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ABSTRACT

NullPointerExceptions (NPEs), caused by dereferencing null, fre-
quently cause crashes in Java programs. Pluggable type checking is
highly effective in preventing Java NPEs. However, this approach
is difficult to adopt for large, existing code bases, as it requires
manually inserting a significant number of type qualifiers into the
code. Hence, a tool to automatically infer these qualifiers could
make adoption of type-based NPE prevention significantly easier.

We present a novel and practical approach to automatic inference
of nullability type qualifiers for Java. Our technique searches for
a set of qualifiers that maximizes the amount of code that can be
successfully type checked. The search uses the type checker as a
black box oracle, easing compatibility with existing tools. However,
this approach can be costly, as evaluating the impact of a qualifier
requires re-running the checker. We present a technique for safely
evaluating many qualifiers in a single checker run, dramatically
reducing running times. We also describe extensions to make the
approach practical in a real-world deployment.

We implemented our approach in an open-source tool Null-
AwayAnnotator, designed toworkwith theNullAway type checker.
We evaluated NullAwayAnnotator’s effectiveness on both open-
source projects and commercial code. NullAwayAnnotator re-
duces the number of reported NullAway errors by 69.5% on average.
Further, our optimizations enable NullAwayAnnotator to scale
to large Java programs. NullAwayAnnotator has been highly
effective in practice: in a production deployment, it has already
been used to add NullAway checking to 160 production modules
totaling over 1.3 million lines of Java code.
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• Software and its engineering→ Software verification and
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1 INTRODUCTION

NullPointerExceptions (NPEs), caused by a dereference of null,
are a well-known and common cause of crashes in Java programs.
Hence, there has been a great deal of past research on preventing
null dereferences (e.g., [17, 22, 24, 28]). Type-based approaches to
nullness checking are growing in popularity. In this approach, types
include information on whether each expression may evaluate to
null, and only expressions that cannot be null can be dereferenced.
Recent languages like Kotlin [21] and Swift [35] build null safety
into their type systems. Further, pluggable type checkers like the
Checker Framework [9, 28], Eradicate [10], Nullsafe [31], and Null-
Away [4] leverage type qualifiers [13] to add type-based nullness
checking to Java.

Type-based nullness checking can be difficult to adopt for exist-
ing Java code bases, due to the need to manually add type qualifiers
into the code. To enable incremental and modular checking, type-
based nullness checkers require explicit nullability annotations on
field, parameter, and return types. Hence, manual effort is required
to annotate any existing program for a type-based checker. While
default assumptions for unannotated types reduces the annotation
burden considerably [28], a significant number of explicit annota-
tions must still be written.1 Our goal is to develop a tool for auto-
matically inferring nullability qualifiers for existing code, thereby
dramatically easing adoption of type-based nullness checking.

We desire a practical inference tool that can be used with real-
world code bases and type checkers, and as such have three key
requirements. First, we require a tool that provides a “best effort”
partial solution in cases where a program cannot be verified without
code changes. Existing code may have real bugs, or may be correct
but written in a style that is not amenable to type-based verification.
In such cases, an inference tool can still provide significant value by
adding annotations that enable type checking ofmost of the original
program. This way, most newly-added or modified code (very often

1Banerjee et al. [4] report an average of roughly 13 explicit annotations per KLoC on
their open-source benchmarks, ranging up to 46 annotations per KLoC.
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the source of defects [26]) will be type checked, while developers
can gradually adopt and enable checking for the remaining code.

Second, we require the inference tool to work alongside an ex-
isting type checker implementation. Inference approaches often
require a type checker that supports both checking and inference
directly, e.g., using constraint generation and solving. Our tool in-
fers annotations for the existing production-quality NullAway type
checker [4], which does not use constraints. While the constraint-
based approach is elegant and efficient, re-implementation of a
complex checker like NullAway to use constraints would require
a huge effort. For example, NullAway employs ad hoc handling
of various coding patterns and libraries (e.g., stream libraries and
gRPC [15]) to reduce false positives [27], and this customized han-
dling logic would have to be encoded precisely using constraints. To
avoid re-implementation, we desire an inference approach that pri-
marily treats the type-checking tool as a black-box oracle, relying
only on its reported errors to perform inference.

Third, we require the inference tool to be performant. For our
use cases, the tool must be able to run in an overnight job (roughly
8 hours maximum). With a longer running time, deployment of the
tool becomes less practical, due to the compute resources required,
and the fact that the target code could be changing frequently.
We are unaware of any existing approach that meets these three
requirements.

In this paper, we present a novel approach to nullability type
inference suited to these requirements. Given an unannotated pro-
gram, our approach searches for a set of type qualifiers that mini-
mizes the remaining number of NullAway errors, thereby maximiz-
ing the amount of code NullAway is able to type check. Finding a
good set of qualifiers is non-trivial; we found that eagerly insert-
ing all possible qualifiers could increase the final number of errors.
Our strategy evaluates candidate qualifiers using a bounded-depth
search, iterated to a fixed point.

A naïve implementation of our search strategy is too slow for
large code bases. When treating the type checker as a black-box
oracle, evaluating the impact of a candidate qualifier on the error
count requires re-running the type checker. Though NullAway is
highly optimized [4], each run still requires a re-compilation of the
code and can take tens of seconds or longer. For larger programs, a
straightforward version of our search required running over 1,000
builds, making the tool too slow.

Our key insight is that many qualifiers impact the error count
independently of each other. Since NullAway performs modular
checking, the code regions where new errors may appear due to
qualifier insertion are localized and can be computed ahead of time.
Given this information, we construct a graph representing which
candidate qualifiers may “conflict” by causing new errors in an
overlapping region. Then, we use graph coloring to find sets of
non-conflicting qualifiers, which can all be tested simultaneously
within a single NullAway build. With this approach, many fewer
runs of NullAway are required, dramatically reducing running time
and making the tool practical.

We also describe extensions to our technique for handling real-
world code patterns and deployment. We show how our algorithm
can incorporate usage information from client code when annotat-
ing a library, significantly easing deployment in a large, modular

1 class Test {

2 +@Nullable Object f1 = null;

3 +@SuppressWarnings("NullAway") Object f2 = null;

4 +@Nullable Object f3 = null;

5 +@Nullable Object f4 = null;

6 +@Nullable Object f5 = f4;

7 String m1() {

8 return f1 != null ? f1.toString() : f2.toString();

9 }

10 int m2() {

11 return f3 != null ? f3.hashCode() : f2.hashCode();

12 }

13 +@Nullable Object m3() {

14 return f4;

15 }

16 }

Figure 1: Motivating example for inference. Green text indi-

cates where annotations are inserted by our technique. Our

tool chooses to suppress the error on line 3, to maximize the

amount of code checked by NullAway.

code base. And, we describe a specialized handling of field initial-
ization to better handle certain common patterns.

We implemented our approach in an open-source tool Null-
AwayAnnotator, which generates annotations suitable for directly
enabling NullAway checking. We performed an extensive empirical
evaluation, on both open-source projects and a set of commercial
code modules at Uber Technologies Inc. (Uber). The evaluation
showed that NullAwayAnnotator decreased the final number of
errors reported by NullAway by an average of 69.5% (36.9%–90.1%).
Further, our optimizations were critical for acceptable performance,
reducing running time by an average of 6.1X (2.0X–17.8X) and
eliminating two timeouts. NullAwayAnnotator is deployed at
Uber for direct use by developers, and it has been highly effective:
it has been used to enable NullAway checking for 160 production
modules, totaling over 1.3 million lines of code.

