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Abstract
Programmatically controllable home devices are proliferat-
ing, ranging from lights, locks, and motion sensors to smart
refrigerators, televisions, and cameras, giving end users un-
precedented control over their environment. New domain-
specific languages are emerging to supplant general purpose
programming platforms as a means for end users to con-
figure home automation. These languages, based on event-
condition-action (ECA) rules, have an appealing simplicity.
But programmatic control allows users write to programs
with bugs, introducing the frustrations of software engineer-
ing with none of the tool support. The subtle semantics of
the home automation domain—as well as the varying in-
terfaces and implementation strategies that existing home
automation platforms use—exacerbates the problem.
In this work, we present the Internet of Things Automa-

tion (Iota) calculus, the first calculus for the domain of home
automation. Iota models an ECA language equipped with
first-class notions of time, state, and device aggregation, and
comes equipped with a precise semantics inspired by a care-
ful analysis of five existing home automation platforms. We
show that the Iota calculus is useful by implementing two
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analyses from the software engineering literature, and ex-
pressive by encoding sixteen programs from these home
automation platforms. Along the way, we highlight how the
design of the Iota semantics rules out subtle classes of bugs.
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1 Introduction
With the availability of cheap computing hardware 1 2 and
ubiquitous internet connectivity, it becomes technically fea-
sible and commercially viable to connect home appliances—
such as light bulbs, power outlets, motion detectors, ovens,
refrigerators, and dishwashers—to inhabitants’ smartphones
and the Internet. These new connections give rise to the
Internet of Things (IoT), enabling end users to not only re-
motely control their homes from their smartphones but also
to automate certain everyday tasks. Such tasks can include
turning on lights when users return home, notifying them
when their children return from school, or watering the gar-
den after sunset if it has not rained. Ideally, end users who
want to automate and personalize their homes should be
empowered to do so easily, efficiently, and playfully—even if
they are not expert programmers.

This paper defines the Iota calculus, a core calculus for In-
ternet of Things Automation that generalizes existing event-
condition-action languages for home automation. The Iota
1http://www.raspberrypi.org/, accessed 2016-11-12.
2http://www.artik.io, accessed 2016-11-12.
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calculus is an ECA language with first-class support for time,
state, and device aggregation, important features for home
automation applications. We define a precise semantics for
the Iota calculus, use it to create useful tools for the end
user, and show that programs written for several existing
home automation platforms—including both ECA and gen-
eral programming platforms—are naturally encoded in Iota.

A Spectrum of Programmability. The commercial mar-
ket has flourished in recent years with home automation
ecosystems from well-established companies and startups,
as well as open-source solutions. One natural way to en-
able home automation is to equip a general-purpose pro-
gramming language with an API for interacting with phys-
ical devices and appliances. But smart home applications
are inherently reactive, concurrent shared-memory systems
with complex timing constraints. For example, the Samsung
SmartThings 3 tutorial teaches users to implement the fol-
lowing program:

“When everyone leaves the house for more than
ten minutes, turn the lights off.”

It requires over one hundred lines of Groovy code, including
sophisticated reasoning about locks, timers, interrupts, and
mutable state. Not only is this tedious and error-prone, but
general-purpose reactive programs are notoriously unrecep-
tive to verification and tool support. The entire endeavor is
also beyond the reach of end users without programming
skills.
On the other end of the spectrum, some manufacturers

offer a catalog of applications programmed and sold by third-
party developers or the manufacturer itself, a model success-
fully pioneered on the smartphone market. However, every
end user has a different home and different habits. As a result,
downloadable apps tend to be too specialized or not offer
enough personalization [20].
Simple event-condition-action (ECA) rule systems have

emerged as a popular, practical means for non-technical
users to configure and control home automation systems.
The popular IFTTT service, Smart Lights for SmartThings,
Muzzley 4, and Yonomi 5 are smartphone applications with
simple interfaces that empower end users to install rules of
(roughly) the following form:

“when some event occurs
if some condition is true
then perform some action.”

Such rule-based systems are easier to learn than general-
purpose programming, while remaining customizable, strik-
ing an attractive middle ground. Although general purpose
programming platforms clearly provide the most expressive
power of the options above, for many home automation

3http://www.smartthings.com, accessed 2016-11-11.
4http://www.muzzley.com, accessed 2016-11-11.
5http://www.yonomi.co, accessed 2016-11-11.

programs, this power is unnecessary. We surveyed home au-
tomation applications coded in general-purpose languages
from app stores, user forms, and Github, and found that most
are expressible in an event-condition-action rule system.

Need for FormalAnalysis. Event-Condition-Actions frame-
works strike a nice balance between expressivity and usabil-
ity. Unfortunately, these systems are ad hoc: The expres-
sivity of the rules varies, as do the semantics of execution.
For example, three of the five home automation platforms
we surveyed were prone to race conditions that arose need-
lessly from avoidable design decisions; a fourth exhibited
deterministic but unpredictable behavior (see Section 4.2).
As a result, the experience of end users is often mixed.

Writing a single rule is easy, but users can have trouble
keeping track of all the rules in a larger program and create
conflicting rules [13]. Since rules are declarative and not
grouped in any larger structure, debugging a program when
it behaves unexpectedly is difficult. A study by Brush et al. [3]
of households using home automation found that users had
difficulty writing programs that behaved as they expected:
“Participants felt rules in general were hard to debug when
they did not work and so participants lived with problems
or turned off rules.... [Participant] also told us that he would
have liked to try out different scenes if he knew how to
experiment with the system.”

Beyond a clear semantics, we believe tools for debugging
and verifying home automation programs will be crucial in
broadening adoption of home automation. Such tools can
provide the user greater confidence that their programs be-
have as desired by detecting likely bugs early and enabling
deeper diagnosis of past behaviors. Building such tools for
general-purpose programming platforms is challenging, be-
cause home automation programs combine language features
that are notoriously difficult to analyze, including concur-
rency, asynchronous callbacks, and shared mutable state.
ECA languages are also appealing because their restricted
nature makes them more amenable to analysis. However,
some ECA languages that have emerged are too restricted to
express common idioms, such as dealing with elapsed time.

Contributions. We present the Iota calculus which, to the
best of our knowledge, is the first formal calculus for the
domain of home automation. Iota comes equipped with an
event-condition-action syntax and precise semantics. Iota
is a formally defined ECA language with support for time,
shared (but not allocatable) state, and device aggregation,
while its semantics are carefully designed to avoid certain
race conditions common to other systems. Iota is agnos-
tic to the choice of platform and assumes only that home
automation programs are capable of communicating with
the devices they specify, and that all communication takes
place via a central hub. We have implemented a simulator
that can parse Iota programs and execute them in response
to a sequence of events on an environmental configuration,

http://www.smartthings.com
http://www.muzzley.com
http://www.yonomi.co
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although we have not written bindings for actual hardware
devices. IoT automations may be written directly in Iota by
users with some familiarity with programming, and we feel
its usability compares favorably with many of our compari-
son platforms. However, we expect that Iota will be most
useful when used as the underpinnings for a higher level
language or more sophisticated GUI.
We compare Iota with five existing home automation

platforms: IFTTT, Smart Lights for SmartThings, Home As-
sistant, OpenHAB and SmartThings Apps. To evaluate Iota’s
expressiveness, we translate sixteen home automation pro-
grams drawn from the user communities of those five plat-
forms. We compare the relative sizes of the original and
encoded programs, and identify language features Iota lacks
for encoding general-purpose home automation programs.
We find Iota to be expressive and concise despite its restric-
tion to a specific domain: Translated programs were often
substantially smaller in Iota than their original languages.
We then use Iota and its formalism as a foundation for

developing, implementing, and evaluating two analyses:

• conflict detection determines whether an event can trig-
ger an execution that performs two conflicting actions;
• positive and negative queries determine the root causes
of why events did or did not occur, tracing back through
rule executions and intermediate events.

