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Why	JavaScript?
• The	RedMonk	Programming	Language	Rankings	(Popularity):	January	2015	and	2016	

– Based	on	projects	hosted	at	GitHub	and	questions	posted	at	StackOverflow



Growth	in	popularity	(based	on	jobs	available)	from	2012	–	2013

Source: http://blog.learntoprogram.tv/five-resons-javascript-important-programming-language-learn/
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• Client-side	JavaScript	in	Rich	Web	Applications	

• Desktop	Apps	(Windows	8	and	Gnome),	Firefox	OS,	Tizen	OS	

• Server-side	(node.js)	
– Paypal,	Ebay,	Uber,	NYtimes,	Linkedin,	and	many	more		

• Assembly	Language	for	the	Web:	emscripten,	coffeescript,	TypeScript	

• A	language	to	implement	DSL	frameworks	
– Angular.js,	Knockout.js,	React.js

Why	JavaScript?



• Huge	ecosystem	of	libraries	and	frameworks	

• JavaScript	has	low	learning	curve	
– people	can	start	coding	and	get	results	quickly	

• No	special	installation/execution	environment	
– Just	use	a	modern	browser	

• JavaScript	supports	functional	programming	
– higher	order	functions		

• Modern	JavaScript	VMs	are	fast

Why	JavaScript?



Atwood’s	Law

“Any	application	that	can	be	written	in	
JavaScript,	will	eventually	be	written	in	

JavaScript.”



• JavaScript	has	its	quirks	(many)

Why	Tools	for	JavaScript?



var	x	=	“1”;	

++x;	

console.log(x);

var	x	=	“1”;	

x	+=	1;	

console.log(x);

Why	Tools	for	JavaScript?



var	x	=	“1”;	

++x;	

console.log(x);	

//	prints	2

var	x	=	“1”;	

x	+=	1;	

console.log(x);	

//	prints	11

Why	Tools	for	JavaScript?



• Easy	to	introduce	bugs:	correctness,	performance,	
memory	
– Degrees	of	equality	==	vs.	===	

• Loosely-typed	
– forgiving:	implicit	type	conversion	
– tries	hard	to	execute	without	throwing	exception	

• Like	HTML	

• Highly	reflective	
– eval	any	dynamically	created	string	

• Asynchronous	programming

Why	Tools	for	JavaScript?



• Loosely-typed	
– forgiving:	implicit	type	
conversion	

– tries	hard	to	execute	without	
throwing	exception	

• Like	HTML



Tools	for	Bug	Finding	and	Security	Analysis

• Remarkable	progress	in	program-analysis	and	
constraint	solving	
– Commercial	tools:	Coverity,	Klocwork,	Grammatech,	
TotalView,	Parallocity,	Static	Device	Verifier	from	Microsoft,	
WALA	at	IBM	

– Open-source	tools:	GDB,	lint,	FindBugs,	Valgrind	
– Academic	tools:	SLAM,	BLAST,	ESP,	JPF,	Bandera,	Saturn,	
MAGIC,	DART,	CUTE,	jCUTE	

– Mostly	focused	on	C/C++	and	Java	programs		

• Hardly	any	software	quality	tool	for	JavaScript	and	HTML5		
– Static	analysis	is	difficult	for	dynamic	languages



Jalangi

A	powerful	browser-independent	(dynamic)	
analysis	framework	for	JavaScript	
https://github.com/Samsung/jalangi2	

• Jalangi:	A	selective	record-replay	and	dynamic	analysis	
framework	for	JavaScript.	Koushik	Sen,	Swaroop	
Kalasapur,	Tasneem	Brutch,	and	Simon	Gibbs.	In	ESEC/
FSE,	2013.	

https://github.com/Samsung/jalangi2
https://github.com/Samsung/jalangi2


Jalangi:	Goals	and	Requirements

• Framework	for	Dynamic	and	hybrid	Static/Dynamic	analysis		
– supports	symbolic	execution,	bug	finding,	memory	analysis,	runtime	type	

analysis,	value	tracking,	taint	tracking,	performance	analysis	
• Handle	ALL	dynamic	features	

– not	OK	to	ignore	eval,	new	Function	
• Independent	of	browser	

– source-to-source	code	instrumentation	
– instrumented	program	when	executed	performs	analysis	

• Easy	Implementation	of	Dynamic	Analysis	
– Observe	an	execution	passively:	(conventional	dynamic	analysis)	
– Modify	semantics/values	
– Repeatedly	execute	arbitrary	paths	within	a	function



Why	not	Modify	a	Browser?
• Hard to keep up with browser development 
• Harder to get people to use of customized browser



Jalangi	1	and	2
• Jalangi	1:	

– https://github.com/SRA-SiliconValley/jalangi	

– record	execution	and	replay	to	perform	analysis	

– Shadow	values	(wrapped	objects)	

– No	longer	supported	

• Jalangi	2:	
– https://github.com/Samsung/jalangi2	

– no	record/replay	or	shadow	values	

– optional	shadow	memory	

– active	development

https://github.com/SRA-SiliconValley/jalangi
https://github.com/SRA-SiliconValley/jalangi
https://github.com/Samsung/jalangi2
https://github.com/Samsung/jalangi2


How	Jalangi	Works?

JavaScript  
and HTML

Jalangi  
Runtime

User Written 
Analysis

Jalangi

Analysis Writer

Intermediate



How	Jalangi	Works?

JavaScript  
and HTML

Instrumented 
Files

Jalangi 
Instrumentor

Jalangi  
Runtime

User Written 
Analysis

Source 
Information

Jalangi

Analysis Writer

Intermediate



How	Jalangi	Works?

JavaScript  
and HTML

Instrumented 
Files

Jalangi 
Instrumentor

Jalangi  
Runtime

User Written 
Analysis

Execute in 
Browser/Node.js

Trace

Output 
Data

Source 
Information

Jalangi

Analysis Writer

Intermediate



How	Jalangi	Works?

JavaScript  
and HTML

Instrumented 
Files

Jalangi 
Instrumentor

Jalangi  
Runtime

User Written 
Analysis

Execute in 
Browser/Node.js

Trace Offline 
Analysis

Output 
Data

Visualize 
Output

Final 
Output

Source 
Information

Jalangi

Analysis Writer

Intermediate



Jalangi	Instrumentation	(simplified)

x	=	y	+	1		 	 =>		 x	=	Write(“x”,	Binary(‘+’,Read(“y”,	y),	Literal(1),	x)	

a.f	=	b.g		 	 =>		 PutField(Read(“a”,	a),	“f”,	GetField(Read(“b”,	b),	“g”))	

if	(a.f())	…		 =>		 if	(Branch(Method(Read(“a”,	a),	“f”)()))	…



Jalangi	Runtime

function	Binary(op,	left,	right,	...)	{	

 
				 
								 
												 
												 
												 
												 
	  
								result	=	left	op	right; 
				 
	  
								 

								return	result;	

}



Jalangi	Runtime

function	Binary(op,	left,	right,	...)	{	

 
				var	aret	=	analysis.binaryPre(op,	left,	write,	...);  
								 
												 
												 
												 
												 
	  
								result	=	left	op	right; 
				aret	=	analysis.binary(op,	left,	right,	result,	...); 
	  
								 

								return	result;	

}



Jalangi	Runtime

function	Binary(op,	left,	right,	...)	{	

				var	skip	=	false; 
				var	aret	=	analysis.binaryPre(op,	left,	write,	...);  
								if	(aret)	{  
												op	=	aret.op; 
												left	=	aret.left; 
												right	=	aret.right; 
												skip	=	aret.skip;	}}  
				if	(!skip)	  
								result	=	left	op	right; 
				aret	=	analysis.binary(op,	left,	right,	result,	...); 
	  
								 

								return	result;	

}



Jalangi	Runtime

function	Binary(op,	left,	right,	...)	{	

				var	skip	=	false; 
				var	aret	=	analysis.binaryPre(op,	left,	write,	...);  
								if	(aret)	{  
												op	=	aret.op; 
												left	=	aret.left; 
												right	=	aret.right; 
												skip	=	aret.skip;	}}  
				if	(!skip)	  
								result	=	left	op	right; 
				aret	=	analysis.binary(op,	left,	right,	result,	...); 
				if	(aret)	 
								return	aret.result; 
				else	

								return	result;	

