,⊔,∇⟩.
- Each return-site abstract state has a corresponding dependency edge from its callee in Δ. That is,
if 𝑛 names a non-empty ref cell in some D = D∗ (𝜌, 𝜑) with a 𝜌 ′-labeled edge to 𝑛 from 𝑛′, then
either

- (𝜌, 𝜑) 𝑛←↪ (𝜌 ′,D(𝑛′)) ∈ Δ (when 𝜌 ≠ 𝜌 ′) or
- (𝜌, 𝜑) 𝑛←↪ (𝜌 ′, 𝜑∇D(𝑛′)) ∈ Δ (when 𝜌 = 𝜌 ′).

- Dependency edges (𝜌 ′, 𝜑 ′) 𝑛←↪ (𝜌, 𝜑) in Δ are consistent with the relevant DAIGs, in that

- D∗ (𝜌 ′, 𝜑 ′) (𝑛) = D∗ (𝜌, 𝜑) (exit(𝜌)) (when 𝜌 ≠ 𝜌 ′) or
- D∗ (𝜌 ′, 𝜑 ′) (𝑛) ⊒ D∗ (𝜌, 𝜑) (exit(𝜌)) (when 𝜌 = 𝜌 ′).

- Analysis results in DAIGs are equal to the corresponding invariants produced by batch tabulation,

where the domains coincide: for all D∗ (𝜌, 𝜑) (ℓ) where (𝜑, ℓ) ∈ dom(𝐼 ), DG𝜌,𝜑 (ℓ) = 𝐼 (𝜑, ℓ).

Lemma A.1 (Initial DSG Consistency). The DSG ⟨𝜀, 𝜀⟩ with no cached results is semantically
consistent.

Proof. All four conditions of Definition 5.1 are universally quantified over D or Δ, which are

empty here and thus vacuously satisfied. □

Lemma A.2 (Consistency Preservation). If G is semantically consistent (with respect to a
program 𝑃 ) then:
if G ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G′ then G′ is semantically consistent, and
if G ⊢𝜌 𝑛 ⇐ 𝑠 ; G′ then G′ is semantically consistent (with respect to the edited version of 𝑃 ).

Proof. We will show that each of the the four conditions of Definition 5.1 is preserved in turn.

- Each D ∈ D∗ is well-formed and consistent. This follows directly from [], since the only way we

instantiate and modify DAIGs is through the inference rules defined there. (modulo 𝜌-labeled

edges, over which DAIG well-formedness makes no claims, but we will handle in the third bullet

point)

- Each return-site abstract state has in Δ a corresponding dependency edge from its callee. The
only query rules that modify return site abstract states either add the requisite edge to Δ
(SQ-Other-Proc, SQ-Other-Pre, SQ-Self) or have a premise that guarantees the requisite edge is

in Δ (F-Step, via R𝜌,𝜑 )

The dirtying rule D-DemandedSummaries empties a return-site 𝑛′ and drops the corresponding

edge from Δ, while D-DAIG throws away any dangling dependency edges Δ′ after dirtying
intraprocedurally.

- Each edge in Δ is consistent with the values on either side. First, note that by the same argument

as the previous case, dependency edges are always removed when the return site they point

to is dirtied. Then, we need only consider the SQ-* rules which add dependency edges to Δ:
SQ-Other-Proc, SQ-Other-Pre, and SQ-Self. The dependency edges added in SQ-Other-*

both satisfy the condition, since the value 𝜑post at the callee exit is written directly to the return

site 𝑛.

The edge added in SQ-Self temporarily violates the condition, but the conclusion of its final

premise guarantees that the resulting G′ satisfies it (by the R𝜌,𝜑 (G′) premise of F-Converge).

- Cached results agree with batch tabulation.
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To show that this property is preserved under edits, first note that E-Delegate (the only edit

rule) applies the edit by dirtying each constituent DAIG over the edited procedure. So, we will

proceed by structural induction on the derivation of the 𝑖-indexed dirtying premise of that rule,

showing that all possibly-affected analysis results are dirtied:

- Case D-DAIG: Since there are no dependency edges on this procedure in Δ, the only cached

analysis results affected by the edit are in the DAIG D∗ (𝜌, 𝜑). By [], the local dirtying in that

DAIG is sound.

- Case D-DemandedSummaries: Because the dependency edge (𝜌 ′, 𝜑 ′) 𝑛′←↪ (𝜌, 𝜑) is in Δ, the
analysis result at 𝑛′ in D∗ (𝜌 ′, 𝜑 ′) relied on this summary. By the inductive hypothesis and

preservation of the second condition of semantic consistency, the first premise dirties all results

that depended transitively on that result, producing a G whose dependency map reflects all

other uses of this summary. By the inductive hypothesis, the second premise also preserves

cache agreement with batch tabulation, so the final resulting G′ contains only those results

that did not depend on the edit.