2 Current State of the Art
We chose five platforms as representative of the current
approaches to home automation programming. These plat-
forms serve as examples of various points in the spectrum
between very restricted rule syntax to the power of a full
general purpose programming language. All have nontrivial
user bases and are available commercially or open source.
We briefly review the features of each in order to demon-
strate the ways in which home automation programs are
currently written and to motivate our choices in the design
of Iota and our analysis tools.

IFTTT 6 (If This Then That) is a service that connects APIs.
Smart, cloud-connected devices publish services on IFTTT,
providing triggers (events) which fire when an event occurs
or condition is met, and actions, which update some field
on the device. IFTTT rules simply connect one trigger to
one action. They do not have conditions themselves; rather,
conditions (and other arbitrarily complex logic) are baked
into the manufacturer-provided triggers and actions.

SmartThings Smart Lights 7 allows users to create auto-
mated routines for IoT devices via a smartphone app. Using
a GUI, users can write event-condition-action rules using
the attributes exposed on registered devices. In addition to

6http://ifttt.com, accessed 2016-11-11.
7http://smartrulesapp.com, accessed 2016-11-11.

controlling devices, Smart Lights rules can transition be-
tween user-defined modes such as “away” or “normal busi-
ness hours,” as well as predicate on mode transitions. The
platform also provides built-in predicates over domains such
as time of day and the times of sunrise and sunset.

Home Assistant 8 is an open source platform written in
Python. Users run the platform on a local server, often a Rasp-
berry Pi. Bindings for a wide variety of devices are available,
which expose sensors and fields that can be read and services
that can control devices. Automation programs are made up
of event-condition-action rules, written in YAML, a struc-
tured text format. Home Assistant rules closely resemble
Iota rules, although they are implemented with a slightly
different semantics. Home Assistant lacks explicit timers but
can attach delays to event handlers (e.g. firem minutes after
an event has occurred) and to actions (e.g. in m minutes,
perform some action). It can also set up triggers based on
clock time using a crontab format.

OpenHAB 9 is another open source platform; similar to
Home Assistant, it runs on a local server and provides bind-
ings for a panoply of smart devices. Automation programs
arewritten in Xtend 10, a Java-like expression language. Rules
consist of two blocks, an event handler and an action block.
Event handler blocks tend to be quite simple, but action
blocks may contain arbitrary Xtend code and often contain
control flow such as if statements. Xtend can use the Java
API, including threading, locks, reflection, and other such
features.

SmartThings SmartApps 11 Unlike the previously discussed
platforms, SmartThings SmartApps are programs that can
be published to an app store and that are intended to be
written by developers, not end users. SmartApps are writ-
ten in Groovy, a JVM language, and handle interactivity by
attaching callbacks to events.

3 Iota by Example
The home automation programs found in each of these sys-
tems are concurrent, reactive programs with shared memory:
They react to events from the world by modifying shared
state, setting timers, and actuating devices. These actions
may, in turn, raise new events.
As an example, consider a household with a few home

automation devices: a porch light, a hallway light, a bedroom
light, an automatic front door lock, and a motion detector
on the porch. The lights can be switched on or off, and the
bedroom light also has brightness and color settings. The
door lock can be locked or unlocked manually or remotely.
8https://home-assistant.io/, accessed 2016-11-11.
9http://www.openhab.org, accessed 2016-11-11.
10http://www.eclipse.org/xtend, accessed 2016-11-11.
11https://community.smartthings.com/t/list-of-all-officially-published-
apps-from-the-more-category-of-smart-setup-in-the-mobile-app/13673,
accessed: 2016-11-11.

http://ifttt.com
http://smartrulesapp.com
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Iotamodels device sensors and actuators as opaque names,
such as hallway_light_switch. A light syntactic sugar groups
device properties using record syntax, e.g. hallway_light.switch
and hallway_light.brightness refer to the hallway light tog-
gle and the brightness level.
Activating lights is a common task in the SmartThings

community. The following Iota rule is built from an event
handler, a predicate, and an action; it causes the hallway
light to be turned on when the front door unlocks.

front_door.lock[locked ↪→]; event handler
front_door.lock = unlocked; condition
hallway_light_switch := on action

The first clause, front_door.lock[locked ↪→], is an event han-
dler that matches events in which the “lock” property of the
front door changes and the old value was “locked.” The sec-
ond clause is a predicate that must hold on the new state
of the world in order for the action to fire—in this case, the
event changes the door from locked to unlocked, and the
new value of the lock must be unlocked. The final clause
specifies the actions to be applied: here, we set the hallway
light to on.
Perhaps we wish the light to turn off five minutes after

the door locks.

front_door.lock[unlocked ↪→];
front_door.lock = locked;
start light_timer at 0

light_timer[· ↪→];
light_timer = 5;
hallway_light.switch := off, stop light_timer

These two rules together set and check a timer to enact
a delayed action. If there exists no timer with the name
light_timer, start light_timer at 0 will create one and start
it; if one does exist, the action will reset its value to 0. Imag-
ine a scenario in which a household member comes home
(opening, closing, and locking the front door), then running
outside briefly, and finally returning and locking the door
again. Each time the front door is locked, the first rule fires,
resetting the timer, and the light turns off five minutes after
the last time the door was locked, as expected.
Finally, the following two rules implement the Smart-

Things “Bon Voyage” SmartApp: Turn off the hallway light
when all family members’ smartphones have been outside
the house geofence for more than ten minutes. (As originally
written, the SmartApp comprises 147 lines of Groovy code,
including callbacks, interrupts, timers, and state.)

any
{
mom_phone, dad_phone, child_phone

}
(phone→ phone.location[· ↪→]);

all
{
mom_phone, dad_phone, child_phone

}
(phone→ phone.location = away);

timer := 0

timer[· ↪→ 10];
all
{
mom_phone, dad_phone, child_phone

}
(phone→ phone.location = away);

hallway_light.switch := off

These rules make use of device aggregation: The any event
handler ranges over a group of devices—family members’ cell
phones in this example—and matches if the location of any
phone changes. The predicate all denotes the conjunction
of a predicate lifted to a group of devices, here requiring that
all locations be “away.”
Although Iota is capable of expressing these and other

home automation behaviors succinctly, it remains a core
calculus, not a fully fledged language. As such, it excludes
features like variable binding, arithmetic, and string manip-
ulation that would be undeniably useful. We expect that
adding these features would be straightforward.

4 Syntax and Semantics
Iota draws inspiration from the trigger-action programs
of the ubiquitous computing community [20] and event-
condition-action rules of active databases [5]. We begin by
presenting the syntax of Iota, which comprises two levels:
A base syntax of events, conditions, and actions with literal
references to devices, and a surface syntax that accounts for
device aggregation. After establishing the calculus syntax,
we explore Iota’s semantics, highlighting choices that have
subtle implications for user experience and tool design.

