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ABSTRACT
Malware infects thousands of systems globally each day causing
millions of dollars in damages. Which disassembler should a mal-
ware analyst choose in order to get the most accurate disassembly
and be able to detect, analyze and defuse malware quickly? There
is no clear answer to this question: (a) the performance of disas-
semblers varies across configurations, and (b) most prior work on
disassemblers focuses on benign software and the x86 CPU archi-
tecture. In this work, we take a different approach and ask: why
not use all the disassemblers instead of picking one? We present
DisCo, a novel and effective approach to harness the collective ca-
pability of a group of disassemblers combining their output into an
ensemble consensus. We develop and evaluate our approach using
1760 IoT malware binaries compiled with different compilers and
compiler options for the ARM and MIPS architectures. First, we
show that DisCo can combine the collective wisdom of disassem-
blers effectively. For example, our approach outperforms the best
contributing disassembler by as much as 17.8% in the F1 score for
function start identification for MIPS binaries compiled using GCC
with O3 option. Second, the collective wisdom of the disassemblers
can be brought back to improve each disassembler. As a proof of
concept, we show that byte-level signatures identified by DisCo can
improve the performance of Ghidra by as much as 13.6% in terms
of the F1 score. Third, we quantify the effect of the architecture,
the compiler, and the compiler options on the performance of dis-
assemblers. Finally, the systematic evaluation within our approach
led to a bug discovery in Ghidra v9.1, which was acknowledged by
the Ghidra team.

CCS CONCEPTS
• Software and its engineering→ Software organization and
properties; • Computing methodologies→ Ensemble methods;
• Security and privacy→ Software and application security.
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1 INTRODUCTION

Figure 1: DisCo effectively combines disassemblers for su-
perior performance: The gain in the performance over the
best input can be as high as +17.8% with a combined perfor-
mance 99.8% in F1 score combining five disassemblers. The
results shown are for malware binaries compiled with GCC
for MIPS with the O3 compilation level. The approach can
work with different sets of disassemblers. We show the im-
provement using only freely available disassemblers (+12.4%
with a total of 94.4%).

Binary disassemblers are essential front-line tools in malware
defense: timely and efficient reverse engineering of the malware
binary is critical. An incident in 2017 highlights the importance
of this issue: two ransomwares, WannaCry and Petya infected
over 230 000 Windows PCs across 150 countries by exploiting a
vulnerability in Microsoft’s implementation of the Server Message
Block protocol in a span of one day. These attacks cost over $4 billion
dollars in damages [11, 32]. The rapid spread of these malwares had
malware analysts racing against time to understand their mode of
propagation and operation in order to contain them.

Which disassembler should a malware analyst choose for a
rapidly-spreading malware binary to get the most accurate results?
This is the question that motivates our work. Here we focus on
malware that targets MIPS and ARM architectures, given that such
malware has received significantly less attention. In addition, these
architectures are widely used in IoT devices, which are increasingly
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becoming targets of choice for malware [4, 56]. Currently, there is
no clear answer to the above question, for the ARM and, and even
more so, the MIPS architecture. We elaborate on two contributing
factors to this problem.

First, there is a plethora of disassemblers both free and commer-
cial, but research so far has not determined a clear and consistent
winner. The performance of a disassembler can vary based on the
type of the malware binary, which can be created by using various:
(a) compilers, (b) compiler optimization flags, and (c) target CPU
architectures. These variations can lead to significant differences
in the assembly code found in the resultant binary [12, 18]. Note
that determining the compilation parameters for a given stripped
binary is a challenging task. Despite some recent studies [2, 25],
the effect of these variations on the accuracy of disassembly are
not well understood, especially for the MIPS architecture.

Second, the average performance of a disassembler may not be
sufficient to inform the correct answer: we need to assess its worst
case performance as well. This reliability aspect of a disassembler is
lost when we only report average performance, and even standard
deviation does not fully capture it. The ideal disassembler should
offer accurate disassembly consistently for each binary. Going back
to our motivating example, the binary at hand may belong to the
minority group of binaries for which the overall-best disassem-
bler performs poorly. This poor performance at "crunch-time" can
translate into massive financial and societal damage.

There is limited prior work for the our problem here as it fo-
cuses on: (a) malware, and (b) the MIPS and ARM architectures. In
contrast, most previous work seems to focus on benign binaries
and the x86, and most recently, the ARM architecture. We highlight
the two most relevant studies. The most recent work [25] evaluates
several disassemblers using only benign binaries and for the ARM
architecture only. Another work [2] evaluates disassemblers for the
x86-64 architecture. Both studies [2, 25] endorse IDA Pro, a popular
commercial disassembler, in terms of overall performance and find
that accurate function start identification remains a challenge. We
revisit previous work in section 6.

In this work, we take a different approach and pose the question:
Why don’t we benefit from the wisdom of all the disassemblers in-
stead of picking one? To this end, we present DisCo (Disassembler
Combination), a systematic approach to harness the collective ca-
pabilities of a group of disassemblers to obtain superior results.
The main challenge is to ensure that the resultant model combines
the strengths of the disassemblers while side-stepping the indi-
vidual weaknesses. Our key contribution is an effective way to
combine disassemblers, which consists of two steps: (a) evaluating
the effectiveness of each disassembler to create training data, (b)
creating and training an appropriate machine learning algorithm
to synthesize their individual outputs into a combined output. In
the first step, we compile the malware source code with various
configurations and implement significant instrumentation to create
the ground truth. We compare the the output of each disassembler
with the ground-truth to evaluate it and create the training data.
In the second step, we use a neural network to create a stacking
ensemble, which takes as input: (a) the output of each disassembler,
and (b) selected data from the actual binary.

We conduct an extensive evaluation of our approach using five
disassemblers on a wide spectrum of scenarios using 1760 binaries.

Specifically, we consider the following configuration options: (a)
two architectures, MIPS and ARM, (b) two different compilers,
GCC and Clang, and (c) five compiler optimization levels. Note
that we focus on the function start identification metric, which
is a key disassembly metric [25]. To quantify the variability, in
addition to the average performance, we consider the 5-percentile
of the worst case performance (5PWC), which we define later.
Finally, we introduce the Relative Performance Improvement
(RPI)metric as the difference between the performance ofDisCo for
a group of disassemblers and that of the best performing individual
disassembler in the group.

