
Manu Sridharan
(and many collaborators)

IBM Research

Static Analysis and
Reflection

What is Reflection?

class Factory {
 Object make(String x) {
 return Class.forName(x).newInstance();
 }
}

What is Reflection?

‣ Operating on code entities via strings

‣ Allocation, invoking methods, accessing fields

class Factory {
 Object make(String x) {
 return Class.forName(x).newInstance();
 }
}

What is Reflection?

‣ Operating on code entities via strings

‣ Allocation, invoking methods, accessing fields

‣ Why?

‣ Control via configuration files (frameworks)

‣ Meta-programming (generic toString)

‣ No good reason (some uses of JavaScript eval)

class Factory {
 Object make(String x) {
 return Class.forName(x).newInstance();
 }
}

Reflection Dilemma

Model Ignore

Precision

Recall

Scalability

Reflection Dilemma

Model Ignore

Precision

Recall

Scalability

Reflection Dilemma

Model Ignore

Precision

Recall

Scalability

(key behaviors?)

Reflection Dilemma

Model Ignore

Precision

Recall

Scalability

Challenge: Strike right balance for client

(key behaviors?)

Our Reflection Story

‣ Clients

‣ Java taint analysis

‣ JavaScript taint analysis (call graphs)

‣ JavaScript IDE tools

‣ Approaches

‣ Static: model via code analysis

‣ Specifications: use additional artifacts

‣ Dynamic: observe behavior, record or generalize

Java Taint Analysis

Reflection Handling in TAJ

Reflection Handling in TAJ

‣ Taint Analysis for Java

‣ Pointer analysis for call graphs + aliasing

‣ Soundness not required

‣ But, ignoring reflection is too unsound

Reflection Handling in TAJ

‣ Taint Analysis for Java

‣ Pointer analysis for call graphs + aliasing

‣ Soundness not required

‣ But, ignoring reflection is too unsound

‣ Enhanced pointer analysis with reflection handling

‣ Track string constants, Class / Method objects

‣ Generate synthetic IR for reflective operations

‣ For c.newInstance(), if c is Class<Foo>,
model as new Foo()

‣ As in Livshits et al., APLAS’05

A Vicious Cycle...

Imprecise
value flow

Polluted
reflection
handling

A Vicious Cycle...

Imprecise
value flow

Polluted
reflection
handling

Quadratic blowup

‣ Huge analysis time / memory

‣ Highly imprecise result

“Fixing” the problem

‣ Tried bounding pointer analysis, but fragile

‣ In the end, dumped pointer analysis

‣ Instead, heuristic type-based call graph

‣ Track aliases during taint analysis

‣ See Tripp et al., FASE’13

‣ Hand-tuned reflection handling for frameworks

‣ But many frameworks in practice...

‣ Nasty reflection based on config files

A Framework for
Frameworks (OOPSLA’11)

A Framework for
Frameworks (OOPSLA’11)

application Taint analysis vulnerabilities

A Framework for
Frameworks (OOPSLA’11)

application Taint analysis vulnerabilities

Spring Handler
ASP.NET
Handler

...config. info

Framework handlers

A Framework for
Frameworks (OOPSLA’11)

application Taint analysis vulnerabilities

Spring Handler
ASP.NET
Handler

...config. info

Web Application
Framework Language
(WAFL) specification

Framework handlers

A Framework for
Frameworks (OOPSLA’11)

application Taint analysis vulnerabilities

Spring Handler
ASP.NET
Handler

...config. info

Web Application
Framework Language
(WAFL) specification

Easy to support
new frameworks

Framework handlers

A Framework for
Frameworks (OOPSLA’11)

application Taint analysis vulnerabilities

Spring Handler
ASP.NET
Handler

...config. info

Web Application
Framework Language
(WAFL) specification

Easy to support
new frameworks

Framework handlers

Expressive, yet easy to
integrate

A Framework for
Frameworks (OOPSLA’11)

application Taint analysis vulnerabilities

Spring Handler
ASP.NET
Handler

...config. info

Web Application
Framework Language
(WAFL) specification

Easy to support
new frameworks

Framework handlers

Key to precision

Expressive, yet easy to
integrate

Example: edit profile

Example: edit profile
Code Configuration

Example: edit profile
Code Configuration

// for user data
class UserForm {
 String firstName,lastName;
 // getters and setters...
}

// updates profile
class UserAction
 implements IAction {
 String exec(HttpRequest req,
 Object form) {
 UserForm uf = (UserForm) form;
 updateDB(uf);
 ...
 }
}

Example: edit profile
Code Configuration

// for user data
class UserForm {
 String firstName,lastName;
 // getters and setters...
}

// updates profile
class UserAction
 implements IAction {
 String exec(HttpRequest req,
 Object form) {
 UserForm uf = (UserForm) form;
 updateDB(uf);
 ...
 }
}

<action url="/edit"
 type="UserAction"
 formtype="UserForm">
</action>

In English: When “/edit” is visited, create a
UserForm object (reflection), set its fields
using request data (reflection), and pass it
to UserAction.exec() (reflection).