4.1 Syntax
We begin with the simplest syntax L1 in Figure 1. Expres-
sions range over device fields f , opaque timersm, and con-
stant values n. The state of the system consists of a set of
opaque fields, which hold the values of all readable and
writable elements of the installed devices. While there is
no memory allocation, internal state can be modeled as a
finite number of virtual “device” fields. Timers are likewise
virtual and, once started, are assumed to increment according
to an internal clock.
An event is issued when the value of a field or timer

changes, e.g. a light turns on. Events f [n1 ↪→ n2] are read as
“the value of field f changes from n1 to n2.” Event handlers
match events; if the handler h of a rule matches an event e ,
then the rule is triggered. Handlers are written with the same
notation as events but may omit the new value (f [n ↪→]) or
the old and new values (f [· ↪→]) to match regardless of the
values of the event.
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fields f
timers m
constants n
expressions t ::= f | m | n
event handlers h ::= f [· ↪→] | m[· ↪→]

| f [n ↪→]
| m[n ↪→]

events e ::= f [n1 ↪→ n2]
predicates p ::= true | false

| f1 = f2 | f = n | m = n
| f1 < f2 | f < n | m < n
| p1 ∧ p2 | p1 ∨ p2 | ¬p

actions a ::= f := t | m := n | stopm
action lists as ::= · | a,as
rules r ::= h;p;as

Figure 1. Base syntax of Iota.

devices d ::= field set
expressions t ::= n | m | d . f | x
groups д ::= devices | {d1, . . . ,dn }

| (д | x → p)
event handlers h ::= . . .

| f [· ↪→ n]
| f [n1 ↪→ n2]
| any д (x → h)

predicates p ::= . . .
| all д (x → p)
| exists д (x → p)
| f ∈ d

actions a ::= . . .
| d . f := t
| map д (x → a)

Figure 2. Iota extended with devices and aggregation.

Predicates form a Boolean algebra over field and timer
tests. Fields may be compared with other fields and constants.
Timers are based on the decidable fragment of timed au-
tomata and may only be compared with constant values [1].
Actions comprise field assignment and timer management:
starting a timer at a particular value (start m at n) and
stopping a timer (stopm).

Each rule is made up of an event handler, a predicate, and
a list of actions. Note that an event algebra with disjunction
can be encoded with multiple rules, one for each disjunct,
and sequences of actions can be encoded by introducing
intermediate state.

InL1, the program “when the (previously closed) door opens,
turn the light on” can be written as

door[closed ↪→ open]; true; lightswitch := on

where door and lightswitch are fields that encode devices,
and closed, open, and on are constants.

Device Aggregation. Devices are collections of sensors,
actuators, and metadata, and it is often convenient to refer
to groups of devices sharing a common attribute. We extend
the syntax of L1 to capture devices, their properties, and
operators that range over groups of devices: We say that
L2 comprises L1 extended with the constructs presented
in Figure 2. We review the syntactic sugar of L2 informally
below; the formal desugaring rules are given in the appendix.

Devicesd are now collections of fields, and fields in expres-
sions are replaced by field projection over devices. Variables
x also appear in expressions. Groups may be an explicit set
of devices or a special keyword devices, which denotes all
devices registered with the system. Groups may be further
refined using the construct (д | x → p), which filters a group
д using an anonymous function with x ranging over devices
inд and binding inp. Events are extended with the existential
construct any, predicates with universal (all) and existential
(exists) constructs, and actions with map, which applies an
action to a group of devices. Predicates also include a test
f ∈ d , which checks whether a field is present on a device.
L2 introduces a concise way to turn all the lights on when

any door opens:12

any devices (x → x .door[closed ↪→]);
true;
map devices (x → x .switch := on)

Finally, we extend event handlers to specify the value the
field holds after it is updated, which would otherwise need
to be checked in the rule predicate.
At present, Iota is untyped. However, one could imag-

ine augmenting the calculus with a simple type system to
distinguish command domains, such as on, off for a light
switch compared to heat, cool, off for an A/C unit. We hope
to explore this and other type system features in future work.

4.2 Semantics Design
Iota assumes that all control logic takes place on a central
hub, as do all the platforms we survey, whether that hub is a
server in the cloud or a Raspberry Pi in the home. Commu-
nication between devices and the hub takes place via wifi,
Bluetooth, or some other wireless protocol; thus, network la-
tency is a major factor in the execution of home automation
programs. In designing semantics for Iota, we were careful
to create strong guarantees about evaluations that take place
on the hub, and to avoid making guarantees about the timing
or sequence of events that occur via communication to and
from the distributed array of IoT devices.
When an event occurs, the system hub is notified of the

change and calculates a response, which is dispatched to the
relevant devices as updates. We found that three of the five

12Projecting a nonexistent field from a device is silently ignored.
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Execution order 1 Execution order 2

Figure 3. Different execution models for rules in response to a single event.

e1

e2e2
e3

e2

e3

e3

Execution 
order 1

Execution
order 2

Figure 4. Nondeterministic execution arising from evaluat-
ing one event at a time from a set of events.

systems examined suffered from race conditions in response
to a single input event; a fourth, while deterministic, obeys
a logic that is opaque to the user.

As an example, consider the two rules in Figure 3, which
arm a security system when a user returns home and sound
an alarm if someone (presumably an intruder) tries to enter
the house thereafter.13 Suppose the door changes from locked
to unlocked and the security system is not armed. How should
the system behave?

One option is to evaluate each rule one at a time. Both rules
in this scenario are triggered by this event, so both orderings
are valid. In the first ordering (Execution order 1 in Figure 3)
, the first rule would check that the security system is not
armed, and upon finding that it is not, would then arm it.
Next, the second rule will be evaluated, but since the security
system is now armed, the actions on the second rule will fire,
immediately activating the siren. Thus, depending on how
the race is resolved, the siren could go off any time anyone
came home. Another option, which is simple to implement,
would be to spawn a new thread to handle each rule that
matches an event (not shown in Figure 3). This, of course,
would lead to similar race conditions.

Indeed, Zave et al. observe that home automation features
(collections of rules) often overlap, and suggest assigning
priorities to determine which feature takes precendence in

13This was drawn from an actual user program.

the event of interaction [22]. For example, if two rules are
triggered and set the thermostat to two different tempera-
tures, the rule with higher priority will be the one to take
effect. However, it seems unlikely that users will be able to
internalize the relative priority of tens or hundreds of rules;
it would also be difficult to recollect priorities days or months
later when updating the automation program.

None of our five comparison platforms use rule priorities.
We experimented with each platform with respect to the
example above to determine whether such race conditions
are possible. This type of race condition cannot occur in
IFTTT, as IFTTT rules have no conditions. The SmartThings
Smart Lights app evaluates rules one at a time in an arbitrary
but fixed order. The order seems to be determined by the
creation date of each rule, but this is not made clear to the
programmer. Although this does not yield race conditions
during execution, adding or removing rules can change the
behavior of the system unexpectedly.

The race condition is possible in both Home Assistant and
OpenHAB; both platforms fire asynchronous actions when
rules are fully evaluated and the resulting undetermined
interleaving of actions can lead to a race. OpenHAB rules
do not have separate condition statements, but their action
blocks can be quite complex, containing if statements or
other forms of control flow, and untangling the interactions
between rules can be difficult. Finally, while a well-written
SmartApp should attach one callback per event, nothing
prevents two SmartApps from responding to the same event
and causing this type of error. Nor are SmartApps, which run
in a threaded environment, guaranteed to finish handling
one event before responding to another.