}



Download	and	Install	Jalangi	2

Download:	

git	clone	https://github.com/Samsung/jalangi2.git	

cd	jalangi2	

Install:	

npm	install	

Test:	
python	scripts/test.traceall.py	

python	scripts/test.analysis.py	

python	scripts/test.dlint.py



Jalangi	Callbacks

function	invokeFunPre	(iid,	f,	base,	args,	isConstructor,	isMethod,	functionIid);	

function	invokeFun	(iid,	f,	base,	args,	result,	isConstructor,	isMethod,	functionIid);	

function	literal	(iid,	val,	hasGetterSetter);	

function	forinObject	(iid,	val);	

function	declare	(iid,	name,	val,	isArgument,	argumentIndex,	isCatchParam);	

function	getFieldPre	(iid,	base,	offset,	isComputed,	isOpAssign,	isMethodCall);	

function	getField	(iid,	base,	offset,	val,	isComputed,	isOpAssign,	isMethodCall);	

function	putFieldPre	(iid,	base,	offset,	val,	isComputed,	isOpAssign);	

function	putField	(iid,	base,	offset,	val,	isComputed,	isOpAssign);	

function	read	(iid,	name,	val,	isGlobal,	isScriptLocal);	

function	write	(iid,	name,	val,	lhs,	isGlobal,	isScriptLocal);	

function	_return	(iid,	val);	

function	_throw	(iid,	val);	

function	_with	(iid,	val);

function	functionEnter	(iid,	f,	dis,	args);	
function	functionExit	(iid,	returnVal,	wrappedExceptionVal);	
function	scriptEnter	(iid,	instrumentedFileName,	originalFileName);	
function	scriptExit	(iid,	wrappedExceptionVal);	
function	binaryPre	(iid,	op,	left,	right,	isOpAssign,	isSwitchCaseComparison,	isComputed);	
function	binary	(iid,	op,	left,	right,	result,	isOpAssign,	isSwitchCaseComparison,	isComputed);	
function	unaryPre	(iid,	op,	left);	
function	unary	(iid,	op,	left,	result);	
function	conditional	(iid,	result);	
function	instrumentCodePre	(iid,	code);	
function	instrumentCode	(iid,	newCode,	newAst);	
function	endExpression	(iid);	
function	endExecution();	
function	runInstrumentedFunctionBody	(iid,	f,	functionIid);	
function	onReady	(cb);

• Each	analysis	needs	to	implement	a	subset	of	these	callbacks.	
• Multiple	analyses	classes	can	be	chained	
function	binaryPre	(iid,	op,	left,	right,	isOpAssign,	isSwitchCaseComparison,	isComputed);	
function	binary	(iid,	op,	left,	right,	result,	isOpAssign,	isSwitchCaseComparison,	isComputed);	

Documentation: jalangi2/docs/MyAnalysis.html



TraceAll.js	analysis:	prints	all	callbacks

For	Node.js	
• node	src/js/commands/jalangi.js	--inlineIID	--inlineSource	--analysis	src/js/sample_analyses/

ChainedAnalyses.js	--analysis	src/js/runtime/SMemory.js	--analysis	src/js/sample_analyses/
pldi16/TraceAll.js	tests/pldi16/TraceAllTest.js 

For	browser:	
• node	src/js/commands/esnstrument_cli.js	--inlineIID	--inlineSource	--analysis	src/js/

sample_analyses/ChainedAnalyses.js	--analysis	src/js/runtime/SMemory.js	--analysis	src/js/
sample_analyses/pldi16/TraceAll.js	--out	/tmp/pldi16/TraceAllTest.html		tests/pldi16/
TraceAllTest.html  

• node	src/js/commands/esnstrument_cli.js	--inlineIID	--inlineSource	--analysis	src/js/
sample_analyses/ChainedAnalyses.js	--analysis	src/js/runtime/SMemory.js	--analysis	src/js/
sample_analyses/pldi16/TraceAll.js	--out	/tmp/pldi16/TraceAllTest.js		tests/pldi16/TraceAllTest.js 

• open	file:///tmp/pldi16/TraceAllTest.html  



Sample	Analyses

Examples:	src/js/sample_analyses/pldi16	

Tests:	tests/pldi16



Sample	analysis: 
check	if	undefined	is	concatenated	with	a	string

See:	src/js/sample_analyses/pldi16/CheckUndefinedConcatenatedToString.js	

this.binary	=	function(iid,	op,	left,	right,	result){  
												if	(op	===	'+'	&&	typeof	result==='string'	&&		

																	(left===undefined	||	right===undefined))		

																													J$.log(“Concatenated	undefined	with	string	at	”+	

																																																				J$.iidToLocation(J$.sid,	iid));	

	}	

					

 



Source	Locations
• Instrumentation	associates	an	iid	with	every	
expression	

• At	runtime,	each	loaded	script	is	given	a	unique	script	
ID	(sid)	

• sid	of	current	script	stored	in	J$.sid	

• J$.getGlobalIID(iid)	gets	a	globally	unique	id	

• J$.iidToLocation(J$.sid,	iid)	gets	source	location	

• filename:start_line:start_col:end_line:end_col	

• Tracks	locations	of	enclosing	evals



Sample	analysis:	count	branches

				var	trueBranches	=	{}; 
				var	falseBranches	=	{}; 
			//	initialize	....  

				this.conditional	=	function(iid,	result)	{	

												var	id	=	J$.getGlobalIID(iid);	

												if	(result)					

																trueBranches[id]++;	

												else		

																falseBranches[id]++;	

								}

								this.endExecution	=	function	()	{	
												print(trueBranches,	“True”);	
												print(falseBranches,	“False”);	
								}	
				 

function	print(map,	str)	{	
				for	(var	id	in	map)		
								if	(map.hasOwnProperty(id)){	
												J$.log(str+	“	branch	taken	at	”	+	
																J$.iidToLocation(id)+	“	”	+map[id]	+	
																“	times”;	
								}	
	}	

See: src/js/sample_analyses/pldi16/BranchCoverage.js 



Sample	analysis: 
count	number	of	objects	allocated	at	each	site

								var	allocCount=	{}; 

								this.literal	=	function	(iid,	val)	{  
												var	id	=	J$.getGlobalIID(iid);	

												if	(typeof	val	===	‘object’)	

																allocCount[id]++;	

								};	

								this.invokeFunPre	=	function	(iid,	f,																											

																										base,	args,	isConstructor)	{	

												var	id	=	J$.getGlobalIID(iid);	

												if	(isConstructor)	

																allocCount[id]++;	

								};

								this.endExecution	=	function	()	{	
												print(allocCount);	
								}	

					
				
function	print(map)	{	
				for	(var	id	in	map)		
								if	(map.hasOwnProperty(id)){	
												J$.log(“	Object	allocated	at	”	+	
																J$.iidToLocation(id)+“=”+map[id]);	
								}	
}	

See: src/js/sample_analyses/pldi16/CountObjectsPerAllocationSite.js 



Shadow	Objects	(SMemory.js)
• Associates	a	shadow	object	with	each	JavaScript	
object	(excludes	primitive	values	including	strings	and	
null)	

• Associates	a	shadow	object	with	each	activation	frame	

• Shadow	object	can	store	meta-information		

• A	shadow	object	contains	an	unique	id	
– can	be	used	as	logical	address	of	an	object/frame		

--analysis	src/js/sample_analyses/ChainedAnalyses.js	--analysis	src/js/runtime/
SMemory.js



SMemory.js	API
Documentation:	jalangi2/docs/SMemory.html	

• getShadowObject(obj,	prop,	isGetField)	

This	method	should	be	called	on	a	base	object	and	a	property	name	to	retrieve	the	shadow	object	
associated	with	the	object	that	actually	owns	the	property	

• getShadowObjectOfObject(val)	
This	method	returns	the	shadow	object	associated	with	the	argument.	If	the	argument	cannot	be	
associated	with	a	shadow	object,	the	function	returns	undefined.	

• getShadowFrame(name)	

This	method	returns	the	shadow	object	associated	with	the	activation	frame	that	contains	the	
variable	"name".	To	get	the	current	activation	frame's	shadow	object,	call	getShadowFrame('this')	

• getIDFromShadowObjectOrFrame(obj)	

Given	a	shadow	object	or	frame,	it	returns	the	unique	id	of	the	shadow	object	or	frame.	It	returns	
undefined,	if	obj	is	undefined,	null,	or	not	a	valid	shadow	object.	

• getActualObjectOrFunctionFromShadowObjectOrFrame(obj)	
Given	a	shadow	object/frame,	it	returns	the	actual	object/the	function	whose	invocation	created	
the	frame.