In summary, the contribution of our work can be summarized in
the following key observations:

a.DisCo is effective in combining disassemblers. DisCo can
combine the capabilities of different groups of disassemblers to
achieve relative performance improvement, RPI. In table 1, we show
that DisCo achieves an RPI of up to 17.8% across various configu-
ration options. Furthermore, there is an even larger improvement
of up to 27.5% in the worst case 5PWC metric. We showcase the
effectiveness of our approach visually in figure 1. Considering only
our four non-commercial disassemblers, from table 1, we see that
DisCo(Free) has an RPI of up to 12.4% for MIPS.

b. DisCo can be used to improve other disassemblers. We
show that the collective power of the disassemblers, which DisCo
synthesizes, can be brought back to improve each disassembler.
As a proof of concept, we create, Ghidra+, an improved version of
Ghidra, which can achieve up to 13.6% better F1 score compared to
Ghidra. Our systematic evaluation of disassemblers also reveals a
bug in Ghidra v9.1, which was acknowledged by the Ghidra team.

c. Configuration options affect disassembly performance
significantly including their relative ranking.We find that the
ranking of the best performing disassemblers varies for different
configurations. For example, Angr is the best among the group
for MIPS with O3 for both GCC and Clang, but it performs the
lowest for the ARM architecture (see table 2). Furthermore, we
find that the compiler optimization levels impact the performance
significantly: most disassemblers do fairly well with O0 and O1,
but do worse with O3 option. These observations and our results
in general strongly argue in favor of the promise of a combined
solution.

Open-sourcing and data sharing. Our intention is to maxi-
mize the impact of this work by enabling and encouraging the
community to use our resources. We open-source our software in-
cluding our code, models and signature pattern files and make our
datasets publicly available to maximize their impact.1 We envision
that DisCo will be used by open sourced disassembler communities
to collaborate and improve their disassembly capabilities to build
the next generation of disassemblers.

2 BACKGROUND
In this section, we present the background concepts and discuss
the dataset that we use in this study.

1https://github.com/gsrishaila/DisCo-Combining-Disassemblers-for-
Improved-Performance.git
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Disassembler performance metrics. We use the correctly
identified function starts (CFS), which is the percentage of func-
tion start addresses that a disassembler detects correctly, as a pri-
mary metric. In general, instruction and function start identification
are considered as the two fundamental metrics to evaluate disas-
semblers because they produce the output of other metrics like
control-flow and call graphs [25]. Since previous work on ARM
binaries found that disassemblers perform poorly for CFS [25], we
opted to focus, investigate and improve on this metric. We believe
that our approach of combining capabilities of multiple disassem-
blers applies to other metrics as well.

We use two methods to measure performance: (a) the average,
and (b) the 5-percentile of worst case performance (5PWC)
across the binaries in a testing set. The 5PWC value indicates that
5% of the binaries perform equal to or worse than this value [34].
We argue that binary-centric performance is important for a practi-
tioner, who, given a new binary, would like to have an estimate of
its worst case performance.

The data set. We train and evaluate DisCo by using a total of
1760 IoT malware binaries which were compiled from 88 IoT mal-
ware programs with various configuration options. The malware
source codes were collected from Github, which hosts thousands
of malware repositories [43]. To avoid overfitting, we separate the
training and testing datasets at the level of malware programs.
Thus, we use 30 of the 88 malware programs for training and the
remaining 58 programs for testing. As we are focusing on func-
tion starts, it is worth mentioning that the training set contained
about 54K functions and the testing set contained about 90K func-
tions. More specifically, we retrieved our malware from repository
threatland/TL-BOTS2, which contains source files of a vast array of
botnet families from 2014 to the present day. Our malware data set
spans several malware families including Mirai, Gafgyt, Tsunami
and Pilkah, which have been widespread in recent years [5, 51–
53, 56]. Mirai, Gafgyt and Tsunami make up the majority, 89.74% of
all ELF binaries that were submitted to VirusTotal between January
2015 and August 2018. [15]. Furthermore, security researchers have
noticed new variants belonging to these malware families that are
used to launch thousands of attacks in recent years [45, 46]. Source
codes of over hundred variants of malware belonging to these fam-
ilies have been traced back to online repositories [15]. Hence, we
believe that our dataset is representative of the malware found in
the wild.

Since malware binaries may share certain characteristics that
could be absent in benign software, we also show the generalizabil-
ity of DisCo by applying it on a small set of benign binaries from
SPEC 2017 benchmark. We discuss this in more detail in section 4.1.
We also discuss the coverage of the data set in section 5.

As shown in figure 1,we show the effectiveness of combining
various disassemblers effectively through our comprehensive study.
Our study includes (a) various disassemblers, and (b) various com-
pilation configurations and architectures.

The five baseline disassemblers:We consider 5 disassemblers,
Angr [55], IDA Pro [23], Ghidra [38], BAP [10], and Radare2 [39]
in our work. IDA Pro performed the best in previous studies and

2https://github.com/threatland/TL-BOTS

other disassemblers have been used in recent evaluation studies
[2, 25]. We consider the following configurations and options.

a. Architectures: We consider two architectures, ARM version
5 and MIPS R3000. We focus on these architectures because the
majority, 66.0% of the ELF malware binaries, belong to these archi-
tectures according to VirusTotal database [15]. Each architecture
has different assembly language which requires different method
and tools.

b. Compilers:We have compiled each program with two com-
pilers: GCC version 5.5.0 and the Clang version 9.0.

For the remainder of the paper, we will use GCC to refer to GCC
version 5.5.0, Clang to refer to Clang version 9.0, ARM to refer to
ARM version 5 and MIPS to refer to MIPS R3000.

c. Five compilation optimization levels: For each architec-
ture and for each compiler, we have considered 5 compiler optimiza-
tion levels: O0, O1, O2, O3, and Os. Each level optimizes the binary
in the three-way trade-off between compilation time, execution
time, and the size of the binary.

d. Stripped and unstripped binaries:We only report results
on stripped binaries, because the performance of some disassem-
blers deteriorates significantly when binaries are stripped [21].
Furthermore, around half of all ELF malware are stripped [15].

Finally, we focus on non-obfuscated binaries, as most disassem-
blers are not designed to work for obfuscated binaries. A recent
large scale study shows that most IoT malware is non-obfuscated
and unpacked [15]. We will apply DisCo on obfuscated malware in
future studies, where we conjecture that combining disassemblers
could be more effective due to the poorer performance of individual
disassemblers.

3 OVERVIEW OF DISCO
We present the key design and implementation ideas behind our
approach. We start by presenting a case study that motivates and
informs the design of our approach.
Motivating case-study: Disassemblers "see" different things.
Combining the baseline diassemblers will only be beneficial if each
disassembler recovers different parts of the binary structure. Indi-
vidual disassemblers can miss some function starts (false negatives)
or erroneously identify a function start where there isn’t one (false
positive). Our intuition suggests that different disassemblers should
have complimentary capabilities because they use different algo-
rithms to identify the structure of the binary. We provide evidence
that disassemblers produce different results, which enable the su-
perior performance of DisCo as we see later in the paper.

We use IDA Pro and Ghidra to disassemble a random subset of
binaries in our data set with focus on the CFS metric. IDA Pro has
a 88.4% precision and and 60.2% recall. The corresponding values
for Ghidra is 98.1% and 63.5%. Note that the numerical difference
alone does not prove complementary capabilities, because the IDA
Pro output may be subsumed by the Ghidra output, providing no
additional information.