WAFL: synthetic methods

fun entrypoint UserAction_entry(request) {
 UserForm f = new UserForm();
 f.setFirstName(request.getParam(“firstName”));
 f.setLastName(request.getParam(“lastName”));
 (new UserAction()).exec(request, f);
}

WAFL: synthetic methods

fun entrypoint UserAction_entry(request) {
 UserForm f = new UserForm();
 f.setFirstName(request.getParam(“firstName”));
 f.setLastName(request.getParam(“lastName”));
 (new UserAction()).exec(request, f);
}

‣ Simple structure: no branches, loops, etc.

‣ Eases integration with analysis engine

‣ Taint analysis usually flow insensitive anyway

‣ Based on both app code and config info

What about dynamic?

‣ The Tamiflex approach (Bodden et al., ICSE’11)

‣ Log runtime reflective operations

‣ Use log to transform code

‣ Ensures soundness for tested inputs

‣ Difficulties

‣ Running server code can be hard!

‣ Need inputs to cover behaviors

Can we do better?

‣ F4F quite successful

‣ But, requires writing framework handlers

‣ Can we further automate?

‣ Maybe generalize from dynamic I/O?

‣ Important problem

JavaScript Taint Analysis
(or, Getting Tamed by jQuery)

Pointer Analysis Needed

var x = {};
// initialize object properties
x.foo = function f1() { return 23; }
x.bar = function f2() { return 42; }
x.foo(); // invokes f1

Pointer Analysis Needed

‣ No declared types; objects can gain or lose fields

var x = {};
// initialize object properties
x.foo = function f1() { return 23; }
x.bar = function f2() { return 42; }
x.foo(); // invokes f1

Pointer Analysis Needed

‣ No declared types; objects can gain or lose fields

‣ Pointer analysis needed for call graphs

‣ Most method calls are “virtual”

‣ Cannot narrow call targets via types / arity

var x = {};
// initialize object properties
x.foo = function f1() { return 23; }
x.bar = function f2() { return 42; }
x.foo(); // invokes f1

Dynamic Property Accesses

var f = p() ? “foo” : “baz”;
// writes to o.foo or o.baz
o[f] = “Hello!”;

Dynamic Property Accesses

‣ Used frequently inside frameworks

var f = p() ? “foo” : “baz”;
// writes to o.foo or o.baz
o[f] = “Hello!”;

Dynamic Property Accesses

‣ Used frequently inside frameworks

‣ Increases worst-case analysis complexity!

var f = p() ? “foo” : “baz”;
// writes to o.foo or o.baz
o[f] = “Hello!”;

Dynamic Property Accesses

‣ Used frequently inside frameworks

‣ Increases worst-case analysis complexity!

‣ Leads to significant blowup in practice

var f = p() ? “foo” : “baz”;
// writes to o.foo or o.baz
o[f] = “Hello!”;

Correlated Accesses
function extend(dest,src) {
 for (var prop in src)
 // correlated accesses
 dest[prop] = src[prop];
}

Correlated Accesses

‣ Correlated: prop has same value at both accesses

function extend(dest,src) {
 for (var prop in src)
 // correlated accesses
 dest[prop] = src[prop];
}

Correlated Accesses

‣ Correlated: prop has same value at both accesses

‣ Standard points-to analysis misses correlation

‣ Analysis merges all properties of src

‣ For frameworks, leads to “quadratic blowup”

function extend(dest,src) {
 for (var prop in src)
 // correlated accesses
 dest[prop] = src[prop];
}

Function Extraction +
Context Sensitivity

function extend(dest,src) {
 for (var prop in src)
 dest[prop] = src[prop];
}

Function Extraction +
Context Sensitivity

function extend(dest,src) {
 for (var prop in src)
 // extract accesses into
 // fresh function
 (function ext(p) {
 dest[p] = src[p];
 })(prop);
}

function extend(dest,src) {
 for (var prop in src)
 dest[prop] = src[prop];
}

Function Extraction +
Context Sensitivity

function extend(dest,src) {
 for (var prop in src)
 // extract accesses into
 // fresh function
 (function ext(p) {
 dest[p] = src[p];
 })(prop);
}

function extend(dest,src) {
 for (var prop in src)
 dest[prop] = src[prop];
}

ext contexts: p == “foo”, p == “baz”, ...