Associate	Allocation	Site

See:	src/js/sample_analyses/pldi16/LogLoadStoreAlloc.js	

this.literal	=	function	(iid,	val,	hasGetterSetter)	{  
				if	(typeof	val	===	"object"	&&	val	!==	null)	{  
								var	sobj	=	sandbox.smemory.getShadowObjectOfObject(val); 
								sobj.allocSite	=	J$.iidToLocation(J$.sid,	iid); 
				}  
}; 

this.getFieldPre	=	function	(iid,	base,	offset,	isComputed,	isOpAssign,	isMethodCall)	{  
				var	sobj	=	sandbox.smemory.getShadowObject(base,	offset,	true).owner; 
				var	ret	=	"Load	'"+offset+	"'	of	object	allocated	at"	+	sobj.allocSite; 
				ret	+=	"	at	"	+	J$.iidToLocation(J$.sid,	iid); 
				log(ret); 
}; 



Log	All	Loads	and	Stores
See:	src/js/sample_analyses/pldi16/LogLoadStoreAlloc.js	

this.getFieldPre	=	function	(iid,	base,	offset,	isComputed,	isOpAssign,	isMethodCall)	{	
				var	sobj	=	sandbox.smemory.getShadowObject(base,	offset,	true).owner; 
				var	actualObjectId	=	sandbox.smemory.getIDFromShadowObjectOrFrame(sobj); 
				var	ret	=	"Load	of	object(id="	+	actualObjectId	+	")."	+	offset; 
				ret	+=	"	at	"	+	J$.iidToLocation(J$.sid,	iid); 
				log(ret); 
}; 

this.write	=	function	(iid,	name,	val,	lhs,	isGlobal,	isScriptLocal)	{	
				var	sobj	=	sandbox.smemory.getShadowFrame(name); 
				var	frameId	=	sandbox.smemory.getIDFromShadowObjectOrFrame(sobj); 
				var	ret	=	"Store	of	frame(id="	+	frameId	+	")."	+	name; 
				ret	+=	"	at	"	+	J$.iidToLocation(J$.sid,	iid); 
				log(ret); 
				return	{result:	val}; 
}; 



Sample	analysis	(modify	semantics): 
interpret	‘*’	as	‘+’

See:	src/js/sample_analyses/pldi16/ChangeSematicsOfMult.js	

									

								this.binaryPre	=	function	(iid,	op,	left,	right)	{	

												if	(op	===	‘*’)  
																return	{op:	op,	left:	left,	right:	right,	skip:	true}; 
								};	

								this.binary	=	function	(iid,	op,	left,	right,	result)	{  
												if	(op	===	‘*’)  
																return	{result:	left	+	right}; 
								};



Sample	analysis	(modify	semantics): 
skip	execution	of	an	evil	function

See:	src/js/sample_analyses/pldi16/SkipFunction.js	

								this.invokeFunPre	=	function	(iid,	f,	base,	args)	{  
			 if	(typeof	evilFunction	===	"function"	&&	f	===	evilFunction)	{	

																	 	 return	{f:	f,	base:	base,	args:	args,	skip:	true}; 
								};



Sample	analysis	(modify	semantics): 
loop	a	function	body

 
				 
								 

												

 
				  
			

			

function	loop(n)	{	

				var	ret	=	ret?	ret-1:	n;	
				//	do	something	

				console.log(ret);	

				return	ret;	

}		

loop(10);

See: src/js/sample_analyses/pldi16/BackTrackLoop.js 



Sample	analysis	(modify	semantics): 
loop	a	function	body

 
				 
								 

												

 
				  
			

			

function	loop(n)	{	

				var	ret	=	ret?	ret-1:	n;	
				//	do	something	

				console.log(ret);	

				return	ret;	

}		

loop(10);

Prints 10

See: src/js/sample_analyses/pldi16/BackTrackLoop.js 



Sample	analysis	(modify	semantics): 
loop	a	function	body

	  
					  
								this.functionExit	=	function	(iid,	rv,	ex)	{  
												return	{returnVal:	rv,	wrappedExceptionVal:	ex,	isBacktrack:	rv?true:false};	

								};				

					 
					  
		

----------------------------------	Program	------------------------------------	

function	loop(n)	{	

				var	ret	=	ret?	ret-1:	n;	
				//	do	something	

				console.log(ret);	

				return	ret;	

}		

loop(10); Prints 10 to 0

See: src/js/sample_analyses/pldi16/BackTrackLoop.js 



Sample	analysis	(modify	semantics): 
MultiSE:	Multi-Path	Symbolic	Execution	using	Value	Summaries 

(ESEC/FSE	2015)

• Symbolic	execution	

• Explore	all	paths	in	a	function	
– but	merge	state	from	all	paths	before	exiting	the	function	

• Override	default	semantics	to	perform	symbolic	
evaluation	

• Backtrack	within	a	function	until	all	paths	are	
explored	

• Custom	semantics	and	backtracking	
– for	simple	abstract	interpretation	

– for	simple	dataflow	analysis	



Jalangi	2	Summary

• Observe	an	execution	and	collect	information	

• Change	values	used	in	an	execution	

• Change	semantics	of	operators/functions	

• Explore	arbitrary	path	in	a	function	

• Re-execute	the	body	of	a	function	repeatedly	

• Maintain	your	own	(abstract)	state	and	call	stack	

• 3x-100x	slowdown



Serious	Analyses	with	Jalangi
• "Feedback-Directed	Instrumentation	for	Deployed	JavaScript	Applications,"		

– Magnus	Madsen	and	Frank	Tip	and	Esben	Andreasen	and	Koushik	Sen	and	Anders	Moller	(ICSE'16)	
• "Trace	Typing:	An	Approach	for	Evaluating	Retrofitted	Type	Systems,"		

– Esben	Andreasen	and	Colin	S.	Gordon	and	Satish	Chandra	and	Manu	Sridharan	and	Frank	Tip	and	Koushik	Sen	(ECOOP'16)	

• "TypeDevil:	Dynamic	Type	Inconsistency	Analysis	for	JavaScript,”		
– Michael	Pradel	and	Parker	Schuh	and	Koushik	Sen	(ICSE'15)	

• "JITProf:	Pinpointing	JIT-unfriendly	JavaScript	Code,"			
– Liang	Gong	and	Michael	Pradel	and	Koushik	Sen	(ESEC/FSE'15)	

• "MemInsight:	Platform-Independent	Memory	Debugging	for	JavaScript,”		
– Simon	Jensen	and	Manu	Sridharan	and	Koushik	Sen	and	Satish	Chandra	(ESEC/FSE'15)	
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MemInsight
Platform-Independent Memory 

Debugging for JavaScript
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JS Apps and Memory
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Leaks and Staleness

• Staleness: long gap between last use and 
unreachable 

• Leak: never unreachable 

• Many stale objects indicates a potential problem

Object allocated ! Object used ! Object is unreachable!

Staleness!
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Leak Example
var name2obj = {};
var cache = [];

function add(name) {
  var x = new Obj();
  name2obj[name] = x;
  cache.push(x);
}

function remove(name) {
  name2obj[name] = null;
  // forgot to remove from the cache!
}

More insidious in web apps, where DOM nodes are involved
50



Churn
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Bloat
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Heap Snapshots

Chrome Dev Tools 
https://developers.google.com/chrome-developer-tools/docs/javascript-memory-profiling
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Heap Snapshots

• Capture several snapshots, diff to find possible leaks 

• Low overhead, but: 

• No information on staleness (does not track uses) 

• Can miss excessive churn 

• Cannot handle fine-grained time-varying properties
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MemInsight
• Platform independent: use on any modern browser or 

node.js 

• Fine-grained behaviors via detailed tracing

• computes exact object lifetimes 

• enables a variety of client analyses 

• Exposes DOM manipulation

• Reasonable overhead
55
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Memory leak!
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Memory leak - Details
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jQuery issue!
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Memory leak - Details
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Challenges

• Prefer not to modify a browser engine 
Yet handle full JavaScript 
Keep overhead reasonable 

• Want to report staleness of DOM nodes, without 
modifying browser 

• Figure out object lifetimes accurately without 
information from the garbage collector
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How does MemInsight work?

(via Jalangi)

Jalangi is a dynamic analysis framework for JavaScript
See FSE 2013, Sen et al. 

62



Trace generation
(A)$

JavaScript$
code$

(B)$
Instrumented$
JavaScript$

code$

Instrumentor$
(C)$

Trace$
(D)$

Enhanced$
Trace$

Life>me$
analysis$

Run$ Client$
analyses$ GUI$

Figure 5: MEMINSIGHT tool chain

2. We show that the detailed information collected by
MEMINSIGHT is useful for diagnosing and fixing mem-
ory issues in real-world web applications.
The rest of the paper is organized as follows. After outlin-

ing the different phases of MEMINSIGHT in Sections 2–4 as
described above, Sections 5 and 6 respectively present a quan-
titative evaluation of MEMINSIGHT and case studies showing
its usefulness. Finally, Section 7 discusses related work.

2. Trace Generation
In principle, our memory analysis framework could be imple-
mented in an entirely “online” fashion, with client analyses
running while the target program is being exercised. How-
ever, this approach could have very high analysis overhead,
adversely affecting the usability of the target program. Hence,
our framework divides the work into two phases. A trace
generation phase runs along with the target program, record-
ing relevant memory operations into a trace file. Then, client
analyses run in an offline mode, based on the recorded trace.
Here we first discuss the design of our trace format, crafted
to balance detail with analysis overhead. Then, we discuss
our handling of uninstrumented code and the DOM in particu-
lar. We defer discussion of certain challenges in handling the
JavaScript language to Section 3.3.