The Iota semantics evaluates rules in phases, which elim-
inates this class of race condition without resorting to rule
prioritization. First, all the event handlers are evaluated, then
predicates, and finally actions. Execution order 2 in Figure 3
illustrates this behavior: By evaluating all predicates before
applying any actions, the alarm only fires when the door is
unlocked a second time, as intended.
Moreover, all actions are evaluated against the same ini-

tial state; the effects of one action do not influence others
when handling the same event. Hence, event handlers and
predicates are commutative, as are actions that do not write
to the same state.
After an action is sent to its device as an update, upon

completion the device will notify the hub of a new event,
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J·Kh :: Rule → Event → Rule Set
J( f [· ↪→];p;a)Kh f [n ↪→ n′] =

{
( f [· ↪→];p;a)

}
J( f [n ↪→];p;a)Kh f [n ↪→ n′] =

{
( f [n ↪→];p;a)

}
J(h;p;a)Kh f [n ↪→ n′] = ∅ otherwise
J·Kp :: Rule → State → Rule Set
J(h; true;a)Kp Σ = {(h; true;a)}
J(h; false;a)Kp Σ = ∅

J(h;x1 ⊕ x2;a)Kp Σ = {(h;x1 ⊕ x2;a)}
when x1 ⊕ x2 ∈

{
f1 ⊕ f2, f ⊕ n,m ⊕ n

}
and Σ[f1] ⊕ Σ[f2]

= ∅ otherwise
J(h;p1 ∧ p2;a)Kp Σ =

{
(h;p1 ∧ p2;a)

}
when J(h;p1;a)Kp Σ ∧ J(h;p2;a)Kp Σ

= ∅ otherwise
J(h;p1 ∨ p2;a)Kp Σ =

{
(h;p1 ∨ p2;a)

}
when J(h;p1;a)Kp Σ ∨ J(h;p2;a)Kp Σ

= ∅ otherwise
J(h;¬p;a)Kp Σ =

{
(h;¬p;a)

}
when J(h;p;a)Kp Σ = ∅

= ∅ otherwise
J·Ka :: Rule → State → State × Event
J(h;p; f := n)Ka Σ = Σ[f → n], f [Σ[f ] ↪→ n]
J(h;p; f1 := f2)Ka Σ = Σ[f1 → (Σ[f2])],

f [Σ[f1] ↪→ Σ[f2]]
J(h;p;m := n)Ka Σ = Σ[m → n],m[Σ[m] ↪→ n]

Figure 5. Denotational semantics for the evaluation of event
handlers, predicates, and actions.

possibly triggering another rule. Iota makes no assump-
tions about the order in which these new events will be
received and evaluated; in our semantics, any ordering of
event processing is valid. The design of the semantics thus
does not preclude write-write conflicts. Rather than attempt
to prevent them (tricky in a distributed system), we develop
a conflict detection algorithm to identify them (Section 6).
Since actions from the execution of one rule can trigger

the execution of another, it would be possible to design a
semantics in which the entire tree of rule executions is eval-
uated on the central hub, with all updates being dispatched
to devices after processing. This would avoid the latency
required for communication between devices and the hub,
and could prevent some types of conflict. However, due to
network connections over wifi or Bluetooth, battery fail-
ures, misconfigurations, or other issues, it is likely that a
network of IoT devices will not be perfectly robust. Instead,
we choose to send an update and wait for acknowledgement
before executing any rule that update might trigger. We thus
avoid the case in which an update fails, but we continue
with execution as if it had succeeded, which might result in
unpredictable outcomes.

4.3 Evaluation Semantics by Example
We develop a denotational semantics to model the behavior
of individual event handlers, predicates, and actions, which
execute atomically (by design), and a small-step semantics
to capture the interleaving behavior of rule application over
a set of events. Given a set of rules, an event, and the current
state of the world, all event handlers are evaluated, followed
by all predicates, and then all actions. The order in which
individual event handlers, predicates, and actions are applied
is not specified; any ordering is legal.

When an action is evaluated and an update is successfully
written to the corresponding device, an event corresponding
to the update is also generated, causing another round of
rule evaluation. If a rule causes more than one update, the or-
der in which the new events are evaluated is unconstrained.
Figure 4 illustrates this case: Event e1 matches the first rule,
which in turn creates two new events: one for the door un-
locking, and another for the television turning on. Either of
the new events could be chosen for evaluation next.
The remainder of this section illustrates evaluation by

example. The full semantics of rule set evaluation are given
in the appendix.
Consider a rule that turns off the heater at 8:00 if no one

is at home; an initial state Σ in which the heater is on, no
one is home, and the time is 7:59; and an event in which the
clock changes from 7:59 to 8:00.
Event handlers are modeled as functions from rules and

events to sets of rules. They act as filters, producing a sin-
gleton set containing the original rule if the event triggers
the rule and the empty set otherwise. In our example, we see
the evaluation of the event handler triggered as the clock
changes to 8:00.

J(clock .hour [7 ↪→ 8];p;a)Kh clock .hour [7 ↪→ 8] ={
(clock .hour [7 ↪→ 8];p;a)

}
Likewise, given a rule and a state, predicates evaluate to a
set that contains the original rule if it the predicate holds on
the state and to the empty set otherwise.

J(h;household .status = away;a)KpΣ ={
(h;household .status = away;a)

}
Finally, actions are modeled as functions from a rule and
state to a new state, in which the actions of the rule have
been applied, and a set of events that arise as a result of those
actions.

J(h;p;heater .status := off)KaΣ =
Σ[heater .status → off],heater [on ↪→ off]

With the behavior of these core elements established, we
turn to a small-step semantics to define how sets of events
are processed by sets of rules. Formally, an event e1 (the event
being processed), a set of events es1 (the remaining events),
a state Σ1, and an evaluation state s step to (e2, es2, Σ2, s2),
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evaluation state s ::= none (rs )
| event (rsin , rsout )
| pred (rsin , rsout )
| act (rsin , esout )

e1, es1, Σ1, s1
r s
→ e2, es2, Σ2, s2 ·, e ⊎ es, Σ,none (rs )

r s
→ e, es, Σ, event (rs, ∅)

r-e

JrKh e = rs

e, es, Σ, event ({r } ⊎ rs1, rs2)
r s
→ e, es, Σ, event (rs1, rs ∪ rs2)

r-h
e, es, Σ, event (∅, rs )

r s
→ e, es, Σ,pred (rs, ∅)

r-hp

JrKp Σ = rs

e, es, Σ,pred ({r } ⊎ rs2, rs3)
r s
→ e, es, Σ,pred (rs2, rs ∪ rs3)

r-p
e, es, Σ,pred (∅, rs )

r s
→ e, es, Σ, act (rs, ∅)

r-pa

JrKa Σ = Σ2, es2

e, es, Σ, act ({r } ⊎ rs3, rs4)
r s
→ e, es ∪ es2, Σ2, act (rs3, {r } ∪ rs4)

r-a
e, es1, Σ, act (∅, rs4)

r s
→ ·, es ∪ es2, Σ,none (rs )

r-ae

Figure 6. Semantics of ruleset evaluation

written
(e1, es1, Σ1, s1)

r s
→ (e2, es2, Σ2, s2)

Evaluation begins with a set of events and the evaluation
state none (rs ). The first transition nondeterministically
selects an event to process and moves to the event (rs, ·)
phase, indicating that the event handlers of rules rs must be
evaluated against the event e .

(·, e ⊎ es, Σ,none (rs ))
r s
→ (e, es, Σ, event (rs, ·))

Each subsequent step selects a rule in rs , evaluates its event
handler against e , and moves it to the right side of the event
state if it triggers. Eventually, all the rules will be evaluated,
and we transition to the next phase of evaluation: predicates.