This paper makes the following key contributions:

• We present a technique to infer type qualifiers that make
as much of an existing program as possible verifiable by
NullAway, while treating NullAway as a black box oracle.
• We describe an optimized search that leverages conflict de-
tection via graph coloring to simultaneously evaluate many
candidate qualifiers, reducing running time.
• We present an open-source implementation of the approach,
NullAwayAnnotator, and show its effectiveness in an ex-
tensive experimental evaluation.

2 OVERVIEW

In this section, we give an overview of our nullability inference
technique and present relevant background. We illustrate our tech-
nique using the example code in Figure 1.
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2.1 Type-Based Nullness Checking

We briefly introduce key ideas of type-based nullness checking; see
the literature for details [4, 9, 28]. Type-based nullness checkers for
Java use type qualifiers [13] to capture whether a type includes or
excludes null. These qualifiers are written in source code using Java
annotations, prefixed with @. Such checkers typically use @Nullable
to qualify a type that contains null, and @NonNull for a type that does
not. An unqualified type is treated as @NonNull by default, except
for local variables, whose qualifiers are inferred automatically [28].

Given these qualifiers, type checking guarantees that a @Nullable
expression is never assigned to a @NonNull location, and that a
@Nullable expression is never dereferenced. Assuming object fields
are properly initialized, and that all executing code has been type
checked, these properties together guarantee the program will be
free of NPEs. For clarity, we defer discussing the impacts of field
initialization checking to Section 6, and for now assume that all
@NonNull fields are appropriately initialized in a constructor.

Consider the code example in Figure 1, ignoring the green in-
serted annotations. Running NullAway on this code will yield four
errors, one for each of lines 2 to 5, since each line assigns null to
a @NonNull field (@NonNull by default since they are unannotated).
These errors can be removed by changing the type qualifier of
each field to be @Nullable, e.g., writing @Nullable Object f2 on
line 3. However, adding these qualifiers can lead to new NullAway
errors; e.g., making f2 @Nullable causes a new error on line 8, since
f2.toString() then dereferences a @Nullable expression. Currently,
adding type-based nullness checking to an existing code base re-
quires repeatedly adding annotations and changing code manually
until no errors remain, a tedious, time-consuming process.

To ensure null safety, type-based nullness checkers must also
enforce standard subtyping rules for method overriding, i.e., covari-
ant return types and contravariant parameter types. So, if a method
Super.m1(p) has a @NonNull return type and a @Nullable parameter
type, an overriding method Sub.m1(p) (where Sub extends Super)
must not have a @Nullable return type or a @NonNull parameter
type; see further discussion in the literature [4, 28].

2.2 Inference Approach

The goal of our work is to automate a significant portion of the work
required to adopt type-based nullness checking for pre-existing,
real-world code bases. We focus on the problem of inferring a set of
@Nullable type qualifiers that minimizes the number of remaining
errors reported by NullAway. As noted in Section 1, we require
inference to use NullAway as a black-box oracle. Hence, checking
the impact of a set of qualifiers on NullAway’s error count requires
re-running NullAway on a modified version of the program with
the qualifiers inserted. We only attempt to address errors fixable
via qualifier insertion, i.e., errors stemming from either assigning
a @Nullable expression into a @NonNull location or an incorrect
method override (not dereferences of @Nullable expressions). From
such errors, we create a set of candidate fixes based on qualifier
insertion, and then use NullAway to test if those fixes reduce the
overall error count.

Determining the impact of a candidate fix may require multiple
iterations, as fixes can cause new errors which themselves are
amenable to fixing. For Figure 1, adding a @Nullable qualifier to fix

the error at line 3 leads to two new errors at line 8 and line 11, both
due to dereference of a @Nullable expression. Since our approach
cannot fix these new errors, the line 3 fix increases the overall error
count and is not retained. It makes sense to leave this error for the
developer to handle, as the lack of null checks for f2 on lines 8
and 11 contradict the initialization of f2 to null, and it is unclear
how to automatically resolve this contradiction.

Adding a @Nullable qualifier for the error on line 5 also causes
two new errors, on line 6 and line 14. However, these new errors
can be addressed via two more @Nullable qualifiers (on line 6 and
the return type on line 13), and these qualifiers cause no further
errors, yielding an overall decrease. Our search discovers the final
solution shown in Figure 1, which includes these three qualifiers.
We detail our iterative search strategy in Section 3.

To create a code change that can be adopted immediately, our
tool suppresses any remaining NullAway errors after its search is
complete; for Figure 1, we insert the @SuppressWarnings annotation
on line 3. Adding suppressions is not ideal, since they may mask
real NPE bugs remaining in the code. However, a key benefit of this
approach is that after remaining errors are suppressed, NullAway
can be enabled for all future builds of the code. Developers then
benefit from NullAway checking for any subsequent code change
outside of a suppressed region or any newly-written code, and re-
cent code changes are often the source of defects [26]. Remaining
suppressions can be removed gradually as part of periodic code
cleanup efforts. Also note that with this approach, the initial code
change enabling NullAway introduces no semantic changes (easing
code review) and can be generated with no manual effort. Minimiz-
ing the number of remaining NullAway errors during inference
maximizes the amount of code subject to NullAway checking after
the inferred qualifiers are adopted.

2.3 Optimizing Performance

A naïve implementation of our search runs too slowly in practice,
due to the cost of repeatedly running NullAway to evaluate candi-
date solutions. Reducing running time therefore requires reducing
the number of NullAway runs required for inference. This reduction
could be achieved if multiple independent qualifiers could be evalu-
ated simultaneously in a single run of NullAway. Two qualifiers are
independent if any NullAway errors removed or caused by each
qualifier are guaranteed to be in non-overlapping regions of code.
Achieving a speedup requires efficiently computing large groups
of independent qualifiers.

Our first key insight was that due to modular type checking,
the potential code regions where a @Nullable qualifier may add or
remove errors can be computed precisely and cheaply. For example,
a @Nullable qualifier on a field can only impact error counts within
methods that read or write the field; new errors cannot appear other
unrelatedmethods. So, for the initial errors in Figure 1, our approach
determines that the potentially impacted regions for @Nullable

qualifiers are m1 for f1, m1 and m2 for f2, m2 for f3, and m3 for f4.2
Intuitively, many qualifiers in a large program may be indepen-

dent (e.g., when they apply to private state of distinct classes), but a
question remains as to how to quickly find large sets of independent

2Each field initializer (e.g. the right hand side of Object f5 = f4) is also a region,
which we ignore here for simplicity; see Section 4.1 for details.
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Algorithm 1 Pseudocode for unoptimized search.