2.1. Trace Design

To enable client analyses like leak detection, we require that
traces be sufficient to reconstruct object lifetimes, i.e., when
objects are created and become unreachable. Hence, traces
must include records of each object allocation and each mem-
ory write, both to variables and to object fields (“properties”
in JavaScript parlance). As an optimization, we avoid logging
writes when the old and new values are both primitive, as
such writes are irrelevant to a memory analysis. A delete
operation on an object property is modeled as a write of null.3

To handle functions, the generator logs calls and returns,
and also logs declarations of local variables to enable proper
scope handling. For leak detection, we also log the last use of
each object, where an object is used when it is dereferenced or,
for function objects, when it is invoked. We only log the last
use of each object since we found that logging all uses was
prohibitively expensive, and last use information is sufficient
for computing object staleness.

Figure 6 shows the generated trace for a simple example.
Most entries includes a source location at the end. The allo-

3We do not yet model the effect of delete on the shape of the object, or
physical object sizes in general; see “Limitations” in Section 5.1.

1 var x = {};

2 var y = {};

3 function m(p,q)

4 {

5 p.f = q;

6 };

7 m(x,y);

8 x = null;

DECLARE x,y,m;

ALLOCOBJ 2 at 1;

WRITE x,2 at 1;

ALLOCOBJ 3 at 2;

WRITE y,3 at 2;

ALLOCFUN 4 at 3;

WRITE m,4 at 3;

CALL 4 at 7;

DECLARE p = 2,

q = 3;

PUTFIELD 2,"f",3

at 5;

LASTUSE 2 at 5;

RETURN at 7;

LASTUSE 4 at 7;

WRITE x,0 at 8;

UNREACHABLE

2 at 8;

UNREACHABLE

3 at end;

UNREACHABLE

4 at end;

Figure 6: A simple code example and the corresponding trace.
Red entries are added in the enhanced trace.

1 var elem = document.createElement("div");

2 div.innerHTML = "<p><h1>Hello World!</h1></p>";

3 document.getElementById("x").appendChild(elem);

Figure 7: Example to illustrate handling of DOM-related code.

cation entries introduce a unique identifier used to name the
corresponding object throughout the trace. We use a distinct
entry type to identify function object allocation, used to enable
proper handling of closures (see below). In our implementa-
tion, LASTUSE entries include a timestamp and all appear at
the end of the generated trace (since the last use is only known
at the end of the program); a separate post-processing phase
inserts the entries at the appropriate slots.

2.2. Uninstrumented Code

MEMINSIGHT works robustly in the presence of uninstru-
mented JavaScript code or native code from the environment,
e.g., DOM functions. Here, we detail our strategies for han-
dling uninstrumented code and the DOM.

Uninstrumented Code In principle, uninstrumented code
could arbitrarily mutate any memory locations to which it has
access. Attempting to discover all such behavior via code
instrumentation alone would be difficult or impossible, partic-
ularly since invocations of uninstrumented code may not be
observable (e.g., a browser invoking an uninstrumented event
handler). Furthermore, such conservative detection would
require frequent traversals of the full heap visible to uninstru-
mented code, a very costly operation.

In practice, we have found a policy of only tracking refer-
ences created in instrumented code to strike a good balance
between coverage of relevant behaviors and analysis overhead.

4
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2. We show that the detailed information collected by
MEMINSIGHT is useful for diagnosing and fixing mem-
ory issues in real-world web applications.
The rest of the paper is organized as follows. After outlin-

ing the different phases of MEMINSIGHT in Sections 2–4 as
described above, Sections 5 and 6 respectively present a quan-
titative evaluation of MEMINSIGHT and case studies showing
its usefulness. Finally, Section 7 discusses related work.

2. Trace Generation
In principle, our memory analysis framework could be imple-
mented in an entirely “online” fashion, with client analyses
running while the target program is being exercised. How-
ever, this approach could have very high analysis overhead,
adversely affecting the usability of the target program. Hence,
our framework divides the work into two phases. A trace
generation phase runs along with the target program, record-
ing relevant memory operations into a trace file. Then, client
analyses run in an offline mode, based on the recorded trace.
Here we first discuss the design of our trace format, crafted
to balance detail with analysis overhead. Then, we discuss
our handling of uninstrumented code and the DOM in particu-
lar. We defer discussion of certain challenges in handling the
JavaScript language to Section 3.3.

2.1. Trace Design

To enable client analyses like leak detection, we require that
traces be sufficient to reconstruct object lifetimes, i.e., when
objects are created and become unreachable. Hence, traces
must include records of each object allocation and each mem-
ory write, both to variables and to object fields (“properties”
in JavaScript parlance). As an optimization, we avoid logging
writes when the old and new values are both primitive, as
such writes are irrelevant to a memory analysis. A delete
operation on an object property is modeled as a write of null.3

To handle functions, the generator logs calls and returns,
and also logs declarations of local variables to enable proper
scope handling. For leak detection, we also log the last use of
each object, where an object is used when it is dereferenced or,
for function objects, when it is invoked. We only log the last
use of each object since we found that logging all uses was
prohibitively expensive, and last use information is sufficient
for computing object staleness.

Figure 6 shows the generated trace for a simple example.
Most entries includes a source location at the end. The allo-

3We do not yet model the effect of delete on the shape of the object, or
physical object sizes in general; see “Limitations” in Section 5.1.

1 var x = {};

2 var y = {};

3 function m(p,q)

4 {

5 p.f = q;

6 };

7 m(x,y);

8 x = null;

DECLARE x,y,m;

ALLOCOBJ 2 at 1;

WRITE x,2 at 1;

ALLOCOBJ 3 at 2;

WRITE y,3 at 2;

ALLOCFUN 4 at 3;

WRITE m,4 at 3;

CALL 4 at 7;

DECLARE p = 2,

q = 3;

PUTFIELD 2,"f",3

at 5;

LASTUSE 2 at 5;

RETURN at 7;

LASTUSE 4 at 7;

WRITE x,0 at 8;

UNREACHABLE

2 at 8;

UNREACHABLE

3 at end;

UNREACHABLE

4 at end;

Figure 6: A simple code example and the corresponding trace.
Red entries are added in the enhanced trace.

1 var elem = document.createElement("div");

2 div.innerHTML = "<p><h1>Hello World!</h1></p>";

3 document.getElementById("x").appendChild(elem);

Figure 7: Example to illustrate handling of DOM-related code.

cation entries introduce a unique identifier used to name the
corresponding object throughout the trace. We use a distinct
entry type to identify function object allocation, used to enable
proper handling of closures (see below). In our implementa-
tion, LASTUSE entries include a timestamp and all appear at
the end of the generated trace (since the last use is only known
at the end of the program); a separate post-processing phase
inserts the entries at the appropriate slots.

2.2. Uninstrumented Code

MEMINSIGHT works robustly in the presence of uninstru-
mented JavaScript code or native code from the environment,
e.g., DOM functions. Here, we detail our strategies for han-
dling uninstrumented code and the DOM.

Uninstrumented Code In principle, uninstrumented code
could arbitrarily mutate any memory locations to which it has
access. Attempting to discover all such behavior via code
instrumentation alone would be difficult or impossible, partic-
ularly since invocations of uninstrumented code may not be
observable (e.g., a browser invoking an uninstrumented event
handler). Furthermore, such conservative detection would
require frequent traversals of the full heap visible to uninstru-
mented code, a very costly operation.

In practice, we have found a policy of only tracking refer-
ences created in instrumented code to strike a good balance
between coverage of relevant behaviors and analysis overhead.
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2. We show that the detailed information collected by
MEMINSIGHT is useful for diagnosing and fixing mem-
ory issues in real-world web applications.
The rest of the paper is organized as follows. After outlin-

ing the different phases of MEMINSIGHT in Sections 2–4 as
described above, Sections 5 and 6 respectively present a quan-
titative evaluation of MEMINSIGHT and case studies showing
its usefulness. Finally, Section 7 discusses related work.

2. Trace Generation
In principle, our memory analysis framework could be imple-
mented in an entirely “online” fashion, with client analyses
running while the target program is being exercised. How-
ever, this approach could have very high analysis overhead,
adversely affecting the usability of the target program. Hence,
our framework divides the work into two phases. A trace
generation phase runs along with the target program, record-
ing relevant memory operations into a trace file. Then, client
analyses run in an offline mode, based on the recorded trace.
Here we first discuss the design of our trace format, crafted
to balance detail with analysis overhead. Then, we discuss
our handling of uninstrumented code and the DOM in particu-
lar. We defer discussion of certain challenges in handling the
JavaScript language to Section 3.3.

2.1. Trace Design

To enable client analyses like leak detection, we require that
traces be sufficient to reconstruct object lifetimes, i.e., when
objects are created and become unreachable. Hence, traces
must include records of each object allocation and each mem-
ory write, both to variables and to object fields (“properties”
in JavaScript parlance). As an optimization, we avoid logging
writes when the old and new values are both primitive, as
such writes are irrelevant to a memory analysis. A delete
operation on an object property is modeled as a write of null.3

To handle functions, the generator logs calls and returns,
and also logs declarations of local variables to enable proper
scope handling. For leak detection, we also log the last use of
each object, where an object is used when it is dereferenced or,
for function objects, when it is invoked. We only log the last
use of each object since we found that logging all uses was
prohibitively expensive, and last use information is sufficient
for computing object staleness.