In order to show that it is preserved under queries, we proceed by structural induction on the

derivation of G ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G′:
- Case Q-Instantiate: The initial DSG of the premise is consistent because the initial DAIG

has only one non-empty cell (its entry) where D init
𝜌ℓ ,𝜑
(entry(𝜌ℓ )) = 𝜑 = 𝐼 (𝜑, entry(𝜌ℓ )).

- Cast Q-Delegate: By from-scratch consistency of DAIGs.

- Case Q-Apply-Summary: First, since the only inference rule of the G⊢{𝜑} 𝜌 {𝜑 ′} ;G′ judgment

is Summarize, we apply the inductive hypothesis at its premise to get that G′ is consistent
and thus 𝜑post = 𝐼 (𝜑pre, exit(𝜌)). Then, writing 𝜑post to the return site 𝑛 is exactly summary

application in tabulation, so the premise of the inductive premise is consistent and therefore

so is its conclusion by the inductive hypothesis.

□

Theorem A.2 (Termination). Queries and edits terminate:
• For all 𝜑 , ℓ ∈ 𝐿, and consistent G, there exist 𝜑 ′ and G′ such that G ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G′.
• For all 𝑠 , 𝑛, 𝜌 , and consistent G where 𝑛 names a CFG edge in 𝐸𝜌 , there exists a G′ such that
G ⊢𝜌 𝑛 ⇐ 𝑠 ; G′.

We show each bullet point separately. First, for queries:

Proof. Let 𝑡𝑐 (𝜌) denote the number of non-𝜌 transitive callees of 𝜌 in 𝑃 and note that 𝑡𝑐 (𝜌 ′) <
𝑡𝑐 (𝜌) whenever 𝜌 calls 𝜌 ′ and 𝜌 ≠ 𝜌 ′. (this does not hold if we don’t exclude 𝜌 itself, since e.g. a

callgraph where 𝜌 calls 𝜌 ′ and 𝜌 ′ calls itself would violate it)

We’ll proceed by induction on 𝑡𝑐 (𝜌ℓ ), where 𝜌ℓ is the procedure containing the query location ℓ .

Note that Q-Instantiate can apply at most once for each 𝜌ℓ , 𝜑 pair and so we will ignore it

throughout this proof, assuming DAIGs are materialized whenever needed.

We will split each case into two subcases based on whether or not 𝜌ℓ is recursive (i.e. contains a

call to itself).

- Base case (𝑡𝑐 (𝜌ℓ ) = 0, non-recursive 𝜌ℓ ): There are no calls in 𝜌ℓ , so Q-Delegate applies, its

premise guaranteed by intraprocedural DAIG query termination [].

- Base case (𝑡𝑐 (𝜌ℓ ) = 0, recursive 𝜌ℓ ): A query against the relevant sub-DAIG either returns a

result (i.e. DG
𝜌ℓ ,𝜑
⊢ ℓ ⇒ 𝜑 ′ ;D′) or is blocked at a recursive callsite (i.e. DG

𝜌ℓ ,𝜑
⊢ ℓ 𝑛
⇝ (𝜌, 𝜑) ;D′).

(1) DG
𝜌ℓ ,𝜑
⊢ ℓ ⇒ 𝜑 ′ ;D′

The sub-DAIG query completes on its own, so Q-Delegate applies and the query terminates

with its result.
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(2) DG
𝜌ℓ ,𝜑
⊢ ℓ 𝑛
⇝ (𝜌ℓ , 𝜑 ′) ;D′:

Only Q-Apply-Summary applies, so we must derive a summary query.

Since 𝜌ℓ = 𝜌ℓ , we consider only SQ-Other-Pre and SQ-Self, depending on whether or not

𝜑 ′ ⊑ 𝜑 .
- SQ-Self: We proceed through the F-* rules for fixed-point computation to derive the final

premise. Due to the convergence condition of ∇, F-Step can only apply finitely many times

before F-Converge applies. The G ⊢ {𝜑} 𝜌 {𝜑 ′} ; G′ premises of the F-* rules similarly

converge either via Q-Delegate, or finitely many applications of Q-Apply-Summary

(since there are finitely many syntactic callsites in a given procedure).

- SQ-Other-Pre: By the convergence condition of ∇, only finitely many new DAIGs over

𝜌ℓ may be instantiated via the G ⊢ {𝜑∇𝜑 ′} 𝜌
{
𝜑post

}
; G′ premise, eventually yielding one

where SQ-Self applies instead of SQ-Other-Pre and terminates by the argument of the

previous case, allowing any intermediate 𝜌 DAIGs also to terminate via intraprocedural

analysis with Q-Delegate after their demanded summaries return.