Function Extraction +
Context Sensitivity

function extend(dest,src) {
 for (var prop in src)
 // extract accesses into
 // fresh function
 (function ext(p) {
 dest[p] = src[p];
 })(prop);
}

function extend(dest,src) {
 for (var prop in src)
 dest[prop] = src[prop];
} ‣ Analyze new functions with

clone per property name

‣ Similar to object
sensitivity / CPA

‣ Details in ECOOP’12

ext contexts: p == “foo”, p == “baz”, ...

Results: Scalability

All our experiments were run on a Lenovo ThinkPad W520 with a 2.20 GHz
Intel Core i7-2720QM processor and 8GB RAM running Linux 2.6.32. We used
the OpenJDK 64-Bit Server VM, version 1.6.0_20, with a 5GB maximum heap.

5.3 Results

Framework Baseline� Baseline+ Correlations� Correlations+

dojo * (*) * (*) 3.1 (30.4) 6.7 (*)
jquery * * 78.5 *
mootools 0.7 * 3.1 *
prototype.js * * 4.4 4.5
yui * * 2.2 2.1

Table 3. Time (in seconds) to build call graphs for the benchmarks, averaged per
framework; ‘*’ indicates timeout. For dojo, one benchmark takes significantly longer
than the others, and is hence listed separately in parentheses.

Performance We first measured the time it takes to generate call graphs for our
benchmarks using the di�erent configurations, with a timeout of ten minutes.
The results are shown in Table 3. Since our benchmarks are relatively small,
call graph construction time is dominated by the underlying framework, and
di�erent benchmarks for the same framework generally take about the same
time to analyze. For this reason, we present average numbers per framework,
except in the case of dojo where one benchmark took significantly longer than
the others; its analysis time is not included in the average and given separately
in parentheses.

Configuration Baseline� does not complete within the timeout on any bench-
mark except for mootools, which it analyzes in less than a second on average.
However, once we move to Baseline+ and take call and apply into considera-
tion, mootools also becomes unanalyzable.

Our improved analysis fares much better. Correlations� analyzes most bench-
marks in less than five seconds, except for one dojo benchmark taking half a
minute, and the six jquery benchmarks, which take up to 80 seconds. Adding
support for call and apply again impacts analysis times: the analysis now times
out on the jquery and mootools tests, along with the dojo outlier (most likely
due to a sophisticated nested use of call and apply on the latter), and runs
more than twice as slow on the other dojo tests; on prototype.js and yui, on
the other hand, there is no noticeable di�erence. However, our precision mea-
surements indicate that some progress has been made even for the cases with
timeouts in Correlations+ (see below).

Our timings for the “+” configurations do not include the overhead for finding
and extracting correlated pairs, which is very low: on average, the former takes
about 0.1 seconds, and the latter even less than that.

18

‣ Dramatic improvements with Correlations–

‣ Useful for an under-approximate call graph

‣ For ‘+’ configs, issues remain with call / apply

Unnecessary Reflection
var e = "blur,focus,load".split(",");

for(var i=0;i<e.length;i++) {

var o = e[i];

jQuery.fn[o] = function() { ... };

jQuery.fn["un"+o] = function() { ... };

jQuery.fn["one"+o] = function() { ... };

}

Uses of dynamic property writes
are inessential, could be flat-
tened out!

13 / 28

Unnecessary Reflection
var e = "blur,focus,load".split(",");

for(var i=0;i<e.length;i++) {

var o = e[i];

jQuery.fn[o] = function() { ... };

jQuery.fn["un"+o] = function() { ... };

jQuery.fn["one"+o] = function() { ... };

}

Uses of dynamic property writes
are inessential, could be flat-
tened out!

13 / 28

jQuery.fn.blur = function() { ... };

jQuery.fn.unblur = function() { ... };

jQuery.fn.oneblur = function() { ... };

jQuery.fn.focus = function() { ... };

jQuery.fn.unfocus = function() { ... };

jQuery.fn.onefocus = function() { ... };

jQuery.fn.load = function() { ... };

jQuery.fn.unload = function() { ... };

jQuery.fn.oneload = function() { ... };

13 / 28

Dynamic Determinacy
Analysis

Dynamic Determinacy
Analysis

‣ Much reflection can be rewritten away

‣ E.g., eval of constant, jQuery initialization

Dynamic Determinacy
Analysis

‣ Much reflection can be rewritten away

‣ E.g., eval of constant, jQuery initialization

‣ Pure static detection hard (needs a call graph!)