Observation 1. The two disassemblers have complemen-
tary results. Each disassembler correctly identified certain func-
tion starts that the other disassembler missed. Specifically, 7.3% of
the actual function starts were identified only by IDA Pro, while
10.7% of the function starts were identified only by Ghidra.
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Figure 2: Motivating observation: Disassemblers comple-
ment each other. IDA Pro identifies 241 function starts and
Ghidra 352 that the other does not identify. Similarly, the
falsely identified function starts (260 and 40) seem to be dis-
joint. An efficient combination could improve the overall
performance.

Observation 2. Combining the results should be done care-
fully. While this finding supports our intuition, it also shows that
taking a simple union of the outputs from disassemblers will not
necessarily guarantee optimal performance, especially for precision.
This is because 11.6% and 1.9% of the functions starts found by IDA
Pro and Ghidra were false positives.

We confirmed this observation by using two straightforward
approaches. First, we applied a simple union of the outputs from
disassemblers. We took a set of 58 MIPS binaries that were com-
piled with the Clang compiler at the O3 optimization level and
applied the simple union technique on the outputs of all 5 disassem-
blers. This technique gave a precision of 48.6% and recall of 93%.
This result shows that taking a simple union of all disassembler
outputs will lead to low precision due to the presence of many false
positives. Second, we considered the majority voting ensemble, in
which a function start needs to be approved by a majority of the
disassemblers. We repeated our experiment on the same set of bi-
naries. This approach gave a perfect precision of 100%, but a recall
of 65.6%. The low recall is because certain functions starts are only
identified by a few of the disassemblers.

These initial results show the need for a more intelligent combi-
nation method, which we present below.

3.1 The Architecture
Figure 3 shows the high level architecture of DisCo. The blue boxes
correspond to data used in the training phase, while the green ones
are used in the testing phase. The yellow boxes are modules of
DisCo.

a. Creating the Ground Truth: Before we evaluate and com-
bine the disassemblers, we need to create training and testing
datasets. To achieve this, we start with malware source code, but

Figure 3: An overview of DisCo and its functional modules.

even then establishing the ground-truth requires some instrumen-
tation and effort.

To obtain ground-truth, all the binaries are compiled with the
-g option to attach richer debugging information to the resultant
binaries. We use the DWARF library to identify function start ad-
dresses. We used a python script with imported DWARF libraries
to create the ground-truth for each of our 1760 binaries.

b. Evaluating the disassemblers: Each binary in the training
set is disassembeled with each disassembler. We compare the out-
puts from each disassembler with the ground-truth and use these
results to: (a) create the training data for the ensemble model, and
(b) to extract useful information, which we can be used to improve
each disassembler. This information is represented by the Disas-
sembly Intelligence box in figure 3.

c. Creating the ensemble model: An ensemble model gives
superior prediction performance by integrating multiple models ef-
fectively [42]. The goal of DisCo’s ensemble model is to combine the
complementary disassembler capabilities in a way that increases
the recall (identifies more real function starts) and precision (less
misidentifications) compared to what is achieved by any of the dis-
assemblers individually. A well-crafted ensemble model discovers
complex correlation patterns in the output of the individual disas-
semblers and recognizes context specific strengths and weaknesses
to combine these outputs effectively.

There are various ways to implement an ensemble model with
respect to how the baseline disassemblers’ output is combined. We
decided to use stacking, where the output is combined using a
neural networks [54]. A stacked ensemble model learns the best
way to combine classification labels from multiple models. While
other choices could be considered (e.g., majority vote), stacking
achieves superior performance for many applications [1, 37], and
works well in our context as well.

A realistic problem assumption. To emulate a realistic scenario,
we assume that we only know the architecture for a given binary. In
other words, we only know if a binary is compiled for MIPS or ARM.
We do not assume knowledge of the compiler or compilation level
used to produce the binary. As a result, we develop two analysis
engines (and two ensemble models), one for each architecture.

The initial ensemble model. In the initial design, we used only one
type of input, boolean values that represents whether a particular
disassembler detected a particular function start. However, this
model did not provide good results. Our investigation revealed
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that this information was insufficient and that additional context
information from binary is required for effective predictions.

The context-aware ensemble model.We develop a "context aware"
ensemble model by including information around the candidate
function start location. For the MIPS architecture, we include two
instructions before and after the potential function start. Since, each
instruction is four bytes, we include 8 bytes before and after the
potential function start. For the ARM architecture, we only include
the 8 bytes after the candidate function start. The reason is that
often there is inline data between functions in ARM binaries, and
hence, 8 bytes before a function start may be data bytes, which adds
noise to the process. Note that we treat the bytes (which correspond
to binary instructions) as categorical data, since the numerical value
of an instruction does not convey any additional information (other
than the identity of the instruction).

d. Using DisCo: DisCo can be used by disassembly developers,
malware analyst or security practitioners.

1. Accurate disassembly: A practitioner can use DisCo to ana-
lyze a malware binary of interest. She can use the platform, which
we intend to open-source: she just needs to provide the binary to
obtain the results as shown in figure 3. Alternatively, she can de-
velop (or fork) her own version and expand with additional training
data and disassemblers.

2. Improving other disassemblers: Developers can use DisCo
to improve the performance of other disassemblers. First, we can
provide the cases where a disassembler failed. This information
alone can help the developers improve their approach. Second,
DisCo can also generate new information that a disassembler can
include in its knowledge base. For example, in the case of function
start identification,DisCo can provide byte patterns that can be used
as function start signatures. These signatures can be incorporated
into the database of the disassembler. Ghidra has a well-defined
interface for accepting such external information, which is why we
selected it to showcase this capability, as we explain later in this
section.

3.2 Implementation issues
We elaborate on some key implementation details for the choices
made in building our instance of DisCo. These choices were done
carefully and deliberately, and lead to good results demonstrating
the promise of the approach. In the future, we will consider more
options and different ways to fine-tune the performance further as
we discuss in section 5.

Creating the training and test sets: The training set for each
model is created by allowing all disassemblers in the group to
identify functions from 600 binaries compiled from the 30 malware
programs in our training set. The testing set consists of 1160 binaries
compiled from 58 other malware programs in our testing set. These
binaries were compiled with 2 compilers, GCC and Clang and with
five compilation levels, O0,O1,O2,O3,Os. Note that we create and
train two different models for each of our two architectures.

We disassemble each binary by using each of the five disassem-
blers to get the training and testing input for our model. We create
a set containing functions start locations that were identified by
at least one disassembler. We use a boolean value to represent the
"vote" of each disassemblers for each candidate function start. We

also record 8 bytes after each function start. For MIPS binaries, we
also record 8 bytes before each function start as explained before.
We provide these inputs into the model.