Figure 6 shows the generated trace for a simple example.
Most entries includes a source location at the end. The allo-

3We do not yet model the effect of delete on the shape of the object, or
physical object sizes in general; see “Limitations” in Section 5.1.

1 var x = {};

2 var y = {};

3 function m(p,q)

4 {

5 p.f = q;

6 };

7 m(x,y);

8 x = null;

DECLARE x,y,m;

ALLOCOBJ 2 at 1;

WRITE x,2 at 1;

ALLOCOBJ 3 at 2;

WRITE y,3 at 2;

ALLOCFUN 4 at 3;

WRITE m,4 at 3;

CALL 4 at 7;

DECLARE p = 2,

q = 3;

PUTFIELD 2,"f",3

at 5;

LASTUSE 2 at 5;

RETURN at 7;

LASTUSE 4 at 7;

WRITE x,0 at 8;

UNREACHABLE

2 at 8;

UNREACHABLE

3 at end;

UNREACHABLE

4 at end;

Figure 6: A simple code example and the corresponding trace.
Red entries are added in the enhanced trace.

1 var elem = document.createElement("div");

2 div.innerHTML = "<p><h1>Hello World!</h1></p>";

3 document.getElementById("x").appendChild(elem);

Figure 7: Example to illustrate handling of DOM-related code.

cation entries introduce a unique identifier used to name the
corresponding object throughout the trace. We use a distinct
entry type to identify function object allocation, used to enable
proper handling of closures (see below). In our implementa-
tion, LASTUSE entries include a timestamp and all appear at
the end of the generated trace (since the last use is only known
at the end of the program); a separate post-processing phase
inserts the entries at the appropriate slots.

2.2. Uninstrumented Code

MEMINSIGHT works robustly in the presence of uninstru-
mented JavaScript code or native code from the environment,
e.g., DOM functions. Here, we detail our strategies for han-
dling uninstrumented code and the DOM.

Uninstrumented Code In principle, uninstrumented code
could arbitrarily mutate any memory locations to which it has
access. Attempting to discover all such behavior via code
instrumentation alone would be difficult or impossible, partic-
ularly since invocations of uninstrumented code may not be
observable (e.g., a browser invoking an uninstrumented event
handler). Furthermore, such conservative detection would
require frequent traversals of the full heap visible to uninstru-
mented code, a very costly operation.

In practice, we have found a policy of only tracking refer-
ences created in instrumented code to strike a good balance
between coverage of relevant behaviors and analysis overhead.
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2. We show that the detailed information collected by
MEMINSIGHT is useful for diagnosing and fixing mem-
ory issues in real-world web applications.
The rest of the paper is organized as follows. After outlin-

ing the different phases of MEMINSIGHT in Sections 2–4 as
described above, Sections 5 and 6 respectively present a quan-
titative evaluation of MEMINSIGHT and case studies showing
its usefulness. Finally, Section 7 discusses related work.

2. Trace Generation
In principle, our memory analysis framework could be imple-
mented in an entirely “online” fashion, with client analyses
running while the target program is being exercised. How-
ever, this approach could have very high analysis overhead,
adversely affecting the usability of the target program. Hence,
our framework divides the work into two phases. A trace
generation phase runs along with the target program, record-
ing relevant memory operations into a trace file. Then, client
analyses run in an offline mode, based on the recorded trace.
Here we first discuss the design of our trace format, crafted
to balance detail with analysis overhead. Then, we discuss
our handling of uninstrumented code and the DOM in particu-
lar. We defer discussion of certain challenges in handling the
JavaScript language to Section 3.3.

2.1. Trace Design

To enable client analyses like leak detection, we require that
traces be sufficient to reconstruct object lifetimes, i.e., when
objects are created and become unreachable. Hence, traces
must include records of each object allocation and each mem-
ory write, both to variables and to object fields (“properties”
in JavaScript parlance). As an optimization, we avoid logging
writes when the old and new values are both primitive, as
such writes are irrelevant to a memory analysis. A delete
operation on an object property is modeled as a write of null.3

To handle functions, the generator logs calls and returns,
and also logs declarations of local variables to enable proper
scope handling. For leak detection, we also log the last use of
each object, where an object is used when it is dereferenced or,
for function objects, when it is invoked. We only log the last
use of each object since we found that logging all uses was
prohibitively expensive, and last use information is sufficient
for computing object staleness.

Figure 6 shows the generated trace for a simple example.
Most entries includes a source location at the end. The allo-

3We do not yet model the effect of delete on the shape of the object, or
physical object sizes in general; see “Limitations” in Section 5.1.

1 var x = {};

2 var y = {};

3 function m(p,q)

4 {

5 p.f = q;

6 };

7 m(x,y);

8 x = null;

DECLARE x,y,m;

ALLOCOBJ 2 at 1;

WRITE x,2 at 1;

ALLOCOBJ 3 at 2;

WRITE y,3 at 2;

ALLOCFUN 4 at 3;

WRITE m,4 at 3;

CALL 4 at 7;

DECLARE p = 2,

q = 3;

PUTFIELD 2,"f",3

at 5;

LASTUSE 2 at 5;

RETURN at 7;

LASTUSE 4 at 7;

WRITE x,0 at 8;

UNREACHABLE

2 at 8;

UNREACHABLE

3 at end;

UNREACHABLE

4 at end;

Figure 6: A simple code example and the corresponding trace.
Red entries are added in the enhanced trace.

1 var elem = document.createElement("div");

2 div.innerHTML = "<p><h1>Hello World!</h1></p>";

3 document.getElementById("x").appendChild(elem);

Figure 7: Example to illustrate handling of DOM-related code.

cation entries introduce a unique identifier used to name the
corresponding object throughout the trace. We use a distinct
entry type to identify function object allocation, used to enable
proper handling of closures (see below). In our implementa-
tion, LASTUSE entries include a timestamp and all appear at
the end of the generated trace (since the last use is only known
at the end of the program); a separate post-processing phase
inserts the entries at the appropriate slots.

2.2. Uninstrumented Code

MEMINSIGHT works robustly in the presence of uninstru-
mented JavaScript code or native code from the environment,
e.g., DOM functions. Here, we detail our strategies for han-
dling uninstrumented code and the DOM.

Uninstrumented Code In principle, uninstrumented code
could arbitrarily mutate any memory locations to which it has
access. Attempting to discover all such behavior via code
instrumentation alone would be difficult or impossible, partic-
ularly since invocations of uninstrumented code may not be
observable (e.g., a browser invoking an uninstrumented event
handler). Furthermore, such conservative detection would
require frequent traversals of the full heap visible to uninstru-
mented code, a very costly operation.

In practice, we have found a policy of only tracking refer-
ences created in instrumented code to strike a good balance
between coverage of relevant behaviors and analysis overhead.
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2. We show that the detailed information collected by
MEMINSIGHT is useful for diagnosing and fixing mem-
ory issues in real-world web applications.
The rest of the paper is organized as follows. After outlin-

ing the different phases of MEMINSIGHT in Sections 2–4 as
described above, Sections 5 and 6 respectively present a quan-
titative evaluation of MEMINSIGHT and case studies showing
its usefulness. Finally, Section 7 discusses related work.

2. Trace Generation
In principle, our memory analysis framework could be imple-
mented in an entirely “online” fashion, with client analyses
running while the target program is being exercised. How-
ever, this approach could have very high analysis overhead,
adversely affecting the usability of the target program. Hence,
our framework divides the work into two phases. A trace
generation phase runs along with the target program, record-
ing relevant memory operations into a trace file. Then, client
analyses run in an offline mode, based on the recorded trace.
Here we first discuss the design of our trace format, crafted
to balance detail with analysis overhead. Then, we discuss
our handling of uninstrumented code and the DOM in particu-
lar. We defer discussion of certain challenges in handling the
JavaScript language to Section 3.3.

2.1. Trace Design

To enable client analyses like leak detection, we require that
traces be sufficient to reconstruct object lifetimes, i.e., when
objects are created and become unreachable. Hence, traces
must include records of each object allocation and each mem-
ory write, both to variables and to object fields (“properties”
in JavaScript parlance). As an optimization, we avoid logging
writes when the old and new values are both primitive, as
such writes are irrelevant to a memory analysis. A delete
operation on an object property is modeled as a write of null.3

To handle functions, the generator logs calls and returns,
and also logs declarations of local variables to enable proper
scope handling. For leak detection, we also log the last use of
each object, where an object is used when it is dereferenced or,
for function objects, when it is invoked. We only log the last
use of each object since we found that logging all uses was
prohibitively expensive, and last use information is sufficient
for computing object staleness.

Figure 6 shows the generated trace for a simple example.
Most entries includes a source location at the end. The allo-

3We do not yet model the effect of delete on the shape of the object, or
physical object sizes in general; see “Limitations” in Section 5.1.
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Figure 6: A simple code example and the corresponding trace.
Red entries are added in the enhanced trace.