- Inductive case(𝑡𝑐 (𝜌ℓ ) = 𝑛, non-recursive 𝜌ℓ ): A query for ℓ under precondition 𝜑 against the

relevant sub-DAIG DG
𝜌ℓ ,𝜑

either returns a result (in which case Q-Delegate applies and the

query terminates), or is blocked at some callsite (i.e. DG
𝜌ℓ ,𝜑
⊢ ℓ 𝑛
⇝ (𝜌, 𝜑 ′) ;D′), in which case the

only applicable rule is Q-Apply-Summary.

We can derive the summary premise G⊢
{
𝜑pre

}
𝜌
{
𝜑post

}
;G′ of Q-Apply-Summary via Summarize,

using the inductive hypothesis to derive its premise because 𝑡𝑐 (𝜌) < 𝑛. After writing the resulting
𝜑post to 𝑛 inD′ and updating Δ accordingly, we reissue the query for ℓ under 𝜑 (i.e. the recursive

final premise of Q-Apply-Summary)

Note that the inductive hypothesis does not apply here, since the reissued query is in the same

procedure 𝜌ℓ . However, since 𝜌ℓ is non-recursive, either Q-Delegate or Q-Apply-Summary

must apply again.

If it is Q-Delegate, then the query terminates with its result. On the other hand, if it is Q-Apply-

Summary, then that reissued query may itself reissue a query for which Q-Apply-Summary

applies, and so on. Note, though, that each time the query is reissued it is against a DSG with

one fewer empty return site abstract state reference cell in its (𝜌ℓ , 𝜑) DAIG. Thus, since there

are only finitely many return sites in 𝜌ℓ , eventually Q-Delegate will apply and the query will

terminate.

- Inductive case(𝑡𝑐 (𝜌ℓ ) = 𝑛, recursive 𝜌ℓ ):
This case is shown by combining the arguments of the previous two cases: the inductive hy-

pothesis ensures termination of any sub-queries at non-recursive calls (as in the non-recursive

inductive case), while widening ensures termination of any sub-queries at recursive calls and

convergence of the in-place fixed-point computation performed by F-Step and F-Converge (as

in the recursive base case).

□

And next, for edits:

Proof. BecauseD∗ and therefore 𝑘 are finite, this amounts to showing that each of the 𝑘-indexed

dirtying premises terminates, i.e. that for all 𝜌, 𝜑, 𝑛, 𝑠 , and semantically consistent G, there exists
G′ such that G ⊢𝜌,𝜑 𝑛 ⇐ 𝑠 ; G′. We proceed by induction on the size of the dependency map Δ.
In the base case when Δ𝜌,𝜑 is empty (as is necessarily the case when |Δ| = 0), D-DAIG applies —

we dirty the D∗ (𝜌, 𝜑) from 𝑛 to produce D′, discard any dependencies Δ′ of dirtied local results,

construct G′ = ⟨D∗ [D′/(𝜌, 𝜑)],Δ/Δ′⟩, and terminate.
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In the inductive case with |Δ| = 𝑛 and |Δ𝜌,𝜑 | > 0, D-DemandedSummaries applies. Its first

inductive premise is with |Δ| = 𝑛 − 1, so by the inductive hypothesis it terminates with some G.
That G also has |Δ ≤ 𝑛 − 1 since the dirtying rules only remove and never add dependency edges

in Δ, so it also terminates by the inductive hypothesis, and we terminate with its result G′. □

Theorem A.3 (From-Scratch Consistency). Query results are equal to the corresponding in-
variant computed by tabulation: if G is semantically consistent, G ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G′, and (𝜑, ℓ) ∈ dom(𝐼 )
then 𝜑 ′ = 𝐼 (𝜑, ℓ).

Proof. Having shown semantic consistency preservation and initial-DSG semantic consistency,

the proof of this property is straightforward. Since

(1) the fourth property of semantic consistency ensures that DAIG results are consistent with

tabulation results,

(2) Q-Delegate (which reads its result directly from the relevant procedure DAIG) is the only

G ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G′ rule with no inductive premise, and

(3) the other two rules G ⊢𝜑 ℓ ⇓ 𝜑 ′ ; G′ return the result of their inductive premise,

all query results must correspond to DAIG cell values, which are themselves consistent with batch

tabulation results where the domains coincide. □

Corollary A.4 (Soundness). Query results are sound with respect to the concrete semantics:
If G ⊢ ℓ ⇓ 𝜑 ; G′ and G is semantically consistent then 𝜎 |= 𝜑 for all 𝜎 ∈ JℓK∗

Proof. Soundness follows directly from from-scratch consistency: results are equal to those of

the underlying batch analysis, which is itself sound. □

B PROOFS FOR SECTION 7 (SUMMARY TABULATION &WEAKENING)
First, some modifications are required in the definition of DSG Semantic Consistency (Definition 5.1)

to accommodate the summary triples in T .