(e, es, Σ, event (·, rs ′))
r s
→ (e, es, Σ,pred (rs ′, ·))

Hence, the event handlers, predicates, and actions are pro-
cessed in batches. Once the final action has been evaluated,
the event is discarded and a new event selected from es , until
no events remain.
In our example, the first step chooses an event to begin

processing—here there is only one event to choose from, but
if there were more, any choice of an event to process would
be valid. This reflects the fact that new updates may arrive
from distributed devices in any order. For brevity, we let r
stand for the rule.

(·, clock .hour [7 ↪→ 8] ⊎ ∅, Σ,none ({r }))
r s
→

(clock .hour [7 ↪→ 8], ∅, Σ, event ({r } , ∅))

r-e

From there, we choose a rule to match its event handler
against the event. Although there is only one rule in our
example, note that rules are in an unordered set and at any
step, choosing any rule from the appropriate set is valid.

The order rules are processed in the event and predicate
evaluation states does not affect the final result.

JrKh e = {r }

(clock .hour [7 ↪→ 8], ∅, Σ, event ({r } , ∅))
r s
→

(clock .hour [7 ↪→ 8], ∅, Σ, event (∅, {r }))

r-h

Once all rules have been processed in the event evaluation
state, we step to the pred evaluation state.

(clock .hour [7 ↪→ 8], ∅, Σ, event (∅, {r }))
r s
→

(clock .hour [7 ↪→ 8], ∅, Σ,pred ({r } , ∅))

r-hp

We step through the pred evaluation state in a similar fash-
ion. When we reach the act evaluation state, we take the
sole rule and apply the action step, which produces an up-
dated state Σ2, in which the heater .status is now off, and
issues a new event, heater .status[on ↪→ off]. Like the other
two evaluation state phases, the order of rule processing is
not constrained, although it can affect the final state of the
system in the case of write-write conflicts.

JrKa Σ = Σ2,
{
heater .status[on ↪→ off]

}
(clock .hour [7 ↪→ 8], ∅, Σ, act ({r } , ∅))

r s
→

(clock .hour [7 ↪→ 8],
{
heater .status[on ↪→ off]

}
,

Σ2, act (∅, {r }))

r-a

Now that all rules have been fully processed, we finish by
stepping into the none evaluation state. From here we can
continue by selecting another event to process from the set
of pending events.
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(clock .hour [7 ↪→ 8],
{
heater .status[on ↪→ off]

}
,

Σ2, act (∅, {r }))
r s
→

(·,
{
heater .status[on ↪→ off]

}
, Σ2,none ({r }))

r-ae

5 Evaluation of Iota Expressiveness
We evaluate the expressiveness of Iota on programs of inter-
est to end users by gathering sixteen programs from public
forums associated with each platform and translating them
into Iota programs. For programs beyond the reach of Iota,
we note the language feature(s) that Iota does not capture.
Table 1 summarizes our results.We found that programs from
existing ECA languages were easily translated to Iota, and
larger programs from general purpose languages translated
to much smaller Iota programs.We discovered that language
features missing from Iota were largely as expected for a
calculus: Missing base types and associated operations, like
integers and arithmetic. Notably, these programs did not
make use of looping constructs or state allocation, which
would be difficult to model in Iota.

IFTTT. From the programs published on the IFTTT website,
we chose five that use common IoT devices, such as automatic
blinds, a rain gauge, and a smart thermostat. As each IFTTT
program has exactly one event handler and one action, all
five programs translated cleanly into Iota. This simplicity
results in a limited amount of expressive power; only about
half of the Smart Lights programs we examined could be
expressed by IFTTT, and only a small fraction of the Home
Assistant and OpenHAB programs.

One thing to note is that although the IFTTT rules them-
selves are very simple, more intelligence can be built into
the trigger and action channels. For example, one program
uses a trigger sent by a smart refrigerator if its door has been
open for over a minute, even though IFTTT has no explicit
timer support. Although channel implementation is not part
of IFTTT—and, indeed, is likely out of reach for many end
users—we encoded this channel behavior in Iota with three
rules: one that sets a timer when the refrigerator door is
opened, one that cancels the timer when the door is closed,
and one that sends a message if the timer reaches 60 seconds.

SmartThings Smart Lights. We were unable to find pub-
licly available Smart Lights programs, so we translated five
“user story” blog posts from the Smart Lights website into
Iota programs. These programs include temperature and
moisture sensors that control a greenhouse; geofenced phones
that control lighting for family members; and an office with
different behaviors during and outside normal office hours.
Each was straightforward to encode in Iota. The Smart
Lights programs maintain “modes”, named fields that are not
associated with any physical device. Rules are used to calcu-
late properties such as “household is home” or “normal office
hours,” which then drive other rules. Iota naturally captures

this behavior with named state fields. Some Smart Lights
programs also show the utility of Iota’s “group” syntactic
sugar, which can express predicates such as “any household
member’s phone enters the home geofence area” and “update
the state to ‘home’ if all household members are at home”
with a single rule.

Home Assistant. For Home Assistant and OpenHAB, we
chose two large programs that were written for a household
equipped with many tens of IoT devices. The Home Assis-
tant program14 has 132 rules, controlling over 10 types of
devices as well as many non-device properties. In translating
the sample program we found no feature that could not be
expressed in Iota. Home Assistant automation rules are the
closest in syntax to Iota of the five platforms we surveyed,
and for the most part Home Assistant rules translate one-to-
one to Iota rules. The exception is rules governing timers:
Home Assistant lacks full support for timers, but time de-
lays can optionally be added to event handlers; for example,
a trigger can be written that will fire if a motion detector
does not sense motion for three minutes. Writing the same
rule in Iota requires explicitly managing a timer, which is
done with three rules: one to set the timer, one to perform
an action when the timer reaches the desired time, and one
to cancel the timer if necessary. However, adding a delay
construct to Iota as syntactic sugar is straightforward.

Both Home Assistant and Iota allow event handlers, pred-
icates, and actions to be written over groups of devices. How-
ever, neither Home Assistant nor Iota capture parameters;
for example, neither can write a rule that states when any
member of the household leaves home, their personal “away”
property becomes true. Both platforms would require a sep-
arate rule for each person.

OpenHAB. The OpenHAB program15 consists of 103 rules,
managing devices such as lights, window shades, heating
and cooling, motion detectors, temperature and humidity
sensors, time and date, and so on. OpenHAB rules consist of
an event handler and an action block; since the action block
can contain arbitrary code, it is much more expressive than
Iota. However, the only inexpressible behavior in the sample
program was arithmetic (primarily for counting and calculat-
ing temperatures) and string manipulation (for logging error
reports). More sophisticated language constructs, such as
loops, exceptions, interrupts, and locks—which would prove
difficult to model in Iota—were not present. We do not an-
ticipate difficulty in extending Iota with arithmetic or string
manipulation.

Note that Iota required about 30% more rules than Open-
HAB to express equivalent sample programs. This is largely
because of two factors: first, Iota event handlers cannot ag-
gregate over devices with different properties, requiring the
14https://github.com/geekofweek/homeassistant/, accessed 2016-11-11.
15http://www.intranet-of-things.com/software/downloads, accessed 2016-
11-11.

https://github.com/geekofweek/homeassistant/
http://www.intranet-of-things.com/software/downloads
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single OpenHAB rule to be split into two Iota rules, as seen
in Figure 7. Second, each Iota rule executes a specified set
of actions if its predicate evaluates to true, while OpenHAB
rules may contain several sets of actions guarded by if state-
ments. Every set of truth conditions that would result in a
distinct set of actions executed requires a separate rule in
Iota. Although more verbose, the simpler structure of Iota
rules is more amenable to analysis.