1 var elem = document.createElement("div");

2 div.innerHTML = "<p><h1>Hello World!</h1></p>";

3 document.getElementById("x").appendChild(elem);

Figure 7: Example to illustrate handling of DOM-related code.

cation entries introduce a unique identifier used to name the
corresponding object throughout the trace. We use a distinct
entry type to identify function object allocation, used to enable
proper handling of closures (see below). In our implementa-
tion, LASTUSE entries include a timestamp and all appear at
the end of the generated trace (since the last use is only known
at the end of the program); a separate post-processing phase
inserts the entries at the appropriate slots.

2.2. Uninstrumented Code

MEMINSIGHT works robustly in the presence of uninstru-
mented JavaScript code or native code from the environment,
e.g., DOM functions. Here, we detail our strategies for han-
dling uninstrumented code and the DOM.

Uninstrumented Code In principle, uninstrumented code
could arbitrarily mutate any memory locations to which it has
access. Attempting to discover all such behavior via code
instrumentation alone would be difficult or impossible, partic-
ularly since invocations of uninstrumented code may not be
observable (e.g., a browser invoking an uninstrumented event
handler). Furthermore, such conservative detection would
require frequent traversals of the full heap visible to uninstru-
mented code, a very costly operation.

In practice, we have found a policy of only tracking refer-
ences created in instrumented code to strike a good balance
between coverage of relevant behaviors and analysis overhead.

4

From lifetime 
analysis
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Object lifetimes
• From trace, model runtime heap 

• Including call stack and closures 

• Reference counting to compute unreachability time 

• Handle cycles with Merlin algorithm 
[Hertz et al. ASPLOS’06] 

• Insert unreachability times in the enhanced trace
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DOM Challenges
• DOM: tree data structure representing rendered HTML 

• Often involved in web app memory leaks 

• Many manipulations not directly visible to JavaScript

// allocates new div element
var elem = document.createElement(“div");

// allocates DOM tree from HTML string and
// updates children of elem
elem.innerHTML = "<p><h1>Hello World!</h1></p>”;

// inserts elem into global DOM
document.getElementById("x").appendChild(elem);
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Our DOM Handling

• elem gets reified into a fresh object ID  
• no special handling of createElement 

• For DOM manipulations, leverage HTML5 mutation observers 
• Provide asynchronous notifications of DOM mutation 
• Handles innerHTML manipulation and appendChild 

• Additional handling of innerHTML for better source locations

// allocates new div element
var elem = document.createElement(“div");

// allocates DOM tree from HTML string and
// updates children of elem
elem.innerHTML = "<p><h1>Hello World!</h1></p>";

// inserts elem into global DOM
document.getElementById("x").appendChild(elem);
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Other tricky features

• Constructors: need to properly handle this, and get 
good source locations 

• Eval: instrument on the fly 

• Getters / setters: don’t treat calls as reads / writes 

• Global object, prototypes, further native models, …

67



Clients built atop 
MemInsight

• Leak detection: increasing stale object count at idle 
points (empty call stack) 

• Non-escaping: no object escapes allocating function 

• Leverages execution index [Xin et al. PLDI’08] 

• Inlineable: objects consistently “owned” by objects 
from another site 

• Many more are possible!
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Case Studies 
(see paper for details)

• Leaks

• Fixed in one Tizen app shopping_list (patch accepted) 

• Confirmed existing patch fixes leak in dataTables 

• Leaks found by internal users in other apps 

• Churn

• Fixed in one Tizen app annex for 10% speedup (patch accepted) 

• 10X speedup for escodegen (patch accepted) 

• Bloat: Found object inlining opportunity in old esprima version (since 
fixed)
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Leak in Shopping List app

Should have used $.empty()!
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Run an instrumented app
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Interactive staleness analysis
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Interactive staleness analysis
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Overhead

Low overhead for (most) interactive apps

benchmark overhead
richards 10.4X
deltablue 15X

crypto 47.1X
raytrace 41.3X

earley-boyer 99.8X
regexp 26.7X
splay 43.4X

navier-stokes 45.4X
pdfjs 31.8X
box2d 35.8X

typescript 77.2X
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Reducing Overhead
• Only log the last use of an object (not all uses) 

• Don’t log operations on primitive fields 

• Enhanced Jalangi to do selective instrumentation 

• Binary trace format 

• Work with simulated heap as opposed to real heap 

• Reflection too expensive / fragile
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Advanced Jalangi  
Usage
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Tracing
• Common technique: store a trace, and do heavyweight 

analysis over the trace 
• Supported directly in Jalangi 1 via record/replay 
• But, hard to debug and write analyses 

• lib/analysis/Loggers.ts has all analysis tracing code 
• Under Node.js, dump trace to file system 

(BinaryFSLogger) 
• From web, trace over web socket 

(BinaryWebSocketLogger) 
• lib/server/server.ts has server code 
• pipes trace directly to running lifetime analysis
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Integrating Static Analysis

• MemInsight needs the “free variables” of each 
function 

• Captured by closures, relevant for lifetimes 
• Computed by freeVarsAstHandler.ts 
• Provided as an AST handler to Jalangi instrumentation 
• Jalangi stores result of AST handler inside 

instrumented code 
• For eval’d code, use the instrumentCode callback
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Native Methods
• Built-in methods that cannot be instrumented 

• Standard JS library, DOM routines 
• (In general, any uninstrumented code) 

• Modeling is analysis-specific 
• For MemInsight, lib/analysis/
NativeModels.ts 

• Also, careful with callbacks from native methods 
• may see functionEnter without invokeFunPre
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Analysis Configuration

• May want analysis-wide configuration options 
• E.g., MemInsight allows for a debug function for 

dumping ref counts 
• Use --initParam option to instrument.js (web) or 
esnstrument_cli.js (node.js) 

• values stored in J$.initParams 
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Debugging with 
JSDelta

81

https://github.com/WALA/jsdelta

https://github.com/WALA/jsdelta


JSDelta: motivation
• Building a Jalangi analysis 

• Works great on unit tests 

• But, crashes on jQuery! 

• What went wrong? Need a minimized input 

• Jsdelta does automatic input minimization

• Via delta debugging [Zeller, FSE’99]
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JSDelta: Demo

83

Google “JS Delta Walkthrough”



Using JSDelta
• Easy: write a script that prints a message when error 

occurs 

• Also works for JSON, entire directories 

• For a Jalangi analysis: 

• Check for errors in uninstrumented program first 

• Always run with a timeout (e.g., with timeout 
command) 

• For browser code, use PhantomJS, Selenium, etc.
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• DLint:	Dynamically	Checking	JS	Coding	Practice	

• JITProf:	Find	JS	code	that	prohibit	JIT-optimization

85

DLint	and	JITProf

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	

[ISSTA’15]  DLint: Dynamically Checking Bad Coding Practices in JavaScript
Liang Gong, Michael Pradel, Manu Sridharan, Koushik Sen

[FSE’15]  JITProf: Pinpointing JIT-unfriendly JavaScript code
Liang Gong, Michael Pradel, Koushik Sen



DLint	and	JITProf	for	Web	Pages

mitmproxy
Observe requests & intercepts responses 

that contain JS and webpages

©	Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
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DLint	and	JITProf	for	Web	Pages

mitmproxy
Observe requests & intercepts responses 

that contain JS and webpages

©	Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
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• DLint:	Dynamically	Checking	JS	Coding	Practice	

• JITProf:	Find	JS	code	that	prohibit	JIT-optimization

87

DLint	and	JITProf

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	

[ISSTA’15]  DLint: Dynamically Checking Bad Coding Practices in JavaScript
Liang Gong, Michael Pradel, Manu Sridharan, Koushik Sen

[FSE’15]  JITProf: Pinpointing JIT-unfriendly JavaScript code
Liang Gong, Michael Pradel, Koushik Sen



• Good	coding	practices		
• Informal	rules		
• Improve	code	quality	

• Better	quality	means:	
• Fewer	correctness	issues	
• Better	performance	
• Better	usability	
• Better	maintainability	
• Fewer	security	loopholes	
• Fewer	surprises	
• …

88

What	are	coding	practices?

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
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var	sum	=	0,	value;	
var	array	=	[11,	22,	33];	
for	(value	in	array)	{	
				sum	+=	value;	
}	
>	sum	?

Rule:	avoid	using		for..in	over	arrays

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
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var	sum	=	0,	value;	
var	array	=	[11,	22,	33];	
for	(value	in	array)	{	
				sum	+=	value;	
}	
>	sum	?

11	+	22	+	33	=>	66
array	index	

(not	array	value)
0	+	1	+	2	=>	3 array	index	:	string
0+"0"+"1"+"2"	=>	"0012"

Rule:	avoid	using		for..in	over	arrays

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	



• Cross-browser	issues	
• Result	depends	on	the	Array	prototype	object

91

var	sum	=	0,	value;	
var	array	=	[11,	22,	33];	
for	(value	in	array)	{	
				sum	+=	value;	
}	
>	sum	?