1: procedure FindNullableQualifiers(𝑃,𝑑)
2: 𝐸 ← NullAwayErrors(𝑃)
3: 𝐹all ← FixLocations(𝐸)
4: 𝐹new ← 𝐹all
5: while 𝐹new ≠ ∅ do
6: 𝐹good ← EvaluateFixes(𝑃, 𝐹new, 𝐹all, 𝑑, 𝐸)
7: 𝑃 ← ApplyFixes(𝑃, 𝐹good )
8: 𝐸 ← NullAwayErrors(𝑃)
9: 𝐹 ← FixLocations(𝐸)
10: 𝐹new ← 𝐹 − 𝐹all
11: 𝐹all ← 𝐹all ∪ 𝐹new
12: end while

13: return 𝑃

14: end procedure

15: procedure EvaluateFixes(𝑃, 𝐹, 𝐹all, 𝑑, 𝐸)
16: if 𝑑 = 0 return 𝐹

17: 𝐹good ← ∅
18: for 𝑓 ∈ 𝐹 do

19: curFixes← {𝑓 }
20: for 𝑖 ∈ [1, 𝑑] do
21: 𝑃 ′ ← ApplyFixes(𝑃, curFixes)
22: 𝐸′ ← NullAwayErrors(𝑃 ′)
23: 𝐹 ′ ← FixLocations(𝐸′)
24: if |𝐸 | − |𝐸′ | ≥ 0 then
25: 𝐹good ← 𝐹good ∪ {curFixes}
26: break

27: end if

28: newFixes← 𝐹 ′ − 𝐹all
29: if newFixes = ∅ then
30: break

31: else

32: curFixes← curFixes ∪ newFixes
33: end if

34: end for

35: end for

36: return 𝐹good
37: end procedure

qualifiers. Our second key insight was that groups of independent
fixes could be computed efficiently via graph coloring [18]. In com-
pilers, graph coloring is often used for register allocation [2]. In
our scenario, two fixes are independent if their impacted regions
do not overlap. We construct a graph representation where nodes
represents sets of fixes, and an edge between two nodes reflects
overlapping regions for their fixes. This graph can be colored to
find groups of fixes that can be evaluated in a single NullAway
run. For our example, the f1, f3, and f4 fixes for Figure 1 can all be
evaluated in a single run of NullAway (see Figure 2 in Section 4).
Overall, the optimized approach reduces the number of NullAway
runs required by two for Figure 1, and as shown in Section 8, the
reductions for real-world code are much more dramatic.

3 SEARCH-BASED QUALIFIER INFERENCE

In this section, we present an unoptimized version of our inference
algorithm for @Nullable qualifiers, to make clear how our technique
explores and evaluates the space of possible qualifiers. In Section 4,
we present our graph-coloring-based optimized search.

Pseudocode for the unoptimized technique appears in Algo-
rithm 1. Given an unannotated program 𝑃 and a depth limit 𝑑 for
evaluating fixes, FindNullableQualifiers(𝑃,𝑑) returns a mod-
ified program with @Nullable qualifiers that reduce the number
of reported NullAway errors. It uses a procedure EvaluateFixes
that, given a program 𝑃 , a set of candidate fixes 𝐹 , all previously-
considered fixes 𝐹all , the depth limit 𝑑 , and the NullAway errors 𝐸
for 𝑃 , returns a set 𝐹good of fixes that reduce the NullAway error
count for 𝑃 .

Both procedures make use of three key subroutines (whose im-
plementations are not shown). NullAwayErrors runs NullAway
to compute the errors it reports for a program 𝑃 . Given a set of
errors 𝐸, FixLocations(𝐸) first determines the subset of errors in
𝐸 that can be fixed via @Nullable insertion (see Section 2.2). For
that subset, it returns a set containing fixes for each error, i.e., the
code locations where @Nullable should be inserted to fix the error
(multiple locations may be required for a single initializer error; see
Section 6). Finally, given a program and a set of fixes, ApplyFixes
returns a new program with the fixes inserted.

The algorithm proceeds as follows. FindNullableQualifiers
runs a fixed-point loop (lines 5–12), inserting fixes determined
by EvaluateFixes to reduce the error count until no new fixes
can be found. In EvaluateFixes, if the depth limit 𝑑 = 0, all fixes
are assumed to be good (line 16), leading to their eager insertion.
Otherwise, for each fix 𝑓 ∈ 𝐹 , the algorithm iteratively applies 𝑓
and any new fixes discovered after applying 𝑓 up to somemaximum
depth 𝑑 (lines 18–35). In the first iteration, only 𝑓 itself is tested
(line 19), with newly discovered fixes added to the curFixes set for
each subsequent iteration (lines 28–33).

A fix 𝑓 is determined to be good if the curFixes set of fixes for 𝑓
does not increase the NullAway error count (lines 24–27). We keep
fixes even if they yield the same error count to improve handling of
fix chains at lower depth limits. A fix chain occurs when inserting
fix 𝑓1 causes a single new error with fix 𝑓2, 𝑓2 leads to 𝑓3, and so
on, where the final fix causes no new error. If good fixes needed to
strictly reduce the error count, then discovering the goodness of 𝑓1
would require setting 𝑑 to at least the length of the chain, reducing
performance. With our approach, the fix chain is applied even with
depth limit 1, due to the outer fixed-point loop.

Algorithm 1 is guaranteed to terminate. In an execution of Find-
NullableQualifiers, the 𝐹all set of fixes grows monotonically, and
number of possible fixes for a program is finite. So, eventually, 𝐹new
must become empty after line 10, causing the loop to terminate.

Example. Consider applying Algorithm 1 to the Figure 1 example,
with a depth limit 𝑑 = 2. In the first iteration, 𝐹new = {2, 3, 4, 5},
representing the fix locations for the initial errors reported by
NullAway. In EvaluateFixes, the fixes 2 and 4 will be labeled as
good at depth 1, since they immediately reduce the error count by
1. Fix 3 is not labeled as good, as it introduces errors that cannot
be fixed with @Nullable annotations, but fix 5 is labeled good after
exploring to depth 2 and applying subsequent fixes at lines 6 and 13
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(see Section 2.2 discussion). So, 𝐹good = {2, 4, 5, 6, 13} in the first
fixed-point loop iteration. No new fixes are observed after applying
𝐹good , so the algorithm converges, yielding the final set of @Nullable
qualifiers shown in Figure 1. For this example, the unoptimized
algorithm requires 7 calls toNullAwayErrors to compute the final
solution; Section 4 will show how we can reduce this number.

4 OPTIMIZED SEARCH

The search algorithm of Section 3 runs too slowly for larger code
bases, due to running a large number of NullAway builds. Here,
we present optimizations to significantly reduce this cost, based
on evaluating multiple independent qualifiers simultaneously in a
build. We first define the potentially-impacted regions of a qualifier
(Section 4.1), used to determine when qualifiers can be evaluated
simultaneously. Then, we give details of our graph-coloring-based
search algorithm (Section 4.2).

4.1 Potentially-Impacted Regions

Our optimizations exploit the fact that for a type-based nullness
checker, introducing a @Nullable qualifier on an entity (field, method
parameter, or method return) can only impact the final error count
in regions of the code where the entity is directly used or overridden.
This fact stems from the modular nature of the type checking; since
no inter-procedural analysis is performed by the checker to deter-
mine nullability, the impact of changed nullability for an entity
cannot propagate beyond the procedures using the entity.

A region is a method, an initializer expression (e.g., the read of f4
at line 6 in Figure 1), or an initializer block. Given an entity 𝑒 , the
potentially-impacted regions for 𝑒 are the set of regions whose con-
tained error count may change as the result of adding a @Nullable

qualifier to 𝑒 . We define potentially-impacted regions for 𝑒 as follows:
• If 𝑒 is a field 𝑓 , any region containing a read or write of 𝑓 is
potentially-impacted.
• If 𝑒 is a parameter or return of method𝐶.𝑚, then𝐶.𝑚 itself is
potentially impacted, as is any region that calls𝐶.𝑚. Further,
any method that overrides or is overridden by 𝐶.𝑚 is also
potentially impacted.