SmartThings SmartApps. We translated three SmartThings
SmartApps in addition to the “Bon Voyage” example pre-
sented in Section 1: one to manage heating in response to
thermostat settings; one to control lighting depending on
motion detectors, light sensors, and sunrise/sunset times;
and one to set thermostat settings based on weather infor-
mation. Each program contained hundreds of lines of code,
but much of it consisted of boilerplate code for specifying
which devices to manipulate and configuring user options,
both of which are explicit in Iota rules.

However, we also encountered one feature that Iota was
incapable of expressing concisely. The Gidjit SmartApp is
essentially a shim that connects SmartThings devices with
a remote service—it receives RESTful messages (which we
encode as a device that generates an event when a message
is received) and uses the contents of its messages to refer to
particular devices. Reflecting device names is technically pos-
sible to encode in Iota by enumerating all possible message
literals and connecting them to the devices named therein,
but such an encoding is very inefficient. Since reflection is
such a powerful feature, it limits the types of analysis we
can perform.

5.1 Features Not Addressed with Iota
Security and privacy are very important concerns for the
Internet of Things. Although we do not address it directly in
this work, our belief is that by clearly defining a core calculus
with well-established semantics, future work will be able to
provide better security analysis than is possible with current
IoT platforms. Likewise, providing end users with a well-
considered programming language with good tool support
will enable them to better understand and control their home
automations, which can only improve security.

When the components of a home automation system are
first installed, or when new devices are added to an existing
system, theymust be registered to communicate with the cen-
ter hub. This may include a form of authentication, arranging
for secure communication, and so on. We believe device on-
boarding to be relatively infrequent, occurring when a user
purchases new devices or offers trusted guests access to the
system. The mechanisms for device onboarding are beyond
the scope of this work.
Finally, we assume that all devices that are connected to

Iota have bindings to send information about their current

rule "Christmas lamps on"
when

Time cron "0 0 16 * * ?"
or
Item State_Sleeping changed from ON to OFF

then
if( Auto_Christmas.state == ON &&

( Socket_Livingroom.state == OFF ||
Socket_Floor.state == OFF ) ) {
var Number hour = now.getHourOfDay
var Number minute = now.getMinuteOfHour

if( ( hour == 16 && minute == 0 ) ||
( hour < 10 && State_Sleeping.state == OFF
&& State_Away.state == OFF ) ) {
sendCommand(Socket_Livingroom,ON)
sendCommand(Socket_Floor,ON)

}
}

end

clock.hour[· ↪→ 16];
state.auto_christmas = on
∧exists livingroom, floor (x → x .socket = off);
map livingroom, floor (x → x .socket := on)

state.sleeping[· ↪→ off];
state.auto_christmas = on
∧clock.hour < 10∧
exists livingroom, floor (x → x .socket = off);
map livingroom, floor (x → x .socket := on)

Figure 7. An OpenHAB rule translated into Iota. At 4pm,
if Christmas mode is enabled, turn the living room and floor
sockets on. When the household wakes up, if it is before
10am and Christmas mode is enabled, turn the living room
and floor sockets on.

state, to alert a central hub of changes, and to receive instruc-
tions to change their status. Such bindings will need to be
defined per device, which is not addressed in this work.

6 Analyses
Iota, with its limited syntax and clearly defined semantics,
is highly amenable to analysis. Here, we present two analy-
ses for Iota that have been applied successfully in other do-
mains: conflict detection, based on an application of bounded
model checking [2], and a provenance analysis, inspired by
the Whyline work on program understanding [8]. Beyond
demonstrating the analyzability of Iota, we believe these
two tools would be directly valuable to an end user writing
home automation programs.
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Table 1. Comparison of platform programs.

Programs Average lines/ Average number of
Platform translated rules per program Iota rules per program Features missing from Iota
IFTTT 5 1 rule 1 None
Smart Lights 5 rules – 8 None
Home Assistant 1 132 rules 162 None
OpenHAB 1 103 rules, 2085 LOC 136 Arithmetic; string manipulation
SmartApps 4 324 LOC 8 Reflection

6.1 Conflict Detection
One technique to check for bugs in a ruleset is to determine if
any rules contradict each other, or are in conflict. We consider
a set of rules to be in conflict if there is some initial state from
which a single input event can trigger a series of actions in
which some field is written to more than once. According
to Iota semantics, evaluating this event with the starting
state against the conflicting ruleset would result in an unpre-
dictable final state. In practice, one cause of nondeterminism
is network latency, which often dominates computation time
in home automation systems. The actions produced by a
conflicting execution (for example, a light turning on and
then turning off) may be reordered on delivery to the light.
Even if delivered in order, behavior can be highly dependent
on the device: The light may flicker, turn on and then off
with an arbitrary delay, or never turn on at all. Indeed, we
observed each of these behaviors experimenting with the
Muzzley, Yonomi, and SmartThings systems connected to a
Philips Hue light. Even actions that send the same value to
a field may be a problem if they are expensive or have side
effects (for example, sending a text message).

Example Rule Sets with Conflicts. Consider the follow-
ing example.

person[· ↪→ home]; true; {lights := on}
person[garage ↪→]; true; {lights := off}

According to the first rule, when a person (as located by,
say, a cell phone) arrives home, Iota should turn the lights
on. But, according to the second rule, when they leave the
garage, Iota should turn the lights off. If a person were to
leave the garage and enter the house, a conflict would result.
In the next example, the conflict arises because the first

rule fires two events, which are evaluated in arbitrary order.
After the event person[away ↪→ home] is fully evaluated, we
cannot predict if the lights will be on or off.

person[· ↪→ home]; true; {door := unlocked, tv := on}
door[· ↪→ unlocked]; true; {lights := on}
tv[· ↪→ on]; true; {lights := off}

Finally, consider the following deterministic but still prob-
lematic example.

person[home ↪→]; true; {door := locked, lights := off}
door[· ↪→]; true; {lights := on}

When the person leaves home, the first rule locks the door
and turns off the lights, but when the door’s status changes,
the lights will turn on. In this case, the lights will turn off
and immediately back on. Likely the user intended that the
lights turn on only when the door is unlocked. In the next
section, we explore how the user can diagnose other forms
of unexpected behavior.

Conflict Detection through BoundedModel Checking.
Our implementation of conflict detection is based on Spin, an
open-source verification tool for bounded model checking 16.
We chose Spin because of its simple syntax and good support
of nondeterminism. Due to Iota’s limited expressiveness and
explicit semantics, we were able to write a simple transpiler
to convert any Iota program into a semantically equivalent
Spin model. The end user need not understand or even see
the Spin model itself to use this tool.
In our implementation, we first declare an environment

holding all device fields and their possible values. Each rule
is then translated into a Spin method that updates the en-
vironment with any triggered rule actions. Events caused
by those actions trigger other rules in turn, in any order
permitted by the Iota semantics. Finally, we add a counter
for every writable field in the environment and increment it
every time an action updates that field. We then assert that
at the end of execution, every counter must have a value of
1 or less. The model checker looks for any initial environ-
mental configuration, any single world event, and any order
of subsequent rule execution that would result in some field
being updated more than once. If such an execution can be
found, the ruleset contains a conflict.