Dynamic Determinacy
Analysis

‣ Much reflection can be rewritten away

‣ E.g., eval of constant, jQuery initialization

‣ Pure static detection hard (needs a call graph!)

‣ Idea: Prove fixed behavior based on dynamic analysis

‣ Find expressions “untainted” by inputs

‣ Similar to dynamic information flow

‣ See PLDI’13 paper for details

Dynamic Determinacy
Analysis

‣ Much reflection can be rewritten away

‣ E.g., eval of constant, jQuery initialization

‣ Pure static detection hard (needs a call graph!)

‣ Idea: Prove fixed behavior based on dynamic analysis

‣ Find expressions “untainted” by inputs

‣ Similar to dynamic information flow

‣ See PLDI’13 paper for details

‣ Analyzed jQuery! But...version 1.0

‣ Challenge: non-deterministic event handlers

JavaScript IDE Tools

Challenges

‣ Developers demand rich IDE functionality

‣ Code navigation (jump to declaration)

‣ Smart completion

‣ Refactoring

‣ Hard to build these features for JavaScript

‣ Reflection, lack of types, etc.

‣ For IDE, must be fast

Idea: Under-Approximate

Idea: Under-Approximate

‣ Deliberately ignore “hard” features of JS

‣ I.e., ignore reflection

Idea: Under-Approximate

‣ Deliberately ignore “hard” features of JS

‣ I.e., ignore reflection

‣ Ok to miss some behaviors in IDEs

‣ Even Java refactorings ignore reflection

Idea: Under-Approximate

‣ Deliberately ignore “hard” features of JS

‣ I.e., ignore reflection

‣ Ok to miss some behaviors in IDEs

‣ Even Java refactorings ignore reflection

‣ Design analysis to scale well and capture
most behaviors

Field-Based Call Graphs

Field-Based Call Graphs

41

Field Access

function A(x) {

 x.f = foo;

}

function B(y) {

 y.f = bar;

}

f

Field-Based Call Graphs

41

Field Access

function A(x) {

 x.f = foo;

}

function B(y) {

 y.f = bar;

}

f

Ignore dynamic accesses x[p]

Why Does This Work?

47

Calls and Reflection

function extend(dst,src) {

 for (var x in src) {

 dst[x] = src[x];
 }
}

foo.f = function() { /*...*/ };

extend(bar,foo);

bar.f();

1
2
3
4
5

6

7

8

Why Does This Work?

47

Calls and Reflection

function extend(dst,src) {

 for (var x in src) {

 dst[x] = src[x];
 }
}

foo.f = function() { /*...*/ };

extend(bar,foo);

bar.f();

1
2
3
4
5

6

7

8

49

Calls and Reflection

function extend(dst,src) {

 for (var x in src) {

 dst[x] = src[x];////////////////
 }
}

foo.f = function() { /*...*/ };

extend(bar,foo);////////////////

bar.f();

1
2
3
4
5

6

7

8

Why Does This Work?

47

Calls and Reflection

function extend(dst,src) {

 for (var x in src) {

 dst[x] = src[x];
 }
}

foo.f = function() { /*...*/ };

extend(bar,foo);

bar.f();

1
2
3
4
5

6

7

8

49

Calls and Reflection

function extend(dst,src) {

 for (var x in src) {

 dst[x] = src[x];////////////////
 }
}

foo.f = function() { /*...*/ };

extend(bar,foo);////////////////

bar.f();

1
2
3
4
5

6

7

8

51

1
2
3
4
5

6

7

8

Calls and Reflection

function extend(dst,src) {

 for (var x in src) {

 dst[x] = src[x];////////////////
 }
}

foo.f = function() { /*...*/ };

extend(bar,foo);////////////////

bar.f();