Regions that read 𝑒 may contain new errors, since once 𝑒 is @Nullable
it cannot be dereferenced or assigned to a @NonNull location. Simi-
larly, errors may be removed from regions that write 𝑒 , since writes
of @Nullable values into 𝑒 become legal. Overriding or overridden
methods may be impacted due to NullAway’s subtyping checks
(see Section 2.1). Potentially-impacted regions can be computed
using standard type-checking information, like a type hierarchy
and symbol tables.

4.2 Optimized Algorithm

Algorithm 2 gives pseudocode for the key EvaluateFixesOpt pro-
cedure of our optimized search. The overall algorithm retains the
FindNullableQualifiers procedure from Algorithm 1, with the
call to EvaluateFixes at line 6 replaced with a call to Evaluate-
FixesOpt.

EvaluateFixesOpt computes groups of independent fixes using
a conflict graph. Each node in the graph represents a pair of a root fix
𝑓 and related fixes curFixes being tested, the same state tracked for
each fix by the main loop of EvaluateFixes in Algorithm 1. Given

Algorithm 2 Optimized search based on graph coloring.

1: procedure EvaluateFixesOpt(𝑃, 𝐹, 𝐹all, 𝑑, 𝐸)
2: if 𝑑 = 0 return 𝐹

3: 𝐹good ← ∅
4: initNodes← {⟨root : 𝑓 , curFixes : {𝑓 }⟩ | 𝑓 ∈ 𝐹 }
5: 𝐺 ← ConflictGraph(initNodes)
6: for 𝑖 ∈ [1, 𝑑] do
7: groups← Color(𝐺)
8: toRemove← ∅
9: for 𝑆 ∈ 𝑔𝑟𝑜𝑢𝑝𝑠 do
10: fixes← ⋃

𝑛∈𝑆 𝑛.curFixes
11: 𝑃 ′ ← ApplyFixes(𝑃, fixes)
12: 𝐸′ ← NullAwayErrors(𝑃 ′)
13: for 𝑛 ∈ 𝑆 do

14: 𝐸𝑛 ←
⋃

𝑟 ∈Regions(𝑛) ErrorsInRegion(𝐸, 𝑟 )
15: 𝐸′𝑛 ←

⋃
𝑟 ∈Regions(𝑛) ErrorsInRegion(𝐸′, 𝑟 )

16: 𝐹 ′𝑛 ← FixLocations(𝐸′𝑛)
17: if |𝐸𝑛 | − |𝐸′𝑛 | ≥ 0 then
18: 𝐹good ← 𝐹good ∪ {𝑛.curFixes}
19: toRemove← toRemove ∪ {𝑛}
20: end if

21: newFixes← 𝐹 ′𝑛 − 𝐹all
22: if newFixes = ∅ then
23: toRemove← toRemove ∪ {𝑛}
24: else

25: 𝑛.curFixes← 𝑛.curFixes ∪ newFixes
26: end if

27: end for

28: end for

29: 𝐺 ← ConflictGraph(𝐺.nodes − toRemove)
30: end for

31: return 𝐹good
32: end procedure

33: procedure ConflictGraph(𝑁 )
34: conflictEdges← {(𝑛1, 𝑛2) | 𝑛1, 𝑛2 ∈ 𝑁
35: ∧ Regions(𝑛1) ∩ Regions(𝑛2) ≠ ∅}
36: return ⟨nodes : 𝑁, edges : conflictEdges⟩
37: end procedure

38: procedure Regions(𝑛)
39: return

⋃
𝑓 ∈𝑛.curFixes potentially-impacted regions for 𝑓

40: end procedure

a set of nodes, the ConflictGraph procedure constructs a conflict
graph, which contains an (undirected) edge between nodes 𝑛1 and
𝑛2 iff the potentially-impacted regions for the fixes in 𝑛1 .curFixes
and 𝑛2 .curFixes overlap. With this representation, the fixes for any
two non-adjacent nodes are independent, and the impacts of all
their fixes may be evaluated simultaneously.

After constructing an initial conflict graph (line 5), Evaluate-
FixesOpt proceeds by iterating up to the depth limit (starting at
line 6), similar to the line 20 loop in EvaluateFixes in Algorithm 1.
In each iteration, the algorithm computes sets of independent fixes
by coloring the current conflict graph (line 7). The Color routine
returns a set of sets of nodes groups, where for each set 𝑆 ∈ 𝑔𝑟𝑜𝑢𝑝𝑠 ,
no pair of nodes in 𝑆 is adjacent in𝐺 . Hence, fixes corresponding to
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all nodes in 𝑆 can be evaluated simultaneously in a single NullAway
run. Our implementation uses a greedy coloring algorithm [18],
which produces sufficiently good results for our needs.

For each group 𝑆 (line 9), we apply all current fixes for all nodes
in that group simultaneously, and run NullAway to compute an
updated set of errors (lines 10 to 12). This yields a single new set of
errors 𝐸′, from which we must extract the errors specific to each
node 𝑛, to determine if 𝑛’s fixes reduce the error count. We can do
so by finding original and new errors only in the impacted regions
for 𝑛 (lines 14 and 15), which are guaranteed not to overlap with
any other node in 𝑆 . The logic in lines 16–26 is analogous to that in
lines 23–33 in Algorithm 1, except that instead of breaking out of the
loop when a fix is fully handled, the corresponding node is marked
for removal from the conflict graph. After processing all groups, we
recompute the conflict graph (line 29) after removing marked nodes,
and continue to the next depth level. Recomputing the conflict graph
is needed even if no nodes are removed, as the list of current fixes
for each node may have changed, impacting the required edges
between nodes. In the end, EvaluateFixesOpt returns the same
result as EvaluateFixes from Algorithm 1 for the same inputs, but
with a smaller number of calls to NullAwayErrors.

3

2 4

5

Figure 2: Conflict graph

in first iteration of Algo-

rithm 2 run on Figure 1.

Example. Consider applying Al-
gorithm 2 to the Figure 1 example,
again with 𝑑 = 2. Figure 2 shows
the initial conflict graph for the ex-
ample, capturing which fixes have
overlapping impacted regions. The
coloring of Figure 2 shows that fixes
2, 4, and 5 can all be evaluated with
a single call to NullAwayErrors.
Overall, the same final result is com-
puted, but with 5 calls toNullAway-
Errors as compared to 7 for Algo-
rithm 1; real-world improvements
are more dramatic (see Section 8).

5 CLIENT CODE

Real-world code bases are often composed of many inter-dependent
modules, to enable more scalable development with large teams.
For scalability and ease of review, it would be very useful to be
able to apply nullability inference one module at a time for such
projects. As described thus far, our inference algorithm accounts for
NullAway errors within the code being annotated, which we term
the target code. In a multi-module scenario, the target code would
be the single module being annotated. However, our presented
technique does not yet account for potential NullAway errors in
other modules dependent on the module being annotated, which we
refer to as client code. Ignoring client code can lead to undesirable
inference results. For example, if a public method m has no calls
from within target code, inference will assume that making m’s
return type @Nullable will not introduce any new errors, even if
client code assumes m does not return null. Here we describe an
inference extension to account for assumptions made by clients of
the target code, crucial for usability in practice.

A naïve approach to handling client code could simply compile
all client code alongside the target in each build and observe the

impact of fixes in clients. We assume annotations cannot be added
to client code, so errors should only be treated as fixable if the fix
location is in the target. Unfortunately, this approach does not scale
to a large amount of client code (even with the optimizations of
Section 4), as each individual build becomes much more expensive
when all client code is included.