A few optimizations are necessary tomake boundedmodel
checking practical. In Iota, fields can hold enumerations or
integers. To limit the state space, we derive a set of possible
values for each integer field by finding all predicates that
reference that field, constructing a truth table from those
predicates, and using the Z3 solver 17 to find concrete val-
ues for each entry in the truth table, excluding any entry
that is unsatisfiable. For example, given a rule with the pred-
icate temperature < 30, we construct a truth table with
two entries, one where the predicate evaluates to true and

16http://spinroot.com/spin/whatispin.html, accessed 2016-11-14.
17https://github.com/Z3Prover/z3, accessed 2016-11-15.

http://spinroot.com/spin/whatispin.html
https://github.com/Z3Prover/z3
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one where it evaluates to false. We then call Z3 to find con-
crete values for each entry, perhaps 15 and 45. We can thus
limit the possible values for temperature to those two values
when exploring all possible states. Another simplification
we employ is to model timers as simple integers, ignoring
real-world constraints on timer values; we hope to handle
timers more efficiently in future work.

Upon detecting a conflict, traces generated from the Spin
model reveal an example execution that includes the initial
state of the environment, the input event that triggers the
conflict, the rules that are subsequently exercised, and finally
the field that is updated more than once. It is then up to the
user to either rewrite their program to prevent the conflict,
or decide the conflict is acceptable as it stands.

It is worth mentioning that the Spin model can be used to
check any invariant, not just the presence of conflict. One
can imagine a more sophisticated interface that allows the
end user to check any property they desire, for example “the
front door should never be unlocked when no one is home”
or “the porch light should remain on for no more than 30
minutes.”

Conflict Detection in General-purpose Programming
Languages. The three ECA platforms we studied could be
analyzed by this style of conflict detection as well, although
the semantics of Smart Lights and Home Assistant, in which
the evaluation order of rules in response to an event is mean-
ingful, would result in larger state spaces to explore. Apply-
ing this technique to general-purpose language platforms
like OpenHAB and SmartApps would be more challenging.
Although Spin can be used with general-purpose languages,
as in the Java Pathfinder tool 18, any such model would have
to include features like threading and memory allocation,
greatly increasing its complexity. Such tools typically require
more programmer input (adding annotations, using a spe-
cial runtime) and are unlikely to be used by casual end-user
programmers.

6.2 Provenance
As users live with their automations, they will inevitably ex-
perience unwanted or surprising behavior, prompting ques-
tions like, “Why didmy lights turn on last night at midnight?”
Collections of rules are unstructured, so it may be difficult for
users to know how to edit their program to fix the problem,
especially if the program is large. Moreover, it is infeasible to
tweak rules and rerun them to test the change, as we might
do in traditional debugging. An ideal answer to this question
would give the sequence of events—and the rules that the
events triggered—that ultimately led to the lights turning on
at midnight.

To produce this answer, we need to analyze the particular
execution that led to the unexpected behavior. Thus we need

18http://babelfish.arc.nasa.gov/trac/jpf, accessed 2016-11-15.

to retain information about the events registered and actions
taken as the system runs in a timestamped log.

Execution traces. We augment the small-step semantics
to produce a trace that marks each event, the rules triggered
by the event, and a timestamp of when the event occurred.

( f [v1 ↪→ v2], {(h1;p1;a1), (h2;p2;a2), · · · },τ )

Note that the set of rules executed in response to an event
may be empty. In order to generate traces, we augment three
small-step rules: R-E marks and timestamps the event se-
lected, and R-A records when an action is triggered in re-
sponse to the event. Finally, R-AE marks generated events
to distinguish them from events from the world. The se-
mantics enforces a total order on events during evaluation,
guaranteeing unique timestamps.
We initialize the trace by recording “world” events for

every field in the environment that holds a value, using a
dummy value for the old value and the field’s initial value
as its new value. These artificial events serve to record the
state of the initial environment and do not trigger any rules.

Positive Queries. In a positive query, the user asks a ques-
tion of the form “Why did field f have value v at time τ?”
For example, the user might ask, “Why were the kitchen
lights on at 3am last night?” We answer these questions by
performing a dynamic program slice on the execution trace
to find the rules and events that explain the field’s value at
the specified time.
In our dynamic slicing procedure, the slicing criterion is

some environment field f and a point in the rule set’s execu-
tion trace. Using this slicing criterion we construct a program
dependency graph. Each entry in the trace, which are either
world events or rule executions, is a node in this graph. Edges
are placed between nodes if there is a data dependency or a
control dependency between them. A rule execution has a
data dependency with every trace entry that set the value
of a field used in its predicate. Control dependencies link an
event and a rule execution whose event handler was trig-
gered by that event. Rule executions triggered by a timer
have two control dependencies: the timer reaching some
time, and the rule execution that set the timer.

Note that a rule execution will have one or two outgoing
control dependency edges, and for every field referenced in
its predicate, a data dependency edge. World event entries
have no outgoing edges. We can thus determine how many
outgoing edges each entry should have syntactically.

Positive Query Dynamic Slicing Algorithm. At a high
level, we find all trace entries that belong to the program
slice by marking the trace entry in which the field we are
concerned with is set to the value it has at the control point
in the slicing criterion. We then visit that trace entry by
marking all nodes to which it has outgoing edges in the pro-
gram dependency graph. We continue visiting and marking

http://babelfish.arc.nasa.gov/trac/jpf
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21:01:00 event PORCHMOTIONDETECTOR.sensor from
NOMOTION to MOTION

rule 3 [PORCHLIGHT.switch := ON, start
timer.porchlight at 0]

21:02:00 event FRONTDOOR.lock from locked to
unlocked

rule 1 [HALLWAYLIGHT.switch := ON,
BEDROOMLIGHT.switch := ON]

21:03:00 event timer.porchlight from 0 to 1
21:03:38 event FRONTDOOR.lock from unlocked to

locked
21:04:00 event timer.porchlight from 1 to 2
21:05:00 event timer.porchlight from 2 to 3

21:06:15 event BEDROOMLIGHT.brightness from 75
to 25

rule 2 [BEDROOMLIGHT.color := #0000ff]
21:07 event timer.porchlight from 3 to 4
rule 4 [PORCHLIGHT.switch := OFF, stop

timer.porchlight]
22:05:05 event BEDROOMLIGHT.switch from ON to

OFF

Figure 8. A sample trace; highlighted trace entries are part
of the slice for the positive provenance query asking why
the porch light was off at 22:00.

nodes until all marked nodes have been visited; the marked
and visited nodes then make up the program slice.
However, since the trace is ordered by timestamp, there

is no need to explicitly construct the program dependency
graph. Instead, for each marked node, we can traverse the
trace backwards, determining if each trace entry we en-
counter should be connected by an edge using the definitions
above, stopping our traversal when all required edges have
been found (or until we reach the beginning of the trace).
In Figure 8 we show an example execution trace. The

provenance query for the porch light’s state (off) at 22:00
returns the highlighted lines in the trace, showing the actions
of the relevant rules (when the porch motion detector senses
movement, the porch light is turned on and a timer is set;
when the timer reaches 5 minutes, the porch light is turned
off) and the events that triggered them.