Deploying the disassemblers. Some disassemblers can be used
with different operational options, and we selected the most optimal
options based on previous work [25]. Furthermore, in the case of
Ghidra v9.1 we discovered a bug, which affected its performance
for the ARM architecture. We discuss this in the next section. Inter-
estingly, that bug was not present in version v9.0.4. We opted to
give Ghidra the "benefit of the doubt" and used version v9.0.4 for
the ARM architectures, and version v9.1 for the MIPS architecture.

Note that Angr fails to complete disassembly for some binaries,
and terminates without output, as has been observed in previous
studies[25]. We use and report only the cases where Angr disas-
sembles a binary successfully.

Combining different disassemblers: three DisCo variants:
Our approach can combine any number of disassemblers that a
practitioner would have available, as long as they can be included
in our training pipeline.

We consider three variants of DisCo as our focus is to show the
potential of harnessing the collective capabilities of different groups
of disassemblers.

DisCo(All):We considered all five disassemblers: Angr, IDA Pro,
Ghidra, BAP, and Radare2.

DisCo(Free):We considered only the non-commercial disassem-
blers: Angr, Ghidra, BAP, and Radare2.

DisCo(IdaGhi):We considered two disassemblers: IDA Pro and
Ghidra.

We share more details about the models used for DisCo(All). The
ARM model was trained on 26K functions and tested on 50K func-
tions. The MIPS model was trained on 28K functions and tested
on 40K functions.The function starts in the training and testing set
for each architecture differ because the number of function starts
missed by all disassemblers and the number of falsely identified
function starts identified by each disassembler for each configura-
tion varies. We used a feedforward based neural network with 2
hidden layers for each model. The first layer had 1000 nodes while
the second layer had 250 nodes. We used these parameters because
they gave the most optimal results when we used the 10 fold cross
validation to train the model.

We created the models for DisCo(Free) and DisCo(IdaGhi) in a
similar way. The number of functions used to train and test the
model will be lesser than the number used forDisCo(All) because we
are combining lesser number of disassemblers. Hence, the training
time required was also lesser.

The output of theseDisCo versions produces the results shown as
Improved Disassembly in figure 3. Note that it is well established that
Radare2 does not support ARM binaries compiled with Clang [25].

Improving disassemblers: the case of Ghidra+. As a proof
of concept, we show howDisCo can improve disassemblers focusing
on Ghidra. DisCo can generate function starts signature by using
the training data which we include in Ghidra’s database.

We use two DisCo variants, DisCo(Free) and DisCo(All) to im-
prove Ghidra 9.1. The improved versions of Ghidra are called
Ghidra+(Free) and Ghidra+(All) respectively. As we will see later,
both improved versions perform overall significantly better com-
pared to the original Ghidra.
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Relative Perfomance Improvement (RPI)
Average 5PWC

MIPS ARM MIPS ARM
GCC Clang GCC Clang GCC Clang GCC Clang

DisCo(All) 17.8 12.7 11.9 8.0 27.5 19.1 16.3 12.3
DisCo(Free) 12.4 6.2 8.7 4.5 19.9 12.5 10.7 6.2
DisCo(IdaGhi) 5.8 2.5 7.2 5.2 8.3 7.9 12.5 9.1

Table 1: TheRelative Performance Improvement can be substantial:We show theRelative Performance Improvement forARM
and MIPS for binaries compiled with GCC and Clang (-03 compilation level). The combined solution of DisCo is a significant
improvement over the best contributing disassembler for both the average and 5PWC.

MIPS ARM
GCC Clang GCC Clang

DisCo(All) 99.8 99.5 98.9 99.3
DisCo(Free) 94.4 93.0 95.7 95.8
DisCo(IdaGhi) 82.6 87.8 94.2 96.5
Ghidra+(All) 90.4 88.6 91.0 98.1
Ghidra+(Free) 90.1 87.4 91.7 98.0
Angr 82.0 86.8 50.2 43.9
BAP 56.9 62.1 63.6 47.0
Ghidra 76.8 85.3 87.0 91.3
IDA Pro 71.8 73.0 79.1 76.0
Radare2 68.5 65.6 74.0 NS

Table 2: DisCo combines disassemblers effectively: We show
the average CFS F1 score for binaries compiled with the O3
optimization level.Ghidra+ shows significant improvement
over Ghidra. NS means not supported.

4 EXPERIMENTAL EVALUATION
We evaluate the effectiveness of our approach with the datasets
which we described in section 2 using the ground-truth which we
discussed in section 3.2. We group our experimental results around
the following three questions.

Q1: How beneficial is the combination of disassemblers?
Q2: How can our approach improve a disassembler?
Q3: Which factors affect disassembler performance?
We answer each question with a series of observations. Going

one step further, we also provide a set preliminary investigations
into issues that include the performance of our approach on benign
malware.

Q1:How beneficial is the combination of disassemblers? Our
results suggest that combining the disassemblers provides signifi-
cantly superior performance. We provide the RPI values for each
DisCo variant in table 1. In tables, 2 and 3. we show the performance
of DisCo variants, Ghidra+ variants and other disassemblers for CFS
metric. Table 3 shows both average and 5PWC performance for the
MIPS binaries. All tables show the results for binaries compiled
with the O3 compiler optimization levels. Despite having extensive
tables for all configurations, we are not able to show them due

to space limitations. As we already discussed in the previous sec-
tion, Radare2 does not support ARM binaries compiled with Clang.
Hence, it does not make sense to include in the combined solution.

Observation 1: Combining disassemblers provides signif-
icant improvement for both average and worst case. Com-
bining the collective wisdom of disassemblers leads to significant
improvements, often in the double-digits, in both the average and
the worst case metrics in our experiments. In table 1, we see that
each of our DisCo variants give consistent positive RPI values of
up to 17.8% for the average F1 score and up to 27.5% for the 5PWC
F1 scores for all configuration options. This shows that we have
combined the disassemblers efficiently.

First, we see a significant performance increase on the average
F1 score of function start identification. In table 2, we see that
DisCo(All) gives an average F1 score of 98.9% or above for binaries
of both architectures and compilers. When compared with the best
performing disassembler, this is an improvement of up to 17.8% for
GCC and 12.7% for Clang binaries in the MIPS architecture. The
corresponding values for ARM binaries are 11.9% for GCC and 8.0%
for Clang.

Second, we see a significant improvement in the worst case
performance as this is captured by the 5PWC metric of the worst
performing binaries for each disassembler. In table 3, we see that
DisCo(All) provides an improvement of 27.5% for GCC and 19.1%
for Clang for the MIPS binaries compared to the 5PWC of our
individual disassemblers. We also see that the other DisCo variants
also provide significant improvements, though smaller than that of
DisCo(All).

Observation 2: Each disassembler seems to add value to
the union. Unsurprisingly, combining more disassemblers leads
to better average and 5PWC scores. In table 2, we see that the
performance improves when we go: (a) from DisCo(IdaGhi) to
DisCo(All), and (b) from DisCo(Free) to DisCo(All) for both architec-
tures and different compilers. Note that comparing DisCo(Free) and
DisCo(IdaGhi) is less straightforward, as the Free group does not
include IDA Pro. In table 3, we see even larger improvement for the
5PWC values between DisCo(All) and the other two DisCo variants.