Instead, we handle client code via up-front caching of the impacts
of fixes on clients. For simplicity, here we assume that client code
only interacts with the target via calls to public methods; field
accesses and method overriding can be handled similarly. Under
this assumption, fixes in the target may impact the client in two
ways: (1) making a public return type @Nullable may cause new
client NullAway errors, and (2) making a public parameter type
@Nullablemay remove client errors. Before our core search, we run
up-front builds of client code to find and cache the client impacts
for each such fix; we then use the cached information during the
search and only build the target code. Empirically, the number of
up-front builds required was far fewer than the number of builds
run during the search (see Section 8), so overall this caching yields
a large speedup.

Our caching phase runs the following builds. First, we build the
client code with unmodified target code, and cache all NullAway
errors in client code caused by passing a @Nullable expression to a
@NonNull target method parameter (case (2) above). Then, we run
builds to cache the client errors introduced by making each public
target method return @Nullable (case (1) above), noting when such
errors have a fix location in the target. We dramatically reduce
the number of such builds needed for this phase by re-using the
graph coloring optimization of Section 4.2. With fully-cached in-
formation about relevant client errors and their fix locations, we
augment Algorithms 1 and 2 to use this information during the
search, requiring no further client code builds.

Result equivalence. The caching scheme described above can be
generalized to cache the errors caused by any potential fix, whether
in target or client code. This more extensive caching could yield
further search speedups: when applying a set of fixes 𝐹 , if the
impacts of all fixes in 𝐹 are already cached, the cached information
could be used to compute the overall impact of 𝐹 , avoiding a run of
NullAway. Unfortunately, in certain cases the combined impacts of
individual fixes in 𝐹 are not equivalent to the impact of applying all
fixes in 𝐹 together. This occurs because it is possible for a new error
to appear only when a pair of fixes is introduced, but not when
either fix is added individually. Consider this excerpt:

class C {

Object f1 = new Object();

Object f2 = new Object();

[...]

void m() {

f1 = f2;

f1.toString();

}

}

Say that due to NullAway errors in other code (not shown), the
search considers making f1 and f2 @Nullable. NullAway reports
a dereference-of-@Nullable error at the f1.toString() call only if
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both f1 and f2 are @Nullable. If just f1 is @Nullable, no error is
reported, since f2 is @NonNull and assigned to f1 before the call. If
just f2 is @Nullable, an error is reported at the f1 = f2 assignment,
but not at the call. Due to such cases, cached information may
under-estimate the number of NullAway errors reported when
multiple fixes are applied simultaneously. In our evaluation, we
never observed unexpected NullAway errors in client code due to
this issue.

Weighting. A question remains of how to weight client vs. target
NullAway errors during the inference search. E.g., for a small target
with a large amount of client code, one maywant to weight errors in
the target more highly than errors in clients. By default, NullAway-
Annotator weights all errors equally, but different weightings can
easily be supported.

At Uber, NullAwayAnnotator is being used to annotate indi-
vidual modules in a “monorepo” [33] containing hundreds of mod-
ules. Some modules are already checked with NullAway, and a key
requirement for NullAwayAnnotator is that no new NullAway
errors should be introduced in other modules when annotating a tar-
get. This feature eases code review, since the changes introduced by
NullAwayAnnotator are thereby limited to semantics-preserving
changes to exactly one module, requiring limited review. Before
imposing this requirement, we observed cases where NullAway-
Annotator changes caused new errors in dozens of other modules:
the fixes for these errors required reviews from many teams and
dramatically slowed adoption.

For this scenario, NullAwayAnnotator includes a strict mode,
in which it only adds annotations to the target if they do not cause
new errors in other modules. (In essence, strict mode applies an
infinite weight to client errors.) Strict mode may increase the final
number of remaining NullAway errors in the target. However, it
makes adoption of changes from NullAwayAnnotator much
easier, and as noted in Section 2.2, getting these changes merged
quickly provides an immediate benefit, as new code and most code
modifications in the target then benefit from NullAway checking.

6 INITIALIZATION

Beyond the checks discussed so far, NullAway also checks for
correct object initialization. Consider the example of Figure 3. The
t1, t2, and t3 fields are treated as @NonNull by default. However, the
TestInit constructor fails to initialize the fields, so they could still
be null at later reads (e.g., if useFields were called immediately
after the constructor). Hence, NullAway reports an initialization
error for the constructor. Our inference technique can handle such
a case by inserting a @Nullable annotation on all three fields, which
removes the error. However, this leads to three new dereference-
of-@Nullable errors in the useFields method, and hence does not
decrease the error count.

NullAway also supports initializer methods to capture cases
where fields are initialized after object construction but before
any use [4]. For the Figure 3 example, assume the intended lifecy-
cle of TestInit is that after construction, the init method should
be invoked before any other method in the class. Then, the deref-
erences in useFields are safe, as they will only occur after init

has run. Such protocols arise regularly in practice, e.g., for An-
droid activities [1]. NullAway treats any method annotated with

1 class TestInit {

2 Object t1, t2, t3;

3 TestInit() {}

4 +@Initializer

5 void init(Object o1, Object o2, Object o3) {

6 t1 = o1;

7 t2 = o2;

8 t3 = o3;

9 }

10 int useFields() {

11 // no null checks needed here

12 return t1.hashCode() + t2.hashCode()

13 + t3.hashCode();

14 }

15 }

Figure 3: Example for illustrating initialization checks.

@Initializer as a method that runs before all other methods in
the class, and reasons about field initialization in such methods
appropriately. NullAway does not check that client classes actually
invoke @Initializer methods before other methods, and hence its
handling of this feature is unsound [4].

Our approach includes limited support for inferring @Initializer
annotations. Since NullAway’s support for @Initializer is unsound,
we devised our approach to infer @Initializer under narrow con-
ditions, aiming to avoid introducing incorrect annotations. We only
add @Initializer to a method𝑚 if the following holds:

(1) 𝑚 must write a @NonNull value to at least two otherwise-
uninitialized fields, and those fields cannot be overwritten
with a @Nullable value before𝑚 returns.

(2) There can be at most one inferred @Initializer method per
class. If more than one method in𝑚’s class meets condition
1,𝑚 must be the method that initializes the most fields.

Inference of @Initializer occurs in a separate pass, before running
Algorithm 2, so that the core search does not insert @Nullable an-
notations on fields that are never null once @Initializer methods
are considered. For the Figure 3 example, our approach would add
an @Initializer annotation to init, thereby removing all errors
reported for the class. In our evaluation, we inspected all intro-
duced @Initializer annotations to check that they reflected actual
lifecycle behavior (see Section 8).

7 IMPLEMENTATION

We have implemented our approach in a tool NullAwayAnno-
tator, which is open source.3 To compute potentially-impacted
regions for fixes (Section 4.1), we implemented a code structure
scanner as an Error Prone plugin checker [12], which runs as part
of the Java compilation process (like NullAway). This scanner seri-
alizes the relevant information about uses of fields, uses of methods,
and the type hierarchy, as computed by the Java compiler. The
scanner is implemented in 1,220 (non-blank, non-comment) lines
of Java code.
3https://github.com/ucr-riple/NullAwayAnnotator

https://github.com/ucr-riple/NullAwayAnnotator
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A separate component handles insertion of annotations into
source code. It leverages JavaParser [19] to discover annotation in-
sertion locations, and then inserts annotations using string manip-
ulation to ensure whitespace is preserved. Whitespace preservation
is critical for making the tool usable in practice, as any unneces-
sary formatting modifications make changes harder to review. The
injector is implemented in 1,522 lines of Java code.