Negative Queries. Users may also enquire about the ab-
sence of events: a user might ask “Why weren’t the shades
closed at 6pm today?” Intuitively, it is likely to be harder
to explain why something didn’t happen at a given time
than why it did. We answer these questions by means of
two mutually recursive algorithms: a negative state query
(why didn’t some field f have some value v at time τ ), and
a negative event query (why didn’t some event e occur at
time τ ).
From the initial question “Why didn’t field f have value

v at time τ ?”, we find all rules that could set the field to that

value. For each such rule we investigate why the rule did
not set the field to the desired value at the specified time.
First, we review the trace to find if the rule ever executed.
If it did, we find the subsequent event that overwrote that
value, and call the positive provenance query to find why the
field had that value at that time. If it did not, there are two
possible scenarios: either the event that matches the rule’s
event handler never occurred, or the event did occur, but at
the time it occurred the rule’s predicate evaluated to false.
In either case, we call another recursive algorithm: if some
event did not occur, we look for a reason why, in a manner
analogous to the negative state query. If the event occurred
but the rule’s predicate was not true at that time, we can
call positive or negative state queries to find why the fields
referenced in the predicate did or did not hold the values
that would make the predicate evaluate to true.
We have implemented both positive and negative prove-

nance analysis to run on the execution traces produced
by our Iota simulator, called via command line. Building
a friendlier user interface and conducting a user study to
determine if the analysis helps users find bugs is future work.

Provenance in General-purpose Languages. As with
conflict detection, our provenance technique could apply
to IFTTT, Smart Lights, or Home Assistant, assuming an
execution trace is available. Since provenance operates on
a known execution order, the difference in semantics be-
tween Iota and those platforms is less important. However,
performing why/why not analysis on general-purpose pro-
gramming languages is much more complex. Whyline’s Java
analysis required instrumenting Java byte code and handling
threads, I/O events, and the state of the Java stack and heap.
Furthermore, because Smart Apps are developed in isolation,
the platform has no support for analyzing the behavior of a
system of apps as a whole, even though apps may interact
with each other’s execution.

7 Related Work

Event-condition-action Languages. The databases com-
munity first proposed event-condition-action rules as amech-
anism for efficiently responding to new data in databases
attached to sources of streaming data [5]. However, these
active database systems either had prioritized rules or a se-
mantics that allowed for interleaved actions [16]. Iota pro-
poses a semantics that avoids the former while still offering
predictable behavior.

Trigger-action Programming. The ubiquitous comput-
ing community has proposed trigger-action programming
as an end-user facing language for home automation [20].
Iota generalizes trigger-action programming and offers a
precise semantics inspired in part by lessons from ubiquitous
computing, such as avoiding the undesirable ambiguity that
arises from mixing state and trigger events [7].
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Guarded atomic actions [6, 17] are condition-action rules
used in hardware synthesis. These rules do not have an event
in the sense described in this paper. The main focus of the
literature is on efficient compilation to hardware.

Conflict Detection. Several approaches for detecting con-
flicts in home automation programs have been proposed
[14, 18]. Most define conflicts more broadly as feature inter-
action, which encompasses conflicting interactions on the
environment (for example, turning a heater and a fan on at
the same time). The work of Maternaghan and Turner [11] is
similar to ours, but extends home automation programs with
a policy definition tool that requires users to model inter-
actions. Their work acknowledges that many conflicts will
not actually represent problems and may be ignored by the
user, as ours does. Zave et al. [22] propose conflict detection
but resolve conflicts dynamically, by annotating rules with
priorities. Leelaprute et al. [9] detect conflicts using the Spin
model checker but adopt a different semantics than Iota
does, considering interactions that result from simultaneous
but independent events to be conflicts.

Provenance. Program slicing is a well-developed technique
(see [19] for a survey.) Our provenance tool is most similar to
Whyline [8], which addresses Java programs; a similar tool by
the same authors, Crystal, allows users to ask why and why
not questions about the behavior of user interfaces [12]. The
tool Pervasive Crystal [21] applied this technique to context-
aware applications such as museum displays, relying on
programmer annotations to generate explanations. A study
by Lim et al. [10] showed that why and why not explanations
helped users reason about the behavior of context-aware
systems such as a smart thermostat.

Other IoT Analyses. Several other analyses have recently
emerged targeting a variety of home automation systems.
Croft et al. detect temporal inconsistencies in HomeOS pro-
grams by reduction to timed automata [4], and Nandi et
al. propose a static analysis for detecting and synthesizing
missing event triggers in OpenHAB rules [15]. We hope to
explore Iota support for these analyses as future work.

8 Conclusion and Future Work
We present Iota, a core calculus for Internet of Things Au-
tomation; use it as a basis to develop conflict detection and
provenance in home automation programs; and compare
Iota with existing platforms and show its expressivity. Iota
occupies a “sweet spot,” expressive enough to encode in-
teresting home automation applications while remaining
amenable to analysis.
Now that a precise semantics has been defined, we hope

to use Iota to build more sophisticated languages or inter-
faces to better serve end users who are not expert program-
mers. For example, Iota could easily be lifted to a GUI or
a natural language interface that could be either textual or

voice-controlled. A language with a higher level of abstrac-
tion could be designed, adding features such as arithmetic,
string manipulation, and variable assignment. A higher level
of program structure should be explored beyond the bag-
of-rules model discussed here; for example, should all rules
with event handlers in common be composed together? A
user study would be needed to gauge how high-level lan-
guage features help users write, understand, and maintain
automations.

In addition, we hope to add simulation, termination check-
ing, and invariant specification and checking to our suite of
analyses, and to explore type systems for Iota. Finally, we are
eager to continue exploring the theoretical underpinnings
of home automation, including a more precise relationship
with timed automata [1].

A Appendix
A.1 Desugaring Groups

ds ⊢ devices { zip ds true

ads = zip ds ∩ {d1, . . . ,dn } true

ds ⊢ {d1, . . . ,dn } { ads

A.2 Desugaring Event Handlers

ds ⊢ д { ads1
ads2 =

{
(d,n ∧ pb ) | (d,pb ) ∈ ads1 ∧ ds ⊢ pa[d/x] { n

}
ds ⊢ (д | x → pa ) { ads2

ds ⊢ д { ads
c1 = (d,pa ) ∈ ads c2 = ds ⊢ h[d/x] { ahs ′

c3 = (h′,p ′a ) ∈ ahs
′ ahs =

{
(h′,pa ∧ p

′
a ) | c1 ∧ c2 ∧ c3

}
ds ⊢ any д (x → h) { ahs

A.3 Desugaring Predicates

ds ⊢ д { ads ps = {¬pd ∨ pb | (d,pd ) ∈ ads
∧ds ⊢ pa[x/d] { pb }

ds ⊢ all д (x → pa ) {
∧

ps
d-all

ds ⊢ д { ads ps = {¬pd ∨ pb | (d,pd ) ∈ ads
∧ds ⊢ pa[x/d] { pb }

ds ⊢ exists д (x → pa ) {
∨

ps
d-exists

d ∈ ds d . f exists
ds ⊢ f ∈ d { true

d-in

d < ds or d . f does not exist
ds ⊢ f ∈ d { false

d-notin
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A.4 Desugaring Actions

ds ⊢ д { ads acs =
{
(a[d/x],p) | (d,p) ∈ ads

}
ds ⊢ map д (x → a) { acs

d-map

A.5 Desugaring Rules

ds ⊢ f [· ↪→ n];p;as { f [· ↪→]; f = n ∧ p;as
d-to

ds ⊢ f [n1 ↪→ n2];p;as { f [n1 ↪→]; f = n2 ∧ p;as
d-fromto

ds ⊢ h { ahs ds ⊢ pa { pb ds ⊢ as { acs
rs =

{
h′;ph ∧ pb ∧ pc ;a | (h′,ph ) ∈ ahs, (a′,pc ) ∈ acs

}
ds ⊢ h;p;as { rs

d-rule
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