The more interesting observation is that even the disassemblers
that do not perform well on their own seem to still add value when
included in the ensemble model. The improvement is more pro-
nounced for the worst case performance metric. An indication of
this can be found in table 3. If we rank the disassembler perfor-
mance for MIPS binaries based on the average scores in decreasing
order, we get Angr, Ghidra, IDA Pro, Radare2 and Bap. Although
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GCC Clang
Aver. 5PWC Aver. 5PWC

DisCo(All) 99.8 99.0 99.5 96.4
DisCo(Free) 94.4 91.4 93.0 89.8
DisCo(IdaGhi) 82.6 73.8 87.8 78.0
Ghidra+(All) 90.4 75.0 88.6 78.5
Ghidra+(Free) 90.1 73.0 87.4 78.5
Angr 82.0 71.5 86.8 77.3
BAP 56.9 15.3 62.1 28.1
Ghidra 76.8 57.2 85.3 70.1
IDA Pro 71.8 65.5 73.0 63.5
Radare2 68.5 45.6 65.6 45.0

Table 3: Combining the disassemblers improves the worst
case performance significantly: We show the average and
5PWC F1 score for function starts, CFS, for binaries com-
piled with the O3 optimization level for MIPS. Ghidra+
also shows significant improvement in its worst case perfor-
mance compared to Ghidra.

IDA Pro is the third best performing disassembler, including it in
the combination, namely going from DisCo(Free) to DisCo(All), im-
proves the average F1 score and 5PWC by as much as 6.5% and 6.6%
for Clang respectively.

We observe a similar phenomenon in table 2. Ghidra and IDA
Pro are the best performing disassemblers for binaries of the ARM
architecture. However, the performance of DisCo(All) outperforms
DisCo(IdaGhi) by up to 4.7% for this architecture. In other words,
even adding the three lower-performing disassemblers leads to
improved performance.

Observation 3: Disassembler performance varies signifi-
cantly across binaries.Wenoticed that disassembler performance
varies greatly even for binaries of the same configuration. In table 3,
we observe that the differences between the average and the 5PWC
F1 scores range widely between 6.3-41.5% for GCC and 9.5-34%
for Clang for MIPS binaries. This suggests that the disassembly
accuracy that we can expect from a disassembler can vary greatly
across binaries.

More interestingly, we observe that the "relative ranking" of
the disassemblers can vary per binary. In fact, it is not unlikely
that a lower-ranked disassembler based on average performs better
for a number of binaries compared to a higher-ranked disassem-
bler. For example, in table 3, we see that Ghidra outperforms IDA
Pro by 5.0% in terms of the average F1 score for MIPS binaries
with GCC. However, IDA Pro outperforms Ghidra by 8.3% for the
5PWC score. Intrigued by this, we looked at individual binaries. We
found that IDA Pro outperformed Ghidra in 25.9% of the binaries
in this dataset and by at least 10%. Therefore, answering the ques-
tion "which is the better disassembler for a specific binary?" does
not have an easy answer, even if we know the average performance.

Q2: How can our approach improve a disassembler?
We show how the extracted wisdom of a group of disassemblers
can improve an individual disassemblers.

Observation 4: Information from DisCo improves Ghidra
substantially. As mentioned in section 3, we use the DisCo model
to update the function signature byte pattern file for any disassem-
bler which can utilize such information. We use DisCo(Free) and
DisCo(All) to create two new versions of Ghidra, Ghidra+(Free) and
Ghidra+(All) respectively.

Our results show that Ghidra+(All) exhibits considerable im-
provement over Ghidra for both the average and 5PWC scores.
In table 2, we see that Ghidra+(All) improves the performance of
Ghidra by up to 13.6% for the MIPS binaries and by up to 6.8% for
the ARM binaries. In table 3, we see that Ghidra+(All) also improves
the 5PWC scores by 17.8% for the MIPS binaries compiled with
GCC and by 8.4% for MIPS binaries compiled with Clang.DisCo(All)
added an additional of 1696 signatures for the ARM architecture
and 3418 signatures to the MIPS architecture in Ghidra+(All). Over-
all, Ghidra+(Free) also exhibits similar improvements over Ghidra
with two Ghidra+ versions differing by a maximum of 2% for the
average and 5PWC scores.

We wanted to compare the performance between an improved
Ghidra and theDisCo that helped it improve by providing signatures.
It turns out that the DisCo variant typically performs better in most
cases, but not all! Both DisCo variants perform better than the cor-
responding Ghidra+ variants in all the cases except for DisCo(Free)
for the ARM binaries compiled with Clang. We show the results
for the O3 compilation level in tables 2 and 3, while qualitatively
similar results were obtained for other compilation level. DisCo(All)
outperforms Ghidra+(All) by 1.2 - 10.9% while DisCo(Free) outper-
forms Ghidra+(Free) by 4.0 - 5.6%. Interestingly, in the case of ARM
Clang, Ghidra+(Free) performs better than DisCo(Free) by 2.2%, but
note they both perform better than the original Ghidra. The usual
superior performance of the DisCo variant over Ghidra+ variant is
not surprising. The neural network model can find complex rela-
tionships between the inputs and the outputs. All these complex
relationships of the ensemble model cannot be fully captured by the
byte patterns of function signatures. We will investigate the case of
ARM Clang in the future, especially since our other investigations
often led to interesting insights.

Observation 5: Our systematic evaluation discovers a bug
in Ghidra. In the creating of the training data for our ensemble
model, we evaluate each disassembler. In evaluating Ghidra, we
ended up evaluating two versions of Ghidra, as a new version
Ghidra was released during the course of our study. Specifically,
Ghidra v9.1 was released in 23rd October 2019, replacing Ghidra
v9.0.4. Our evaluation showed that in some cases the newer version
performed worse than the older version for ARM binaries only. In
figures 4 , we show that Ghidra v9.0.4 consistently outperforms
Ghidra v9.1 for the average F1 scores for ARM binaries that were
compiled with both Clang and GCC. For binaries compiled with
GCC, Ghidra v9.0.4 outperforms by as much as 10.4% and 12.9% for
the average and the 5PWC F1 scores. For binaries compiled with
Clang, Ghidra v9.0.4 outperforms by as much as 12.2% and 19.6%
for the average and the 5PWC F1 scores. These figures also show
that the average performance of Ghidra v9.1 is lower than the worst
case performance of Ghidra v9.0.4 for most optimization levels.