Finally, the core optimized search of NullAwayAnnotator
(Section 4.2) is implemented in roughly 4,300 lines of Java code. To
run NullAwayAnnotator, a developer must integrate NullAway
and the code structure scanner as part of their compilation scripts.
NullAwayAnnotator is build-system independent, as a variety
of build systems are in common use in the Java ecosystem. For ease
of implementation, we made minor modifications to NullAway to
serialize its output in a machine-readable format. This output could
have been parsed directly from NullAway’s error messages, but at
greater engineering cost.

8 EVALUATION

In this section, we present an experimental evaluation of Null-
AwayAnnotator, showing the effectiveness of its inferred annota-
tions and of our performance optimizations.

8.1 Experimental setup and research questions

We evaluated NullAwayAnnotator on two separate datasets of
Java code bases. First, we used a collection of 14 open-source Java
projects from GitHub. From the most popular Java projects on
GitHub (as determined by number of stars), we chose 13 projects
that use the Gradle build system [14], to ease integration of Null-
Away andNullAwayAnnotator’s configuration. To ensure greater
diversity in the benchmarks, we limited the number of Android
projects to five. Finally, we included WALA:Util, a module from the
WALA static analysis library [37] maintained by one of the authors,
to evaluate adopting NullAway via NullAwayAnnotator on an
open-source project (see Section 8.4). We did not create a larger
suite of open-source benchmarks due to the manual effort required
to integrate NullAway and NullAwayAnnotator into the build
scripts of each benchmark.

Second, we used a set of 8 modules from Uber’s repository of
Java server code. These targets (T1 to T8) were selected on the basis
of a one-week sampling of production crash logs. They represented
the top-8 targets by NPE count in this dataset, excluding one target
on which NullAwayAnnotator crashed and any targets that were
already enrolled in NullAway (which may still contain NPEs due to
third-party libraries [4]). At the time of our evaluation, targets T1
to T8 were not already enrolled onto NullAway using NullAway-
Annotator; we avoided previously-enrolled targets so that all
experiments could be run with a single tool version. See Section 8.4
for further discussion regarding real-world usage of NullAwayAn-
notator to enroll targets.

Table 1 gives the size and type of each benchmark. While the
open-source dataset represents standalone programs and libraries,
the Uber dataset consists of build targets: program modules built
and unit tested independently, but which serve as part of one or
more production services.

Table 1: Benchmark types and sizes, and the error reduction

from NullAwayAnnotator at depths 0, 1, and 5.

Benchmark Name KLoC Number of Errors
Initial Depth 0 Depth 1 Depth 5

O
pe
n
So
ur
ce

Pr
oj
ec
ts

Framework
Conductor 9.2K 159 170 (+6.9%) 44 (-72.3%) 30 (-81.1%)
Mockito 17.6K 205 95 (-53.7%) 47 (-77.1%) 30 (-85.4%)
SpringBoot 35.1K 777 204 (-73.7%) 184 (-76.3%) 77 (-90.1%)

Game Engine
LitiEngine 30.1K 480 468 (-2.5%) 191 (-60.2%) 184 (-61.7%)
LibGdx 92.1K 1549 2314 (+49.4%) 516 (-66.7%) 442 (-71.5%)

Libraries
MPAndroid 16.1K 174 489 (+181.0%) 64 (-63.2%) 53 (-69.5%)
Glide 24.6K 287 195 (-32.1%) 112 (-61.0%) 105 (-63.4%)
EventBus 1.9K 49 18 (-63.3%) 12 (-75.5%) 10 (-79.6%)
Gson 8.0K 161 38 (-76.4%) 39 (-75.8%) 28 (-82.6%)
Eureka 8.0K 74 70 (-5.4%) 31 (-58.1%) 25 (-66.2%)
Retrofit 3.6K 26 13 (-50.0%) 13 (-50.0%) 13 (-50.0%)

Compiler Tools
Jadx 39.8K 493 865 (+75.5%) 132 (-73.2%) 124 (-74.8%)
WALA:Util 19.5K 190 294 (+54.7%) 88 (-53.6%) 76 (-60.0%)

Network Library
Zuul 15.2K 204 43 (-78.9%) 31 (-84.8%) 23 (-88.7%)

U
be
r

T1 35.7K 537 454 (-15.5%) 200 (-62.8%) 187 (-65.2%)
T2 81.7K 1072 991 (-7.6%) 328 (-69.4%) 310 (-71.1%)
T3 12.9K 229 134 (-41.5%) 46 (-79.9%) 31 (-86.5%)
T4 20.1K 111 70 (-36.9%) 70 (-36.9%) 70 (-36.9%)
T5 13.8K 222 192 (-13.5%) 126 (-43.2%) 126 (-43.2%)
T6 3.4K 47 61 (+29.8%) 10 (-78.7%) 9 (-80.9%)
T7 5.9K 35 28 (-20.0%) 21 (-40.0%) 19 (-45.7%)
T8 14.8K 301 166 (-44.9%) 91 (-69.8%) 76 (-74.8%)

Using these two datasets, we seek to answer the following key
research questions:

(1) Is NullAwayAnnotator effective in reducing the number
of reported NullAway errors for these benchmarks?

(2) How does our technique compare with the strategy of ap-
plying all possible fixes, in terms of error reduction?

(3) What is the impact of the depth limit (see Section 3) on tool
effectiveness, in terms of number of errors removed and
running time?

(4) How much do our optimizations (Section 4) reduce running
time over unoptimized?

(5) Is the output of NullAwayAnnotator an adequate basis to
enable NullAway checking on previously-unannotated code
in a production setting?

Section 8.2 addresses questions 1–3, Section 8.3 addresses question
4, and Section 8.4 addresses question 5.

Experiments for open-source benchmarks were performed on a
desktop with an 11th Gen Intel(R) Core(TM) i7-11700 @ 2.50GHz 8
core CPU and 32GB RAM running Ubuntu 20.04.5 LTS. Experiments
at Uber were performed inside a Linux container on a shared AMD
EPYC 2.45GHz machine, with 24 cores per socket and 2 sockets
reporting 377 GB of RAM. We did not have dedicated access to this
machine during our measurements, but it usually stayed at low
utilization during experiments.
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8.2 Error count reduction and depth bound

We first evaluated the effectiveness of NullAwayAnnotator at
reducing the number of errors reported by NullAway. Data on
this error reduction after running NullAwayAnnotator with
various depth limits is shown in Table 1, with percentage changes
in parentheses. The Initial column gives the number of NullAway
errors before running inference. We show error reduction with
depth limits 0, 1, and 5. Recall from Section 3 that a depth limit of
0 corresponds to eagerly inserting all possible fixes, ignoring the
impact on error count.

Eager insertion of all possible fixes (depth limit 0) always yields
more remaining errors than depth 1, and sometimes yields a higher
number of errors than were reported on the original code! E.g., for
LibGdx, the number of reported NullAway errors increases from
1549 to 2314 (49% more errors) at depth 0, and for MpAndroid the
number of errors increases by 181%. These results show that our
search strategy produces a final result with many fewer errors than
performing eager @Nullable insertion.

To determine the impact of the depth limit, we ran NullAway-
Annotator with limits of 1–10 across all of our benchmarks. We
observed that the final number of errors was never reduced further
going beyond depth 5. Also, the running time at depth 5 was an
average of 2.24X the depth 1 running time, a reasonable cost. So, on
our benchmarks we concluded that depth 5 yielded the best tradeoff
between performance and error reduction, and we used that depth
limit for all subsequent experiments.