11	+	22	+	33	=>	66
array	index	

(not	array	value)
0	+	1	+	2	=>	3 array	index	:	string
0+"0"+"1"+"2"	=>	"0012"

>	"0012indexOftoString..."

Rule:	avoid	using		for..in	over	arrays

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
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var	sum	=	0,	value;	
var	array	=	[11,	22,	33];	
for	(value	in	array)	{	
				sum	+=	value;	
}	
>	sum	?

for	(i=0;	i	<	array.length;	i++)	{	
				sum	+=	array[i];	
}	

function	addup(element,	index,	array)	{	
		sum	+=	element;	
}	
array.forEach(addup);

Rule:	avoid	using		for..in	over	arrays

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
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var	sum	=	0,	value;	
var	array	=	[11,	22,	33];	
for	(value	in	array)	{	
				sum	+=	value;	
}	
>	sum	?

for	(i=0;	i	<	array.length;	i++)	{	
				sum	+=	array[i];	
}	

function	addup(element,	index,	array)	{	
		sum	+=	element;	
}	
array.forEach(addup);

Rule:	avoid	using		for..in	over	arrays

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	



Coding	Practices	and	Lint	Tools

• Existing	Lint-like	checkers	
– Inspect	source	code		

– Detect	common	mistakes	

• Limitations:	
– Approximates	behavior	

– Unknown	aliases	

– Lint	tools	favor	precision	over	soundness	

• Difficulty:	Precise	static	program	analysis

94
Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	



95

• Dynamic	Linter	checking	code	quality	rules	for	JS	

• Open-source,	robust,	and	extensible	framework	
• Formalized	and	implemented	28	rules	

– Counterparts	of	static	rules	
– Additional	rules	

• Empirical	study	
– It	is	better	to	use	DLint	and	static	linter	together

DLint

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
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var	sum	=	0,	value;	
var	array	=	[11,	22,	33];	
for	(value	in	array)	{	
				sum	+=	value;	
}	
>	sum	?

for	(i=0;	i	<	array.length;	i++)	{	
				sum	+=	array[i];	
}	

function	addup(element,	index,	array)	{	
		sum	+=	element;	
}	
array.forEach(addup);

Detect	for..in	over	arrays	with	Jalangi

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
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Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	

for	(value	in	obj)	{	
				sum	+=	value;	
}

Detect	for..in	over	arrays	with	Jalangi
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Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	

for	(value	in	obj)	{	
				sum	+=	value;	
}

Have a warning when
obj in for-in is an array.

Detect	for..in	over	arrays	with	Jalangi
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Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	

for	(value	in	obj)	{	
				sum	+=	value;	
}

instrumentation

Detect	for..in	over	arrays	with	Jalangi

Jalangi	Instrumented	Code

Have a warning when
obj in for-in is an array.
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Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	

for	(value	in	obj)	{	
				sum	+=	value;	
}

instrumentation

function	forinObject(iid,	val)	{	

}

Detect	for..in	over	arrays	with	Jalangi

Jalangi	Instrumented	Code

Have a warning when
obj in for-in is an array.
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Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	

for	(value	in	obj)	{	
				sum	+=	value;	
}

instrumentation

function	forinObject(iid,	val)	{	

}

Detect	for..in	over	arrays	with	Jalangi

Jalangi	Instrumented	Code

Have a warning when
obj in for-in is an array.
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for	(value	in	obj)	{	
				sum	+=	value;	
}

instrumentation

function	forinObject(iid,	val)	{	
				if	(isArray(val))	{	
								//	report	warning!	
				}	
}

Detect	for..in	over	arrays	with	Jalangi

Jalangi	Instrumented	Code

Have a warning when
obj in for-in is an array.
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Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	

for	(value	in	obj)	{	
				sum	+=	value;	
}

instrumentation

function	forinObject(iid,	val)	{	
				if	(isArray(val))	{	
								//	report	warning!	
				}	
}

Detect	for..in	over	arrays	with	Jalangi

Jalangi	Instrumented	Code

Have a warning when
obj in for-in is an array.
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for	(value	in	obj)	{	
				sum	+=	value;	
}

instrumentation

function	forinObject(iid,	val)	{	
				if	(isArray(val))	{	
								//	report	warning!	
				}	
}

Detect	for..in	over	arrays	with	Jalangi

Jalangi	Instrumented	Code

J$.iidToLocation(iid);

Have a warning when
obj in for-in is an array.
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for	(value	in	obj)	{	
				sum	+=	value;	
}

instrumentation

function	forinObject(iid,	val)	{	
				if	(isArray(val))	{	
								//	report	warning!	
				}	
}

Detect	for..in	over	arrays	with	Jalangi

Jalangi	Instrumented	Code

file.js:<start line>:<start col>:<end line>:<end col>

J$.iidToLocation(iid);

Have a warning when
obj in for-in is an array.
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for	(value	in	obj)	{	
				sum	+=	value;	
}

instrumentation

function	forinObject(iid,	val)	{	
				if	(isArray(val))	{	
								//	report	warning!	
				}	
}

Detect	for..in	over	arrays	with	Jalangi

Jalangi	Instrumented	Code

file.js:<start line>:<start col>:<end line>:<end col>

J$.iidToLocation(iid);

Have a warning when
obj in for-in is an array.



Checkers
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CheckNaN.js 
ConcatUndefinedToString.js 
NonObjectPrototype.js  
SetFieldToPrimitive.js  
OverFlowUnderFlow.js  
StyleMisuse.js  
ToStringGivesNonString.js  
UndefinedOffset.js  
NoEffectOperation.js  
AddEnumerablePropertyToObject.js  
ConstructWrappedPrimitive.js	
InconsistentNewCallPrefix.js	
UncountableSpaceInRegexp.js	
FloatNumberEqualityComparison.js

FunctionToString.js  
ShadowProtoProperty.js	
ForInArray.js 
NonNumericArrayProperty.js 
OverwrittenPrototype.js 
GlobalThis.js  
CompareFunctionWithPrimitives.js  
InconsistentConstructor.js  
FunctionCalledWithMoreArguments.js  
IllegalUseOfArgumentsVariable.js  
DoubleEvaluation.js	
EmptyClassInRegexp.js	
UseArrObjConstrWithoutArg.js	
MissRadixArgInParseNum.js

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	



Chained Analysis
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PutField(Read("a",	a),	"f",	GetField(Read("b",	b),	"g"))

a.f	=	b.g

functions

Chained	Analysis

PutField

Read

…

functions

Checker-1

PutField

Read

…
functions

Checker-2

PutField

Read

…

functions

Checker-n

PutField

Read

…

…

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	



Other Resources

https://github.com/Samsung/jalangi2

Jalangi (v2) Github

https://github.com/ksen007/jalangi2analyses
DLint + JITProf Github based on Jalangi 
(v2)

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
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https://github.com/JacksonGL/jitprof-visualization
JITProf Visualization Github based on Jalangi (v2)



• DLint:	Dynamically	Checking	JS	Coding	Practice	

• JITProf:	Find	JS	code	that	prohibit	JIT-optimization

110

DLint	and	JITProf

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	

[ISSTA’15]  DLint: Dynamically Checking Bad Coding Practices in JavaScript
Liang Gong, Michael Pradel, Manu Sridharan, Koushik Sen

[FSE’15]  JITProf: Pinpointing JIT-unfriendly JavaScript code
Liang Gong, Michael Pradel, Koushik Sen



Simplifies coding
• Write less, do more
        ! more productive
• Code is less verbose 
        ! easier to understand 

Dynamic language features:

©	Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
111

Motivation of JITProf



Simplifies coding
• Write less, do more
        ! more productive
• Code is less verbose 
        ! easier to understand 
Slow execution
• Too many runtime checks
• Object property lookup -> hash table lookup
      ...