Deep dive: the source of the problem. Intrigued, we wanted
to understand the root cause of the problem. This involved finding
the function starts where the two versions differed and then tracing

7



RAID ’21, October 6-8, 2021, Donostia / San Sebastian, Spain Sri Shaila G, Ahmad Darki, Michalis Faloutsos, Nael Abu-Ghazaleh, and Manu Sridharan

Figure 4: Ghidra v9.0.4 outperforms Ghidra v9.1: Mean F1 Score for ARM binaries compiled with GCC and Clang.

what functional module of Ghidra would create this discrepancy.
We traced it to a misconfiguration in the database of function start
signatures in Ghidra v9.1. Specifically, we found that certain tag
was attached in the function signature byte pattern for the ARM
architecture. This database is named the ARM_LE_pattern.xml file
and is found under the \Ghidra\Processors\ARM\data\patterns
directory. This file contains sequences of byte patterns that are
known to be found at the start of functions in the ARM architectures.
A new tag < 𝑎𝑙𝑖𝑔𝑛𝑚𝑎𝑟𝑘 = ”0”𝑏𝑖𝑡𝑠 = ”3”/>was added to some of the
rules, which are used to detect function starts. This tag prevented
the disassembler from applying these rules, and that made it miss
function starts.

We shared our discovery with the Ghidra developers, which they
acknowledged. Our detailed bug report along with the suggested
patch can be found under the issue section in the Ghidra repository3
accompanied by extensive documentation. Unfortunately, this bug
has not been fixed in the latest version of Ghidra, v9.2.2, which
was released on 29th December 2020. We find that the database of
function signatures for ARM and its performance for ARM binaries
is identical to that of Ghidra v9.1. As a result, we suggest the use of
Ghidra v9.0.4 for ARM binaries, while for MIPS, the newer versions
can be used.

Q3: Which factors affect disassemble performance?
Quantifying how different factors affect the performance of disas-
semblers is a challenging question. A related question is to identify
which disassembler should be used for in scenario. Note that in
practice, given an unknown binary, we do not necessarily know
which configuration case produced it.

Observation 5: Disassembler performance is affected sig-
nificantly by all three factors: (a) architecture, (b) compiler,
and (c) compilation levels. This observation is not surprising,
but quantifying the extent of the effect is interesting. Our results
in table 2 and 3 reveals several insights.

3https://github.com/NationalSecurityAgency/ghidra/issues/1532

a. The effect of the architecture: Some disassemblers have
better support for binaries belonging to one architecture compared
to another. The more striking case is Angr, which gives an average
F1 score in the 80s for MIPS binaries, in contrast to 40s and 50s for
ARM binaries and this applies to both GCC and Clang as shown
in table 2. The effect of the architecture is interesting for BAP as it
depends on the compiler: BAP with Clang does better than GCC
in MIPS, but BAP with Clang does worse than GCC in ARM. The
exact values are shown in table 2. In general, a practitioner need to
be mindful of this kind of variations for different architectures.

b. The effect of the compiler: The compiler affects the perfor-
mance for some disassemblers significantly for both the average
and the worst case. For example, BAP has an average F1 score of
63.6% for ARM binaries with GCC and only 47.0% for ARM binaries
with Clang (see table 2). Similarly, we see that Ghidra performs bet-
ter for Clang for both MIPS and ARM. For MIPS, its performance
increases from 76.8% for GCC to 85.3% for Clang on average, and
from 57.2% for GCC to 70.1% for Clang in the worst case.

c. The effect of the compiler optimization level: Disassem-
bler performance is affected by the compiler optimization levels
used during compilation significantly. Most disassemblers tend to
perform worse when binaries are compiled with the O2 or the O3
compilation level. Figures 5 and 6 illustrate this for average and
5PWC F1 score for MIPS binaries compiled with Clang and GCC.
Similar trends have also been observed for ARM binaries. Figures
8 and 9 in section 8. illustrate this for average and 5PWC F1 score
for ARM binaries compiled with Clang and GCC.

Our results show that DisCo(All) is less sensitive to compiler
optimization levels compared to other disassemblers. Even whenwe
consider the best disassembler for each architecture, the difference
in mean F1 scores for the various optimizations is 10.1% for the
ARM architecture and 13.7% for the MIPS architecture. In contrast,
DisCo(All) reduces this difference to 1.0% for the ARM binaries and
1.2% for the MIPS binaries. This increase in the reliability of the
results is yet another argument in favor of the value of combining
disassemblers.
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Figure 5: Average and 5PWC for F1 Score for Function Start Identification for MIPS binaries compiled with Clang.

Figure 6: Average and 5PWC for F1 Score for Function Start Identification for MIPS binaries compiled with GCC.

The overarching conclusion further supports the benefit ofDisCo:
the performance of disassemblers is affected by configuration op-
tions. As a result, it is hard to pinpoint a single "best" disassembler
that will perform well in all configuration scenarios. In addition, we
see that DisCo is minimally sensitive to these variants: as the 5PWC
is very close to the high average performance. In other words,DisCo
offers good performance reliably with small variation across many
different configurations.

4.1 Some Exploratory Investigations
We further evaluate DisCo by testing its capabilities in the following
situations: (a) limited training data, and (b) benign binaries. Note

that due to space limitations, this is mostly a preliminary study,
which we intend to substantiate in future.

We show that DisCo performs well in these situations by using
DisCo(IdaGhi). In this subsection, we focus more on DisCo(IdaGhi)
as an instantiation of DisCo. We create the training set by compiling
16 malware source codes. DisCo was created by combining the
outputs from IDA Pro and Ghidra from the training set binaries.
Figure 7 shows the results when we evaluated DisCo on 4 malware
binaries compiled from 4 other malware source codes and 9 benign
binaries from the SPEC2017 benchmark. All binaries were compiled
with GCC from C language source codes with O3 option for the
MIPS architecture.

Preliminary Investigation 1: How sensitive isDisCo to the
training set size? We conduct the following experiment to assess
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the sensitivity of DisCo to the training set. We use a subset of
16 malware source codes for training. In this case, we focused on
DisCo(IdaGhi), since combining only two disassemblers could stress
test the capabilities of DisCo using the MIPS GCC scenario. It turns
out that even in this case the performance was able to improve the
F1 score by 6.7% for the malware binaries which is comparable to
the 5.8% improvement we saw in our larger training dataset. This
initial experiment suggests thatDisCo can performwell with limited
number of training data. We intend to study how performance is
affected by the size of the training data in future.

Preliminary Investigation 2: Does DisCo work well for be-
nign binaries too? We wanted to see if our approach can work
well for benign binaries. DisCo was able to improve the F1 score
by 4.4% for the benign binaries respectively. This suggests that the
performance improvement by DisCo could also apply to benign
binaries. Note that here DisCo was trained on malware binaries.
We will further investigate if by training on benign binaries would
bring the performance improvement closer to the improvement we
saw with malware binaries.

Figure 7: Benign and malware binaries: DisCo improves the
performance even in the case of benign binaries. DisCo im-
proves the F1 score by 6.7% for malware and 4.4% for benign
binaries. Disassembling benign binaries seems easier. The
reported results are for the MIPS architecturewithGCC and
the O3 compilation level.