At depth 5, we saw an average reduction of 69.5% in the num-
ber of NullAway errors reported when compared to the initial
code, ranging from 36.9% (for the T4 Uber target) to 90.1% (for
SpringBoot). The significant reduction of errors from running
NullAwayAnnotator has multiple benefits: it enables more code
to be checked immediately by NullAway via warning suppressions
(see Section 8.4), and it reduces the effort required to eventually
enroll all the code in NullAway checking.

8.3 Impact of optimizations

Next, we evaluated the performance impact of our graph-coloring
optimizations (Section 4), and our results appear in Table 2. All con-
figurations were run with a depth limit of 5 and a timeout of 8 hours.
We show both the overall running time in minutes, and also the
number of NullAway builds run in each configuration (nearly all ex-
ecution time of NullAwayAnnotator is spent running NullAway
builds, on average over 97% of running time for our open-source
benchmarks). For our benchmarks, we observe enormous reduc-
tions in running times with the graph coloring optimization over
unoptimized; the speedups range from 2.0X–17.8X, with an average
of 6.1X. Further, for T1 and T2 we could not measure the speedup,
as the unoptimized run could not complete within an 8-hour limit.

We observe a similarly-large reduction in number of builds re-
quired with optimizations enabled, showing that a significant num-
ber of the qualifiers evaluated by our search are in fact independent.
Regarding the number of up-front builds required for client code
(Section 5), we observed an average of 2.4 builds and a maximum of
8 across our benchmarks, small compared to the number of builds

Table 2: Running time and number of builds for unoptimized

and optimized configurations.

Benchmark Name Time (Minutes) Number of builds
Unoptimized Optimized Unoptimized Optimized

O
pe
n
So
ur
ce

Pr
oj
ec
ts

Conductor 28.9 6.3 (4.6X) 351 115 (3.1X)
Mockito 25.3 3.0 (8.4X) 383 71 (5.4X)
SpringBoot 461.7 26.0 (17.8X) 1427 113 (12.6X)
LitiEngine 59.0 5.1 (11.5X) 1122 98 (11.4X)
LibGdx 339.2 27.7 (12.2X) 2320 195 (11.9X)
MPAndroid 33.4 9.8 (3.4X) 402 119 (3.4X)
Glide 28.9 5.1 (5.7X) 455 104 (4.4X)
EventBus 1.5 0.5 (3.0X) 77 26 (3.0X)
Gson 9.2 1.8 (5.1X) 181 66 (2.7X)
Eureka 6.5 2.4 (2.7X) 198 72 (2.8X)
Retrofit 0.6 0.3 (2.0X) 22 12 (1.8X)
Jadx 68.7 10.5 (6.5X) 868 126 (6.9X)
WALA:Util 76.11 12.37 (6.2X) 547 76 (7.2X)
Zuul 25.3 2.3 (11.0X) 206 58 (3.6X)

U
be
r

T1 X 70.02 (-) 593+ 77 (-)
T2 X 114.02 (-) 706+ 89 (-)
T3 183.19 44.42 (4.1X) 404 91 (4.4X)
T4 33.02 13.74 (2.4X) 53 18 (2.9X)
T5 292.06 61.28 (4.8X) 559 110 (5.1X)
T6 24.01 9.75 (2.5X) 59 19 (3.1X)
T7 31.64 12.48 (2.5X) 72 22 (3.3X)
T8 374.44 71.69 (5.2X) 842 154 (5.5X)

Table 3: Number of annotations injected by NullAwayAn-

notator.

Benchmark Name Depth 5 Suppress-only
# @Nullable # Suppression % unchecked % unchecked

O
pe
n
So
ur
ce

Pr
oj
ec
ts

Conductor 319 31 5.95% 22.6%
Mockito 322 31 3.6% 14.82%
SpringBoot 1331 81 1.99% 12.03%
LitiEngine 993 158 5.85% 12.08%
LibGdx 1426 459 4.77% 10.04%
MPAndroid 253 66 2.49% 6.27%
Glide 370 99 5.68% 9.57%
EventBus 71 9 5.44% 14.97%
Gson 202 21 5.2% 18.42%
Eureka 138 30 6.04% 11.71%
Retrofit 27 10 16.79% 17.1%
Jadx 509 139 4.98% 12.18%
WALA:Util 165 67 4.27% 7.66%
Zuul 164 27 5.13% 9.15%

U
be
r

T1 501 177 8.54% 13.16%
T2 863 290 8.59% 15.09%
T3 320 28 3.89% 19.55%
T4 322 46 10.15% 13.64%
T5 231 103 14.61% 20.67%
T6 35 10 2.12% 10.18%
T7 88 19 4.42% 6.52%
T8 656 81 8.64% 7.66%

required during search. We conclude that the graph-coloring opti-
mization provides an enormous benefit and is essential for making
NullAwayAnnotator practical for larger programs.
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8.4 Tool output and real-world usage

Here, we characterize the inferred annotations discovered by Null-
AwayAnnotator and describe its real-world usage thus far. Table 3
gives data on the final solutions found by NullAwayAnnotator
for our benchmarks. For depth 5, we show the number of @Nullable
annotations inferred, the number of annotations inserted to sup-
press remaining warnings, and the percentage of code that remains
unchecked by NullAway due to these suppressions. We also show
the percentage of unchecked code for a baseline configuration, in
which all the errors initially reported by NullAway are suppressed
(without running inference). Due to a tool bug, for one benchmark
(T5) we added one suppression annotation manually.

The number of @Nullable annotations inserted byNullAwayAn-
notator is significant (up to 1,426), reflecting the large amount of
manual work otherwise required to adopt NullAway. After suppres-
sions were inserted at depth 5, the percentage of unchecked code
ranged from 1.99% to 16.79%, with an average of 6.32%. In compari-
son to the baseline of suppressing with no inference, the percentage
of unchecked code decreased by an average factor of 2.54X (0.89X
to 6.05X). For the one target where the amount of unchecked code
increased with inference (the Uber T8 module), the baseline sup-
presses many uninitialized field warnings at the field declarations,
while inference makes the fields @Nullable and adds suppressions
on certain methods using the fields. Even though inference adds
many fewer suppressions (81 vs. 362 for the baseline), due to the
placement of these suppressions on methods rather than fields, the
amount of unchecked code becomes higher. Table 1 shows that
inference still dramatically reduces the number of NullAway errors
for this benchmark.

Overall, the data show that our inference allows for a much
greater amount of existing code to be immediately checked by
NullAway, yielding greater safety for future code modifications
with no manual effort.
InitializersWemanually inspected all injected @Initializer anno-
tations, and all were correct except for two in LibGdx. For the bad
cases, the method was in fact a setter not involved in initialization,
though it assigned values to multiple fields. In the future, we believe
we can make @Initializer inference more accurate by leveraging
method naming patterns (e.g., including methods with names like
init while excluding methods whose names start with set).
DeploymentNullAwayAnnotator has been deployed at Uber for
self-serve use by developers. Thus far, it has been used to enroll 160
modules in NullAway checking, consisting of roughly 1.365 million
lines of Java code. Running NullAwayAnnotator on production
modules led to many bug fixes and improvements in the tool it-
self, e.g., handling of code generation by annotation processors.
The main lesson from our experience thus far is that NullAway-
Annotator changes should as much as possible be scoped to a
single module and be semantics-preserving, to avoid long code
review cycles (see Section 5). A key issue with extended code re-
view is that the target and client code keeps evolving, and keeping
the inferred changes consistent with the evolving code requires
significant manual effort.