Dynamic language features:

©	Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
112

Motivation of JITProf



SplayTree.prototype.insert	=	function(key,	value)	{  
		... 
		var	node	=	new	SplayTree.Node(key,	value); 
		if	(key	>	this.root_.key)	{ 
				node.left	=	this.root_; 
				node.right	=	this.root_.right; 
				... 
		}	else	{ 
				node.right	=	this.root_; 
				node.left	=	this.root_.left; 
				... 
		} 
		this.root_	=	node; 
};
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Pinpointing JIT-unfriendly JavaScript Code

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	

• Code snippet from Google Octane Benchmark:



SplayTree.prototype.insert	=	function(key,	value)	{  
		... 
		var	node	=	new	SplayTree.Node(key,	value); 
		if	(key	>	this.root_.key)	{ 
				node.left	=	this.root_; 
				node.right	=	this.root_.right; 
				... 
		}	else	{ 
				node.right	=	this.root_; 
				node.left	=	this.root_.left; 
				... 
		} 
		this.root_	=	node; 
};

114

Pinpointing JIT-unfriendly JavaScript Code

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	

• Code snippet from Google Octane Benchmark:

Cause	of	poor	performance:	
• node	has	two	layouts:		
				offset	of	left	in	node		
				can	be	0	or	1	
• JIT	cannot	replace	node.left	
with	node[0]	or		node[1]



Performance	boost:		

15%	

6.7%	
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Pinpointing JIT-unfriendly JavaScript Code

SplayTree.prototype.insert	=	function(key,	value)	{  
		... 
		var	node	=	new	SplayTree.Node(key,	value); 
		if	(key	>	this.root_.key)	{ 
				node.left	=	this.root_; 
				node.right	=	this.root_.right; 
				... 
		}	else	{ 
				node.right	=	this.root_; 
				node.left	=	this.root_.left; 
				... 
		} 
		this.root_	=	node; 
};

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	

• Code snippet from Google Octane Benchmark:



Performance	boost:		

15%	

6.7%	
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Pinpointing JIT-unfriendly JavaScript Code

SplayTree.prototype.insert	=	function(key,	value)	{  
		... 
		var	node	=	new	SplayTree.Node(key,	value); 
		if	(key	>	this.root_.key)	{ 
				node.left	=	this.root_; 
				node.right	=	this.root_.right; 
				... 
		}	else	{ 
				node.right	=	this.root_; 
				node.left	=	this.root_.left; 
				... 
		} 
		this.root_	=	node; 
};

Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	

• Code snippet from Google Octane Benchmark:

JITProf Simulates the Hidden Classes 
based on the information provided by Jalangi



Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}

©	Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
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• Each object has a meta information 
associated with it

• The meta information keeps track of 
its object layout and its transition 
history.



Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}

©	Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
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Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}

©	Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
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Objects

Property Offset

__proto__

Hidden	Classes
Anonymous

Hidden	Class

Hidden	class	simulation	before	the	statement



Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}

©	Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
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Objects

Property Offset

__proto__

Hidden	Classes
Anonymous

Hidden	Class

Objects

Property Offset
__proto__

Hidden	Classes
Anonymous

Offset	0 4

Hidden	Class

Property Offset

b 0

__proto__

Hidden	class	simulation	before	the	statement

Hidden	class	simulation	after	the	statement



Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}

©	Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	
121

Objects

Property Offset

__proto__

Hidden	Classes
Anonymous

Offset	0 4

Offset	1 3

Hidden	Class
Property Offset

b 0

__proto__

Property Offset

b 0

__proto__

a 1

Objects

Anonymous2

Hidden	Class

Property Offset

a 0

__proto__

Offset	0 2

Offset	1 3

Property Offset

a 0

__proto__

b 1



Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}
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Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}
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function	putFieldPre	(iid,	base,	offset,	val	…	)	{	
				//	logic	for	updating	the	hidden	class	

}

invoke

Jalangi



Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}
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Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}
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}
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this.b	=	4;



Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}
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Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}
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function	putFieldPre	(iid,	base,	offset,	val	…	)	{	
				//	logic	for	updating	the	hidden	class	

}

invoke

Jalangi
this.b	=	4;
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Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}
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function	putFieldPre	(iid,	base,	offset,	val	…	)	{	
				var	sobj	=	J$.smemory.getShadowObject(base);	
				sobj.hiddenClass	...	
}

invoke

Jalangi
this.b	=	4;

'b'



Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}	

var	o	=	{a:	1,	b:	2};
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Intercept	putField	to	update	
the	hidden	class



Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}	

var	o	=	{a:	1,	b:	2};
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Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}	

var	o	=	{a:	1,	b:	2};
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Back to the Motivating Example

function	Thing(flag)	{	
				if	(!flag)	{	
								this.b	=	4;	
								this.a	=	3;	
				}	else	{	
								this.a	=	2;	
								this.b	=	1;	
				}	
}	

for(var	i	=	0;	i<1000000;i++)	{	
				var	o	=	new	Thing(i%2);	
				result	+=	o.a	+	o.b;	
}	

var	o	=	{a:	1,	b:	2};
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Intercept	putField	to	update	
the	hidden	class

Intercept	invokeFun	to	record	
object	creation	location

Intercept	getField	to	record	
inline	cache	misses

Intercept	literal	to	update	
hidden	class	+	record	object	
creation	location
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• Use inconsistent object layout
• Access undeclared property or array element
• Store non-numeric value in numeric arrays
• Use in-contiguous keys for arrays
• Not all properties are initialized in constructors
• … and more

JIT-unfriendly Code Checked by JITProf
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var	array	=	[];	
for	(var	i=10000;i>=0;i--){	
				array[i]	=	i;	
}	

134

Rule #5: Use Contiguous Keys for Array



©	Liang	Gong,	Electric	Engineering	&	Computer	Science,	University	of	California,	Berkeley.	

var	array	=	[];	
for	(var	i=10000;i>=0;i--){	
				array[i]	=	i;	
}	

135

				array[10000]	=	10000;	
				array[9999]	=	9999;		
						...

• non-contiguous array 
• To save memory, JIT-engine decides to represent 

the array with slow data structures like hash table.

Rule #5: Use Contiguous Keys for Array



10X+	speedup!
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var	array	=	[];	
for	(var	i=10000;i>=0;i--){	
				array[i]	=	i;	
}	

for	(var	i=0;i<=10000;i++){	
				array[i]	=	i;	
}

136

Rule #5: Use Contiguous Keys for Array
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var	array	=	[];	
for	(var	i=10000;i>=0;i--){	
				array[i]	=	i;	
}	
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loc1:	

• Intercept	putField	operation	of	arrays		
• Rank	locations	by	number	assignments	to	
non-contiguous	arrays

Rule #5: Use Contiguous Keys for Array



higher ! better
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 (*)means smaller is better group average improve 
rate

sunspider-chrome-sha1 (*) original 1884.7588 26.3%refactored 1299.0706

octane-firefox-Splay original 11331.59 3.5%refactored 12198.65

Sunspider-String-Tagcloud (*) original 9178.76 11.7%refactored 9457.53

octane-firefox-DeltaBlue original 28473.53 1.4%refactored 31154.06

octane-chrome-Box2D original 24569.47 7.5%refactored 24915.00

octane-chrome-RayTrace original 43595.94 12.9%refactored 48140.35
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higher ! better

 (*)means smaller is better group average improve 
rate

octane-chrome-Splay original 10278.59 15.1%refactored 11885.71

octane-chrome-SplayLatency original 20910.24 3.8%refactored 21994.82

sunspider-chrome-3d-Cube (*) original 597.047059 1.1%refactored 593.744118

sunspider-firefox-sha1 (*) original 680.476471 3.3%refactored 669.932353

sunspider-firefox-Xparb (*) original 364.6824 19.7%refactored 357.2235

sunspider-chrome-md5 (*) original 774.3500 24.6%refactored 665.8382

sunspider-chrome-format-tofte (*) original 212.2029 3.4%refactored 200.9000
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• https://github.com/ksen007/jalangi2analyses
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Install	DLint	and	JITProf	with	Jalangi2
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npm install

• pip install pyOpenSSL 
• pip install mitmproxy==0.11.3

Install	the	mitmproxy	certificate	manually	(drag-and-drop)

(third-party framework)



• man-in-the-middle	proxy	
• Interactive,	SSL-capable	proxy	for	HTTP	with	

a	console	interface.	
• Intercept	http	communication	between	the	

client	and	the	server	for	instrumentation.	
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mitmproxyBrowser Server

request
forwarded 
request

responseforwarded 
response
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(third-party framework)



• pip install pyOpenSSL 
• pip install mitmproxy==0.11.3
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Install	mitmproxy
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• pip install pyOpenSSL 
• pip install mitmproxy==0.11.3
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Install	mitmproxy
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• Man-in-the-middle	Proxy	
• SSL	and	HTTPS	is	designed	against	MITM		
• HTTPS	Handle	shake	error	due	to	uncertified	

modification	via	instrumentation	

144

The	HTTPS	Problem

Browser Server

request
forwarded 
request

response
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mitmproxy +
Jalangi  Instrumentation
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The	HTTPS	Problem
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mitmproxy +
Jalangi  Instrumentation

+ a Certificate	Authority	Implementation

Browser Server

request
forwarded 
request

response

• Man-in-the-middle	Proxy	
• SSL	and	HTTPS	is	designed	against	MITM		
• HTTPS	Handle	shake	error	due	to	uncertified	

modification	via	instrumentation	
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The	HTTPS	Problem
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mitmproxy +
Jalangi  Instrumentation

+ a Certificate	Authority	Implementation

Browser Server

request
forwarded 
request

response

• Man-in-the-middle	Proxy	
• SSL	and	HTTPS	is	designed	against	MITM		
• HTTPS	Handle	shake	error	due	to	uncertified	

modification	via	instrumentation	



Other Resources

https://github.com/Samsung/jalangi2

Jalangi (v2) Github

https://github.com/ksen007/jalangi2analyses
DLint + JITProf Github based on Jalangi 
(v2)
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Questions

https://github.com/JacksonGL/jitprof-visualization
JITProf Visualization Github based on Jalangi (v2)
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