Definition B.1 (DSG Semantic Consistency with Summary Tables). Conditions (1) and (2) of Def-

inition 5.1 are unmodified and therefore elided here. Conditions (3) and (4) are modified and a

condition (5) added as follows

(3) Dependency edges (𝜌 ′, 𝜑 ′) 𝑛←↪ (𝜌, 𝜑) in Δ are consistent with the relevant DAIGs and summary

triples, such that whenever (𝜌 ′, 𝜑) ∈ dom(D∗) we have either
- D∗ (𝜌 ′, 𝜑 ′) (𝑛) = 𝜑callee-exit (when 𝜌 ≠ 𝜌 ′) or
- D∗ (𝜌 ′, 𝜑 ′) (𝑛) ⊒ 𝜑callee-exit (when 𝜌 = 𝜌 ′).

where 𝜑callee-exit =

{
𝜑 ′ if ∃ {𝜑} 𝜌 {𝜑 ′} ∈ T
D∗ (𝜌, 𝜑) (exit(𝜌)) otherwise

(4) Analysis results in DAIGs and summary triples are equal to the corresponding invariants produced

by batch tabulation, where the domains coincide:

- DG𝜌,𝜑 (ℓ) = 𝐼 (𝜑, ℓ) for all D∗ (𝜌, 𝜑) (ℓ) where (𝜑, ℓ) ∈ dom(𝐼 ), and
- 𝜑 ′ = 𝐼 (𝜑, exit(𝜌)) for all {𝜑} 𝜌 {𝜑 ′} ∈ T where (𝜑, exit(𝜌)) ∈ dom(𝐼 ).

(5) For all {𝜑}𝜌 {𝜑 ′} ∈ T , we have thatΔ ⊇ Δ′ whereΔ′ is defined by ⟨𝜀, 𝜀, 𝜀⟩⊢𝜑 exit(𝜌) ⇓ 𝜑 ′ ;⟨_,Δ′, _⟩

The tweaks to (3) and (4) are straightforward, simply allowing for the fact that analysis results

can now be stored either inD∗ or T , rather than just inD∗. In the first bullet point, we’ve inserted

𝜑callee-exit into the two equations where we previously just had D∗ (𝜌, 𝜑) (exit(𝜌)). In the second

bullet point, we’ve added the additional condition that summary triples agree with batch tabulation,

where previously it just referred to DAIG analysis results.
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The newly-added condition (5) states that, whenever we have a summary triple in T , we also
have all of the dependency edges in Δ that would be required to compute that summary from

scratch. By ensuring that summary triples in T are accompanied by the proper dependencies, we

can guarantee that they are invalidated as needed in response to semantically relevant edits to

other procedures.

Theorem B.2 (Consistency Preservation under Tabulate). If G d G′ and G is semantically
consistent with respect to 𝑃 , then G′ is also semantically consistent with respect to 𝑃 .

Proof Sketch. Conditions (1) and (2) are vacuously preserved. Both modified conditions (3)

and (4) are ensured by Tabulate and Definition 5.1 of G, since the postcondition of a tabulated

triple is exactly the exit abstract state of the discarded DAIG. Condition (5) is similarly guaranteed

by the definition of Tabulate, where Δ contains all requisite dependencies for D (by semantic

consistency of G) and is unchanged in G′. □

Theorem B.3 (Consistency Preservation). Semantic consistency of summary table-equipped
DSGs is preserved under queries and edits as in Lemma 5.1.

Proof Sketch. The proof is largely unchanged for the original 4 conditions of semantic con-

sistency. Condition (5) is ensured because summary triples in T are never introduced by queries

or edits (only by the Tabulate operation) and are discarded by the D-Summary rule whenever any

transitively-reachable dependency in Δ is dirtied by an edit. □

Theorem B.4 (Termination). Queries and edits terminate in semantically consistent summary
table-equipped demanded summarization graphs.

Proof Sketch. The added rules S-Apply and D-Summary clearly terminate — S-Apply trivially,

D-Summary by the same argument given for D-DAIG in Section 5. The modified rules Q-Instantiate

and E-Delegate also terminate, both by the same arguments given originally in Section 5. □

Theorem B.5 (From-Scratch Consistency and Soundness). Demanded analysis in summary
table-equipped demanded summarization graphs produces from-scratch consistent (and therefore
sound) results.

Proof Sketch. The Tabulate operation only produces summaries that are identical to their

DAIG analogues, which we know to be from-scratch consistent. Furthermore, E-Delegate and

D-Summary ensure that any summary triple potentially affected by an edit is discarded. Therefore,

summary triples are only applied under the same conditions as their DAIG analogues would have

been, so the abstract semantics are identical to those of Section 4. □
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