f

call edge

Evaluation

‣ Compared with dynamic call graphs

‣ No other usable static technique

‣ Best-effort coverage

‣ Measured precision, recall, and runtime

57

Benchmarks

Benchmark Framework LOC Precision Recall Time

3dmodel none 4.9k 93% 100% 0.26s

pacman none 3.5k 94% 100% 0.47s

pdfjs none 31.7k 77% 99% 5.62s

coolclock jQuery 6.9k 89% 98% 1.32s

fullcalendar jQuery 12.3k 84% 93% 2.85s

htmledit jQuery 3.6k 81% 84% 0.80s

markitup jQuery 6.5k 82% 94% 1.28s

pong jQuery 3.6k 78% 93% 0.83s

flotr Prototype 4.9k 72% 83% 1.76s

beslimed MooTools 4.8k 78% 84% 1.06s

61

Benchmarks

Benchmark Framework LOC Precision Recall Time

3dmodel none 4.9k 93% 100% 0.26s

pacman none 3.5k 94% 100% 0.47s

pdfjs none 31.7k 77% 99% 5.62s

coolclock jQuery 6.9k 89% 98% 1.32s

fullcalendar jQuery 12.3k 84% 93% 2.85s

htmledit jQuery 3.6k 81% 84% 0.80s

markitup jQuery 6.5k 82% 94% 1.28s

pong jQuery 3.6k 78% 93% 0.83s

flotr Prototype 4.9k 72% 83% 1.76s

beslimed MooTools 4.8k 78% 84% 1.06s

Seconds,
not hours

64

Benchmarks

Benchmark Framework LOC Precision Recall Time

3dmodel none 4.9k 93% 100% 0.26s

pacman none 3.5k 94% 100% 0.47s

pdfjs none 31.7k 77% 99% 5.62s

coolclock jQuery 6.9k 89% 98% 1.32s

fullcalendar jQuery 12.3k 84% 93% 2.85s

htmledit jQuery 3.6k 81% 84% 0.80s

markitup jQuery 6.5k 82% 94% 1.28s

pong jQuery 3.6k 78% 93% 0.83s

flotr Prototype 4.9k 72% 83% 1.76s

beslimed MooTools 4.8k 78% 84% 1.06s

>70% Precision

66

Benchmarks

Benchmark Framework LOC Precision Recall Time

3dmodel none 4.9k 93% 100% 0.26s

pacman none 3.5k 94% 100% 0.47s

pdfjs none 31.7k 77% 99% 5.62s

coolclock jQuery 6.9k 89% 98% 1.32s

fullcalendar jQuery 12.3k 84% 93% 2.85s

htmledit jQuery 3.6k 81% 84% 0.80s

markitup jQuery 6.5k 82% 94% 1.28s

pong jQuery 3.6k 78% 93% 0.83s

flotr Prototype 4.9k 72% 83% 1.76s

beslimed MooTools 4.8k 78% 84% 1.06s

>80% Recall

Smart Completion

(Eclipse Orion: eclipse.org/orion)

Smart Completion

‣ Again, flow analysis required, hard to scale

‣ Unlike call graph, needs flows of all objects

(Eclipse Orion: eclipse.org/orion)

Smart Completion

‣ Again, flow analysis required, hard to scale

‣ Unlike call graph, needs flows of all objects

‣ Observation: most nasty reflection occurs in libraries

(Eclipse Orion: eclipse.org/orion)

Smart Completion

‣ Again, flow analysis required, hard to scale

‣ Unlike call graph, needs flows of all objects

‣ Observation: most nasty reflection occurs in libraries

‣ Approach: dynamic API inference for libraries

‣ Run instrumented library on unit tests

‣ Record observed types and use for flow analysis

(Eclipse Orion: eclipse.org/orion)

Smart Completion

‣ Again, flow analysis required, hard to scale

‣ Unlike call graph, needs flows of all objects

‣ Observation: most nasty reflection occurs in libraries

‣ Approach: dynamic API inference for libraries

‣ Run instrumented library on unit tests

‣ Record observed types and use for flow analysis

‣ Compared to hand-written models, less effort and more complete

(Eclipse Orion: eclipse.org/orion)

Conclusions

Lessons Learned

Lessons Learned

‣ Details of reflection handling matter!

‣ Can dominate more common analysis
parameters (*-sensitivity)

Lessons Learned

‣ Details of reflection handling matter!

‣ Can dominate more common analysis
parameters (*-sensitivity)

‣ Best solutions specialized to client

‣ Varying performance, soundness needs

Lessons Learned

‣ Details of reflection handling matter!

‣ Can dominate more common analysis
parameters (*-sensitivity)

‣ Best solutions specialized to client

‣ Varying performance, soundness needs

‣ Quadratic blowup complicates debugging

‣ Delta debugging helps

Next Steps

‣ Better abstractions / guidance for clients

‣ Refine under-approximate approaches

‣ With help from user?

‣ Better language constructs?

‣ E.g., MorphJ (Huang and Smaragdakis,
PLDI’08)

Thanks!