Preliminary Investigation 3: Aremalware binaries harder
to disassemble than benign binaries? Evaluation results based
on the limited set of malware and benign binaries suggest that both
disassemblers, IDA Pro and Ghidra perform better in F1 score for
the CFS metric for benign binaries. IDA Pro performs better for
benign binaries by 7.7%, while Ghidra performs better for benign
binaries by 7.4%. A possible reason for this could be using benign
binaries from well known benchmarks to test disassemblers.

5 DISCUSSION
We discuss the broader context and limitations of our work.

How will DisCo be used in practice? As we already men-
tioned, DisCo provides: (a) more accurate disassembly for a given
binary, and (b) information to improve individual disassemblers.
Therefore, we envision two different types of users: (a) security
practitioners, who want to understand a malware binary, and (b)
developers of disassemblers. Users can either use our approach to
instantiate their own version of DisCo or use our own open-source
version of the tool. Note that using commercial disassemblers will
require a license. Developers of disassemblers can use DisCo as a
mechanism to evaluate their tool, compare their tool with other
tools, and extract information that can improve their tool. We saw
a case study of this in the previous section where we improved
Ghidra.

Furthermore, we enthusiastically invite the community to help
improve and extend our approach by: (a) introducing more capabil-
ities, such as adding disassemblers, and (b) adding more samples to
the training and testing datasets.

Can we improve the performance of DisCo further? Al-
though the initial results are significant, there are ways to farther
improve the performance of our approach. In certain cases, DisCo
misses identifying function starts. The operands of some instruc-
tions around the function start can be one of multiple registers.
We conjecture that if the training set does not contain all vari-
ants of these instructions, with the various possible registers as
operands, the model can miss recognizing these kinds of function
start byte patterns. Increasing the size of training data may help to
address this problem. Finally, we can also improve performance by
including more disassemblers.

Our ultimate goal is to include as many disassemblers as possi-
ble in DisCo, which will strengthen the combined performance. In
future, we plan to add two more disassemblers, Hopper [19] and
Binary Ninja [24], to further improve the combined performance.
We can share our preliminary results with Binary Ninja [24]. We
report the results from the MIPS architecture here for the O3 com-
pilation level. Binary Ninja performed very well in our dataset with
F1 scores of 92.6% for GCC and 95.7% Clang for MIPS. Combining
all six disassemblers leads to an RPI 4.7% for GCC and 3.5% Clang
on the average performance for MIPS. In addition, the 5PWC of
the combined performance showed a more significant improve-
ment: 10.8% for GCC and 11.9% Clang. Recall that previous work
found that IDA Pro performed better than Binary Ninja in their
dataset [25]. These variations further highlight the benefit of com-
bining disassemblers.

Is there an "optimal" set of disassemblers to combine?Our
position is to sidestep the best-disassembler question and instead use
the collective power of all the disassemblers that one can afford to
purchase and integrate in a DisCo-like approach. The motivation is
that each disassembler can provide useful and unique information
for various compilation configurations. However, it is natural to ask
for the minimum set of disassemblers to provide great performance.
To answer, an extensive study that encompasses: (a) source code
variations, in terms of programming approaches, styles and appli-
cation types, and (b) various compiler configurations is needed.

CanDisCo improve each disassembler?We argue that DisCo
is a systematic approach to evaluate and cross-pollinate disassem-
blers to improve each one. First, we showcased this capability when
we improved Ghidra by adding function start signatures in its
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knowledge-base. Second, our systematic approach can pin-point
systemic weaknesses in the disassemblers. As we saw, we found a
bug in Ghidra v9.1. We envision this knowledge-transfer and eval-
uation operation to be infrequent. For example, it can take place
every three to six months, or be prompted by events, such as new
releases of the disassemblers, or the addition of new training data
in DisCo.

We chose to use 8 bytes around function starts in DisCo as input
to the model for the following reasons. In the ARM and MIPS
architecture, each instruction is 4 bytes long. We started by looking
at byte patterns used in Ghidra. We noticed that for the ARM
architecture, most rules tend to use 8 to 16 bytes around the function
start with varying numbers of instructions taken before and after
the function start. For the MIPS architecture, most rules use 8
to 20 bytes before the function start and 8 to 12 bytes after the
function start. Our goal was to to use the minimum number of bytes,
which can shorten the training time and reduce the possibility of
overfitting. Hence, we decided to start with 8 bytes before and after
the function start. Since we obtained good results by using 8 bytes,
we did not explore using other numbers of bytes.

How much can our approach generalize? Our goal here is
to introduce the idea of combining disassemblers as a new way of
thinking about disassembling and show that it leads to promising
results. To obtain these results, we had to focus on specific choices
of compiler configurations such as MIPS and ARM architectures, C
language programs, and focused on the CFS metric. A natural ques-
tion is howmuch can we generalize this approach. We are confident
that our approach can extend and generalize to: (a) any number
of disassemblers, (b) binaries of various architectures, (c) different
compilers and compilation options, and (d) different programming
languages. One possible extension of our work is to apply our tech-
nique to a variable length Instruction Set Architecture, (ISA) like
x86. In such a scenario, we could decide on the number of bytes used
as inputs to the model by referring to open sourced disassemblers
or by experimenting with various numbers of bytes. Each of these
extensions vary in the required effort.

Are our datasets representative? This is the typical and fair,
hard question for any evaluation study. First, we made a point to
include in our dataset a number of the most prominent and recent
malware families, as we saw in section 2. Second, our goal is to
show the ability of our approach to leverage the merits of each
disassembler. We argue that the "intelligence" of our algorithm is
second-order question: a different dataset may affect the individual
performance of each disassembler, but that does not affect the
capability of DisCo to combine these performances. Of course, if
the algorithms perform badly, the combined performance will be
lower than what we saw here. In other words, the disassemblers
need to keep up with the malware intricacies, as DisCo is simply
leveraging their combined capability.

Forwhat types of binaries doesDisCoworkwell?Our work
focuses on IoT malware binaries. This influences our choices in
terms of architectures, compiler, and training and testing datasets.
While there are various types of binaries and platforms we can
consider, the overarching statement is that combining different
disassemblers can only provide better results, if it is done efficiently
with sufficient training.

Avg. time for
MIPS binaries(s)

Avg. time for
ARM binaries(s)

Angr 26.7 12.0
BAP 5.7 5.1
Ghidra 32.1 28.2
Ghidra+(All) 31.2 30.6
IDA Pro 29.4 9.9
Radare2 1.2 1.2

Table 4: Time requirements for various disassemblers: We
show the average time required for each disassembler for
each binary.

Benign binaries. Disassembly of benign binaries can also benefit
from a combined approach. First, we showed some promising initial
results in section 4.1, where we tested on a small set of benign
binaries from the SPEC 2017 without training for benign binaries.
We plan to conduct a large scale study of DisCo on benign binaries.

