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Andersen’s Analysis

= Definition (almost)
precise flow- and context-insensitive points-to analysis

" Presented by Andersen in 1994
— Similar predecessors, e.g., 0-CFA [Shivers88]

= Worst-case complexity nearly cubic ( O(N3 / log N) )

= Early implementations didn’t scale

— Approximations developed [Steensgaard96,Das00]
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Scaling Andersen’s Analysis

Online Cycle Elimination Type Filters
[FFSA98,HT01,HLO7] [LHO3]
Preprocessing Shared Bitsets / BDDs
[RCOO,HLO7] [HTO1,BLQHUO03,2C04,WL04]
Projection Merging And More!
[SFAOO] [next talk]

Impressive Scalability: 1M C LOC [HLO7] or 500K Java
bytecodes [WL04] in under 10 minutes
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Why Does Andersen’s Scale?

Possibility 1: Reduced Constant Factors
Nearly cubic behavior remains in
practice

Our work,
for Java

Possibility 2: Real Programs Easier
Program structure enables subcubic
scaling in practice
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Key Results

= Andersen’s analysis is O(N?2) for k-sparse programs

= For Java, k-sparsity through types + encapsulation

—Structure makes analysis easier than for C

= Empirical validation
— Benchmarks from 176-2225K bytecodes

— Showed k-sparsity and quadratic scaling
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1: x = new Obj();
2: z = new Obj();
3: W = X;

4: y = X;

5: y.f = z;

6: vV = w.f;

Complexity of chaotic
worklist algorithm: O(N%4)
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Background: Difference Propagation

”Sta nda rdn pt(y) = {}+ {0}

Propagation

pt(x) = {o,}

pt(w) = {}+ {o,}
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Background: Difference Propagation

“Standard” pt(y) = {o,}

Propagation

pt(x) = {01}

pt(W) = {01}
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Background: Difference Propagation

”Sta nda rdn pt(y) = {01} + {01,02}

Propagation

pt(x) = {o,,0,

pt(W) = {01}"' {°1r°z}
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Background: Difference Propagation

ptly) = {}

Difference pt,(y) = {}+ {o,}

Propagation

pt(x) = {}

ptA(X) = {01}

pt(w) = {}
ptA(W) ={}+ {01}
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Background: Difference Propagation

pt(y) = {o,}

Difference otly) = 0

Propagation

pt(x) = {01}
pta(x) = {}

pt(W) = {01}
ptA(W) = {}
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Background: Difference Propagation

pt(y) = {o,}

Difference pt,(y) = {}+ {0,}

Propagation

pt(x) = {01}

ptA(X) = {oz}

pt(W) = {01}
ptA(W) ={}+ {oz}
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Background: Difference Propagation

pt(y) = {0,,0,}

Difference ot(y) = 1

Propagation

pt(x) = {o,,0,
pta(x) = {}

pt(W) = {01;02}

ptA(W) = {}
- Guarantee: loc propagated at most once per edge

- DTC + difference propagation complexity: O(N3) [Pearce05]
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k-sparse programs
= Def: num. of graph edges < k * N at termination, k constant
= Complexity for k-sparse programs: O(N?)
— Linear number of edges, linear work per edge (via diff. prop.)

— Must also count edge adding work; see paper for details

Non-k-sparse graph

X;.f =y, o,.f
X,.f =y, 0,.f
X;.F =y, 0;.f

X,.F =y, o,.f
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Java and k-sparsity: strong types

class A { int f; }
class B { int g; }

A a = new A();
a.g = 5; // compile error

Key benefits: few fields per object, no aliased fields

—Limits number of object field nodes created

—Exploited in previous work [SGSB05,SB06]

Unlike C: no structure casts
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Java and k-sparsity: encapsulation

class C {
// encapsulated
private int state;

int getState() { return this.state; }

void setState(int i) { this.state = i; }
}

Benefit: few accesses per field

— Limits number of closure edges

— Tradeoff: possibly worse precision (context insensitivity)

Unlike C: no * operator

16
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Threats to k-sparsity

= Dynamic dispatch
— # of targets at call sites may increase with program size

— Haven’t observed in practice; on-the-fly call graph helps

= Arrays
—y = x[0]; = y = x.arr;
— Same arr field for all array types (due to subtyping)
— # of accesses of arr increases with program size (like * in C)

— Observed some blowup in one benchmark
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Experiments

Questions

1. Are programs k-sparse?

2. Is quadratic scaling observed?

K 3. How tight is quadratic bound? /

18 © 2009 IBM Corporation




IBM Research

Are programs k-sparse?
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fop “outlier” benchmark

= Extensive use of library array manipulation routines

— E.g., from java.util.Arrays

= Arrays + context-insensitive handling of routines pollutes
results

= Lesson: targeted context sensitivity could improve both
precision and performance

— Especially for array-handling routines
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Is quadratic scaling observed?
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How tight is quadratic bound?
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Total points-to size = N1-7°
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Other Factors

= Standard techniques can provide constant-factor speedups

— Bit vector parallelism, type filters, on-the-fly call graph,
preprocessing, cycle elimination

= Space considerations very important in practice

— May not want exhaustive use of delta sets

— BDDs / shared bit sets reduce space but complicate running
time analysis

= Detailed discussion in paper
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Open questions

= What about other languages?

— Some evidence that C programs are not k-sparse [PKHO3];
may explain greater importance of cycle elimination

— Result translates to 0-CFA; are functional programs k-sparse?

= Time complexity for BDDs / shared bit sets?

= |s tighter bound possible?

— Demand-driven analysis may have less required output

* Does k-sparsity help other analyses?
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Conclusions

= Andersen’s is quadratic for k-sparse inputs

= Realistic Java programs are k-sparse
—Strong typing
—Encapsulation

= Explains (partially) the scalability of Andersen’s for
Java in practice; no cubic bottleneck!
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Thanks!
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Formulation of Andersen’s Analysis

Statement

Constraint

i: x = new T(O)

27

0; € pt(x) [New|

pt(y) € pt(x) [Assign]

0; € pt(y)
pi(oif) C pr(a)
i € pi(a) [Store]

pt(y) C pt(os.f)
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k-sparse programs

Final number of edges <=k * N

Writes Object Fields Reads
X;.f =y, 0,.f >Qq; = p;.f
X.f =y, 0,.F >Qq; = pp-F
X;.F =y, 03.F >0q; = p;.f
T = o,.f > =p,.f
Xy Ya BADI! 4 da P4

Complexity for k-sparse programs: O(N?)
— Linear work per edge (diff. prop.), linear number of edges

— Also edge adding work; see paper for details
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