

The Complexity of Andersen's Analysis in Practice

Manu Sridharan and Stephen J. Fink IBM T.J. Watson Research Center SAS 2009

Andersen's Analysis

- Definition (almost)
 precise flow- and context-insensitive points-to analysis
- Presented by Andersen in 1994
 - Similar predecessors, e.g., 0-CFA [Shivers88]
- Worst-case complexity nearly cubic (O(N³ / log N))
- Early implementations didn't scale
 - Approximations developed [Steensgaard96,Das00]

Scaling Andersen's Analysis

Online Cycle Elimination [FFSA98,HT01,HL07]

Type Filters [LH03]

Preprocessing [RC00,HL07]

Shared Bitsets / BDDs
[HT01,BLQHU03,ZC04,WL04]

Projection Merging[SFA00]

And More! [next talk]

<u>Impressive Scalability</u>: 1M C LOC [HL07] or 500K Java bytecodes [WL04] in under 10 minutes

Why Does Andersen's Scale?

Possibility 1: Reduced Constant Factors

Nearly cubic behavior remains in practice

Our work, for Java

Possibility 2: Real Programs Easier

Program structure enables *subcubic scaling* in practice

Key Results

- Andersen's analysis is O(N²) for k-sparse programs
- For Java, k-sparsity through types + encapsulation
 - Structure makes analysis easier than for C

Empirical validation

- Benchmarks from 176-2225K bytecodes
- Showed k-sparsity and quadratic scaling

Background: Andersen's as Dynamic Transitive Closure

```
1: x = new Obj();

2: z = new Obj();

3: w = x;

4: y = x;

5: y.f = z;

6: v = w.f;
```


Complexity of chaotic worklist algorithm: O(N⁴)

"Standard" Propagation

"Standard" Propagation

"Standard" Propagation

- Guarantee: loc propagated at most once per edge
- DTC + difference propagation complexity: O(N³) [Pearce05]

k-sparse programs

- <u>Def</u>: num. of graph edges $\leq k * N$ at termination, k constant
- Complexity for k-sparse programs: O(N²)
 - Linear number of edges, linear work per edge (via diff. prop.)
 - Must also count edge adding work; see paper for details

Non-k-sparse graph $x_1.f = y_1 \qquad o_1.f$ $x_2.f = y_2 \qquad o_2.f$ $x_3.f = y_3 \qquad o_3.f$ $x_4.f = y_4 \qquad o_4.f$

Java and k-sparsity: strong types

```
class A { int f; }
class B { int g; }

A a = new A();
a.g = 5; // compile error
```

Key benefits: few fields per object, no aliased fields

- Limits number of object field nodes created
- Exploited in previous work [SGSB05,SB06]

Unlike C: no structure casts

Java and k-sparsity: encapsulation

```
class C {
   // encapsulated
   private int state;
   int getState() { return this.state; }
   void setState(int i) { this.state = i; }
}
```

Benefit: few accesses per field

- Limits number of closure edges
- Tradeoff: possibly worse precision (context insensitivity)

Unlike C: no * operator

Threats to k-sparsity

- Dynamic dispatch
 - # of targets at call sites may increase with program size
 - Haven't observed in practice; on-the-fly call graph helps
- Arrays
 - $-y = x[0]; \rightarrow y = x.arr;$
 - Same arr field for all array types (due to subtyping)
 - # of accesses of arr increases with program size (like * in C)
 - Observed some blowup in one benchmark

Experiments

Implementation

T. J. Watson Libraries for Analysis (WALA)

http://wala.sf.net

Benchmarks

Dacapo 2006-10-MR2 + Apache Ant

IBM Java 1.6.0 libraries

176-2225K bytecodes (largest published)

Questions

- 1. Are programs *k*-sparse?
- 2. Is quadratic scaling observed?
- 3. How tight is quadratic bound?

Are programs *k*-sparse?

fop "outlier" benchmark

- Extensive use of library array manipulation routines
 - E.g., from java.util.Arrays
- Arrays + context-insensitive handling of routines pollutes results
- <u>Lesson</u>: targeted context sensitivity could improve both precision and performance
 - Especially for array-handling routines

Is quadratic scaling observed?

Time = $N^{2.10}$ ($N^{1.92}$ excluding "outlier")

How tight is quadratic bound?

Total points-to size = $N^{1.79}$

Other Factors

- Standard techniques can provide constant-factor speedups
 - Bit vector parallelism, type filters, on-the-fly call graph, preprocessing, cycle elimination
- Space considerations very important in practice
 - May not want exhaustive use of delta sets
 - BDDs / shared bit sets reduce space but complicate running time analysis
- Detailed discussion in paper

Open questions

- What about other languages?
 - Some evidence that C programs are not k-sparse [PKH03];
 may explain greater importance of cycle elimination
 - Result translates to 0-CFA; are functional programs k-sparse?
- Time complexity for BDDs / shared bit sets?
- Is tighter bound possible?
 - Demand-driven analysis may have less required output
- Does k-sparsity help other analyses?

Conclusions

- Andersen's is quadratic for k-sparse inputs
- Realistic Java programs are k-sparse
 - Strong typing
 - Encapsulation
- Explains (partially) the scalability of Andersen's for Java in practice; no cubic bottleneck!

Thanks!

Formulation of Andersen's Analysis

Statement	Constraint	
i: x = new T()	$o_i \in pt(x)$	[New]
x = y	$pt(y) \subseteq pt(x)$	[Assign]
x = y.f	$\frac{o_i \in pt(y)}{pt(o_i.f) \subseteq pt(x)}$	[Load]
x.f = y	$\frac{o_i \in pt(x)}{pt(y) \subseteq pt(o_i.f)}$	[Store]

k-sparse programs

Final number of edges $\leq k N$

Complexity for k-sparse programs: $O(N^2)$

- Linear work per edge (diff. prop.), linear number of edges
- Also edge adding work; see paper for details