Obfuscated binaries. Developers often obfuscate their binaries
to impede one’s ability to reverse engineer them. Note that most
disassembler methods and related studies focus on unobfuscated
binaries[2, 3, 8]. One recent works that considered some obfuscated
binaries found that obfuscation poses a challenge to disassembly
tools and that different tools offer varying performance for these
binaries[25].

Here, we did not consider obfuscated binaries on disassembly
accuracy, but we intend to study this in the future.

What is the time requirement to use DisCo? If we want to
useDisCo on a test binary then we need to extract some information
from the binary from all five disassemblers in the group. The most
time efficient way will be to use the disassemblers in parallel. We
recorded the time taken for various disassemblers to analyze 400
binaries. Table 4 shows the average time needed by the various
disassembler tools to analyze a binary. This time is the total time
required by the disassembler to disassemble the binary and run
python scripts to extract information from the binary that will
be used by the DisCo model later. Hence, on average, when we
use DisCo(All) for a given binary using our model, we can obtain
outputs of all 5 disassemblers in 30.2 seconds if we operate them in
parallel. The time taken to train the model for each architecture for
DisCo(All) is 1 hour. Ghidra+(All), on average requires 30.9 seconds
to analyze a binary.

6 RELATEDWORK
To the best of our knowledge, there has not been any previous study
that has combined the capabilities of disassemblers to improve
disassembly accuracy. Furthermore, there is relatively limited prior
work at the intersection of disassembling (a) malware binaries,
and (b) the MIPS and ARM architectures. Since we have used an
ensemble model to combine disassemblers, we also include a brief
overview of studies on ensemble learning.

We group other previous work into the categories below.
a. Evaluating Disassemblers: The more recent study [25] eval-

uates various disassemblers by using benign ARM binaries. They
observe that various disassemblers offer different levels of accuracy
for different types of programs. Another related work [2] evaluates
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the performance of disassemblers by using benign binaries for the
x86 architecture. Both works endorse IDA Pro as the best disas-
sembler. In terms of malware binaries, a recent work [21] focuses
exclusively on IDA Pro (version 6.8) and on a limited set of mal-
ware binaries. They found that malware authors tend to prefer to
use the -O{3} options and that IDA Pro performs poorly for CFS
for stripped binaries compiled with that option. That effort differs
from our work significantly as: (a) it does not propose to combine
disassemblers, and (b) it evaluates only IDA Pro in contrast to the
five disassemblers that we use here.

b. Developing Novel Disassembly Techniques: Several stud-
ies propose efficient disassembly techniques, but we have not found
any effort that attempts to combine multiple disassemblers.

A recent study [3] uses the control flow graph to improve func-
tion identification in stripped binaries. However, this technique
tends to fail to identify functions called by using tail calls and can
only be used in architectures with specific opcode for function calls,
unlike ARM. Other works focus on other aspects of disassembly like
security, speed and handling obfuscation in x86 binaries [29, 31, 57].
Other works present techniques like superset disassembly, proba-
bilistic disassembly, and static analysis based method for x86 bina-
ries [7, 35, 41]. Some works propose machine learning techniques
for disassemebly [26] and to identify function starts [6, 10, 44, 49].
However, later works found that some of these works suffer from
evaluation bias [3]. Other approaches use heuristics and or well-
known function signatures to identify function starts [30, 50, 55].
Another work [20] proposes a technique to translate assembly code
into Intermediate Representation(IR) to recover control flow graphs
and identify function boundaries for various architectures. Another
work [40] combines probabilistic fingerprint of binary code with a
probabilistic graphical model to match function names to program
structure in stripped x86_64 binaries. A very recent work [36] in-
troduces a technique to calculate the probability that an instruction
would start at a certain address. Such techniques aim to improve
the instruction recovery rates in architectures like x86 where in-
structions can have varied sizes. In contrast, assembly instructions
found in the ARM and MIPS binaries have a fixed size of 4 bytes, so
the start of the next instruction can be predicted. Another work[8],
presents a speculative disassembly technique for THUMB binaries.

Commercial Tools and Platforms: There are many existing
disassemblers that can analyze binaries of various architectures.
Some examples include IDA Pro, Hopper, Dynist, BAP, ByteWeight,
Jakstab, Angr, Ghidra and Binary Ninja. [6, 10, 19, 23, 24, 27, 33, 33,
38, 55].

Dynamic analysis and sandboxes: There are many efforts
that use dynamic execution to analyze a malware binaries, which is
a complementary approach to the static analysis, which is our focus
here. Indicatively, we canmention a few recent efforts [14, 16, 17, 22]
that create platforms that manage to activate IoT malware malware.
Another work [13] develops an IoT sandbox which can support 9
kinds of CPU architectures including ARM and MIPS.

c. Previous studies on ensemble learning:A recent survey [47]
reviews both traditional and newer ensemble learning techniques
and analyzes the trends and limitations of these methods. Other
works propose methods to quantify the benefit of using an ensem-
ble for a set of classifiers [9, 28]. Another work finds the reason
behind trends in test errors in voting methods [48].

7 CONCLUSION
The overarching novelty of the work is the idea of harnessing the
collective power of the many disassemblers that are available in the
security community. To substantiate this idea, we develop DisCo, a
systematic approach to analyze and synthesize disassemblers. The
goal is to achieve the best possible disassembling performance for
IoT malware binaries. Hence, we focus on the ARM and MIPS
architectures.

First, we show that DisCo can combine the collective power
of disassemblers effectively as it consistently outperforms each
individual disassembler. For example, our approach outperforms
the best contributing disassembler by as much as 17.8% for F1 score
for function start identification for MIPS binaries compiled with
GCC with O3 option.

We then show that the collective power of the disassemblers can
be brought back to improve each disassembler. We showcase this
capability by developing Ghidra+, which outperforms the initial
Ghidra by as much as 13.6% in terms of F1 score by simply using
function signatures identified in our approach. In addition, our
systematic evaluation within our approach led to a bug discovery: a
bug introduced in Ghidra 9.1, for which the Ghidra team expressed
appreciation.

Finally, we conduct a study to understand the effect that config-
uration and scenarios have on disassembly performance. We study
the effect of the architecture, the compiler, and the compiler options
affect the performance of disassemblers significantly. We find that
the performance varies significantly, and find further evidence that
there is no one single best disassembler especially if we consider
performance per binary, and not just on average. This further sup-
ports the idea that combining disassemblers promises to provide
significant advantage over each individual method.

Our work in perspective. Our work is a significant step in
assessing existing and developing new capabilities in disassembling
binaries, especially in the space of IoT malware. We hope to enable
developers and users of such tools to make informed decisions
leveraging both our system and the datasets that we have and will
continue to develop. We plan to open-source and share all our tools
and data and hope that this encourages further research in this
direction.
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8 APPENDIX

Figure 8: Average and 5PWC for F1 Score for Function Start Identification for ARM binaries compiled with Clang.

Figure 9: Average and 5PWC for F1 Score for Function Start Identification for ARM binaries compiled with GCC.
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