We also used NullAwayAnnotator to enable NullAway check-
ing for the WALA:Util open-source module, maintained by one of
the paper authors. Here, we again found NullAwayAnnotator’s

support for analyzing client code to be useful, as WALA:Util is
used by many other modules in the project, and we wanted the
annotations to capture that usage behavior. In studying the final
output, we found several places where NullAwayAnnotator in-
ferred a @Nullable annotation for a field or method parameter, but
the author would have preferred to refactor the code to make that
location @NonNull. Automatically performing such code refactor-
ings and repairs is out of scope for NullAwayAnnotator, but is a
fruitful avenue for further research.

The @Nullable annotations discussed above could be consid-
ered “false positives” since they do not match the annotations a
developer would have written by hand; we expect that similar
cases may have occurred in our other benchmarks. We have found
that in such cases, introducing the desired developer annotations
usually also requires modifying executable program code. Any
change that modifies executable code require much deeper review
than the changes generated by NullAwayAnnotator, which are
semantics-preserving. For effective deployment, we believe future
repair approaches would be best deployed in combination with
NullAwayAnnotator; NullAwayAnnotator’s changes would
enable immediate NullAway checking with no review required,
and subsequent automated repair patches could be reviewed and
incorporated gradually.

8.5 Threats to Validity and Limitations

The main threat to the external validity of our evaluation is our
choice of benchmarks. We strove to choose a diverse set of bench-
marks in a principled manner (see Section 8.1). Still, it is possible
that on less popular open-source benchmarks, or on benchmarks
using build systems besides Gradle, NullAwayAnnotator will
be less effective. And, it is possible that NullAwayAnnotator is
particularly effective for code written in the style used at Uber, but
that it will be less effective for other proprietary code. Regarding
internal validity, our results may be impacted by implementation
bugs in NullAwayAnnotator. To combat this issue, NullAway-
Annotator has an extensive suite of unit and integration tests.
Further, for all benchmarks, we verified that the final result of
NullAwayAnnotator was exactly the same with and without
optimizations enabled. We have also manually vetted the output of
NullAwayAnnotator on several Uber targets.

A limitation of NullAwayAnnotator is that it does not support
inference of all annotations supported by NullAway. We do not yet
support inference of @Contract, @RequiresNonNull, and @Ensures-

NonNull annotations, used to express pre- and post-conditions (e.g.,
that some field of a parameter must be @NonNull at method entry).
We focused on inference of @Nullable annotations initially, since it
provides a large benefit on its own, but we plan to support inference
of pre- and post-condition annotations in the future. Other nullness
checkers [28, 31] support writing type qualifiers on generic type
arguments (e.g., List<@Nullable String>), but NullAway does not.
NullAwayAnnotator does not currently support inference of
such qualifiers, but we are working to extend it with such support.

9 RELATEDWORK

There is a wide and rich literature on classical type inference (or
type reconstruction) [32, Chapter 22], which focuses on discovering
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whether there exists a (complete) typing for an unannotated pro-
gram in a given type system. Our problem differs from the classical
case as we nearly always target programs where no such typing
exists, and our goal is to find a maximal set of useful type qualifiers
for such programs. As such, we focus our related work discussion
on techniques more closely related to our target scenario, and do
not discuss type inference work more broadly.

Checker Framework Inference [7] uses constraint-based analysis
to infer types, and the approach has been applied successfully to
a type systems for measurement units [38]. This approach solves
the constraints using MaxSAT, which could be adapted to output a
partial typing for the program when the constraints are unsatisfi-
able. Previous approaches to improved error explanation for type
inference [23, 29, 39] and migration of dynamically-typed programs
to use gradual types [6, 25, 30] are also based on constraints, and
could be similarly adapted. However, as noted in Section 1, we re-
quire reuse of an existing checker implementation for our scenario,
and cannot re-implement the checker using constraints.

The Checker Framework includes whole-program inference
(WPI) functionality [20] that works with unmodified pluggable
type system implementations. The technique works by inserting
the most specific type qualifier compatible with all expressions
written into an entity (a field, parameter, or return value), running
to a fixed point. WPI is integrated into the Checker Framework, and
hence can infer many annotations from a single run. Our technique
treats the checker as a black box, necessitating the optimizations
of Section 4 for better performance. Our less-coupled approach
makes it potentially easier to combine our technique with other
checker implementations, and we plan to explore integrations with
the Checker Framework. WPI is not guided by minimizing the fi-
nal number of errors reported; its strategy resembles that of our
eager insertion of qualifiers, which Section 8 showed can increase
the final number of errors. Also, our technique aims to generate
annotations a developer would accept into their source code. WPI
may generate many annotations unrelated to any reported error,
which developers are unlikely to incorporate (to minimize clutter).

The Daikon dynamic invariant detector [11] can infer @Nullable
annotations from dynamic behaviors [8]. This approach infers a
@Nullable qualifier only for locations observed to be null at runtime,
a guarantee that any static approach cannot provide. As with any
dynamic approach, it requires that the target code to be executable
by the tool and that some set of suitable inputs is available. Static
approaches like ours are complementary, as they need not be able to
execute the program and can account for all possible code behaviors.

Cascade [36] is an interactive type qualifier inference tool that
involves programmers in the inference process. Cascade also targets
programs where code changes are likely to be required to make the
code type check. NullAwayAnnotator aims to automate more of
the qualifier inference process than Cascade. The two approaches
are complementary; after adopting the initial annotations proposed
by NullAwayAnnotator, a developer could use a Cascade-like
tool to aid in gradually fixing the remaining errors.

Recent work has applied modern machine learning techniques
to type inference [16, 34] and to program repair whose fixes may
include type qualifier insertion [3]. We have not yet pursued such
techniques due to the amount of training data required; we are
not aware of a publicly-available data set showing how @Nullable

qualifiers are inserted to address type errors. In the future we plan
to investigate generation of training data [5] to further enable a
learning-based approach. Note that TypeWriter [34] also uses black-
box executions of an extant type checker to evaluate candidate
types; we believe our graph-coloring optimization could be used to
reduce the number of type checker runs required by their technique.

10 CONCLUSIONS

We have presented a novel approach to inference of nullability qual-
ifiers for Java programs, to enable applying nullness type checkers
to extant code bases. In contrast to many other techniques, our
approach treats the type checker as a black-box oracle and does
not require re-implementation of its logic. We defined an effective
search strategy for discovering a good set of qualifiers to insert,
and presented optimizations to dramatically speed up the search.
We implemented our approach in an open-source tool NullAway-
Annotator and evaluated it on both open-source and commercial
code bases. Our evaluation showed that NullAwayAnnotator
scaled well, and that the inferred annotations significantly reduced
the number of errors reported, enabling NullAway checking for
more existing code. NullAwayAnnotator has already been used
to enable NullAway checking for 160 production modules at Uber.
In future work, we plan to generalize our approach to other static
type and type-qualifier systems.

11 DATA AVAILABILITY

NullAwayAnnotator is open source and available at https://
github.com/ucr-riple/NullAwayAnnotator. Further, we have made
an artifact available at https://zenodo.org/record/8271236 contain-
ing the code for NullAwayAnnotator and scripts to run it on our
open-source benchmarks.
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