
MemInsight: Platform-Independent Memory Debugging for
JavaScript

Simon Holm Jensen
Snowflake Computing, USA

simon@hjensen.net

Manu Sridharan
Samsung Research America, USA
m.sridharan@samsung.com

Koushik Sen
UC Berkeley, USA

ksen@cs.berkeley.edu

Satish Chandra
Samsung Research America, USA

schandra@acm.org

ABSTRACT
JavaScript programs often suffer from memory issues that
can either hurt performance or eventually cause memory ex-
haustion. While existing snapshot-based profiling tools can
be helpful, the information provided is limited to the coarse
granularity at which snapshots can be taken. We present
MemInsight, a tool that provides detailed, time-varying
analysis of the memory behavior of JavaScript applications,
including web applications. MemInsight is platform in-
dependent and runs on unmodified JavaScript engines. It
employs tuned source-code instrumentation to generate a
trace of memory allocations and accesses, and it leverages
modern browser features to track precise information for
DOM (document object model) objects. It also computes
exact object lifetimes without any garbage collector assis-
tance, and exposes this information in an easily-consumable
manner for further analysis.

We describe several client analyses built into MemInsight,
including detection of possible memory leaks and opportuni-
ties for stack allocation and object inlining. An experimental
evaluation showed that with no modifications to the runtime,
MemInsight was able to expose memory issues in several
real-world applications.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
Memory profiling, leak detection

1. INTRODUCTION
JavaScript has become a popular, mainstream program-

ming language. It is the lingua franca of the web and is mak-
ing inroads into other settings such as servers via node.js.
However, developer tools for JavaScript still lag behind those

Figure 1: Number of objects in memory for three
moves in annex, as shown by MemInsight. The x-
axis represents logical time.

for better-established languages like C and Java, including
tools for memory profiling.

Though free of traditional memory leaks, JavaScript pro-
grams often suffer from memory issues seen in other garbage-
collected languages. It is common to find avoidable instances
of drag, i.e., objects reachable in the heap past their last
use [32]; if such objects never become unreachable, they
are considered leaked. JavaScript programs also suffer from
churn, i.e., frequent heap allocation of short-lived objects and
bloat, i.e., wasteful representation of data. It is common to
find mistakes in the way JavaScript objects and the objects
in the browser’s document object model (DOM) interact,
causing insidious DOM leaks. Moreover, although JavaScript
frameworks such as jQuery [16] are intended to make web pro-
gramming simpler, it is easy to introduce memory problems
via incorrect use of framework APIs.

As a concrete example of drag, consider Figure 1, which
shows the number of objects in memory over time in annex [2],
a Reversi-style game implemented as a web application. T1,
T2 and T3 denote the start of the machine’s computation of
its move in response to the human player’s first three moves,
respectively. The blue (upper) curve shows the number
of objects reachable in the heap; the orange (lower) curve
shows the number of stale objects reachable in the heap.
An object is stale if it is reachable in the heap but will not
be used again in the current execution. Such objects can
waste space, since they cannot be reclaimed by the garbage
collector. Although the memory for computation of the
machine’s move is de-allocated right after the computation,
the peak memory consumption per move is increasing, and
much of the memory is stale. If there were a way to release
this stale memory early, or not allocate it to begin with, then
the program’s peak memory usage could be much lower. (In
fact, using our tool, we were able to refactor this program to
reduce its peak memory usage substantially; see Section 5.)



A common approach to debugging memory issues in Java-
Script applications is to take periodic snapshots of the heap,
as implemented, for example, in the Chrome Developer Tools
[5] (CDT). CDT allows for visualizing various useful proper-
ties of a heap snapshot, e.g., a count of objects of each type
(as determined by its constructor) and the access paths to
those objects. The recommended way to diagnose memory
issues with CDT is to compare (diff) a series of snapshots
and see if the counts of certain types of objects unexpectedly
increase, indicating a possible memory leak.

While useful, the snapshot approach suffers from the key
limitation that it misses many transient behaviors that occur
between snapshots. For example, if snapshots were manually
taken between computer moves for the execution shown in
Figure 1 (e.g., at times T2 and T3), they would completely
miss the staleness problem in this app. In fact, with snapshots
alone, one cannot determine whether an object is stale or
not. Snapshots may also miss object churn issues, as a large
number of short lived objects may get allocated and collected
between successive snapshots.

For C and Java developers, a number of techniques and
tools have been developed (e.g., Valgrind [26]) that go beyond
heap snapshots to provide very detailed visibility into a
program’s memory usage and possible problems [3, 17, 22,
24, 28, 38, 40–42]. These techniques often modify language
runtimes to monitor memory behaviors and apply various
heuristics such as heap growth and object drag to detect
memory problems. However, there are several challenges in
simply porting these techniques and tools to JavaScript and
web applications. First, JavaScript programs can be written
for various platforms such as desktop browsers, browsers
on mobile operating systems such as Tizen (www.tizen.org)
the WebViewer component of iOS, and node.js all running
different JavaScript engines having different native APIs.
Therefore, it is not possible to develop a universal JavaScript
memory debugging tool, which works for all platforms, by
modifying a single JavaScript engine. Second, JavaScript
engines of browsers can access, create, and manipulate DOM
components of a browser. Such interactions allow objects to
move from the JavaScript world to the DOM world and vice
versa. Such data interactions across the language boundary
create unique challenges when one cannot monitor memory
behaviors by modifying a JavaScript engine.

To address these challenges, we have developed Mem-
Insight, a browser-independent extensible memory debug-
ging tool for JavaScript and web applications. The tool works
by instrumenting JavaScript programs and can run on any
platform that provides a standard JavaScript engine. The
overall architecture of MemInsight is shown in Figure 2.
First, JavaScript code (A) is instrumented, such that exer-
cising instrumented code (B) yields a trace (C) of operations
relevant to memory analysis, described in Section 3.1. To
trace DOM-related memory behaviors, MemInsight uses
modern browser features to asynchronously observe DOM
mutations, and employs select additional modeling to record
informative allocation sites for nearly all DOM nodes in
practice (details in Section 3.4). A separate lifetime anal-
ysis recovers object lifetime information from the trace by
simulating the application’s heap and combining reference
counting with the Merlin algorithm [14] (see Section 3.2).
Both the lifetime analysis and trace generation phases are
carefully designed to handle unusual cases arising due to
uninstrumented code and native library code (Section 3.3).

The lifetime analysis produces an enhanced trace (D) that
includes object unreachability events. Finally, a number of
client analyses compute useful additional information based
on the enhanced trace, such as potential memory leaks, drags,
churns, and opportunities for stack allocation and object in-
lining (Section 4). The results are shown in a web-based GUI.
MemInsight is fully extensible: the enhanced trace gener-
ated by MemInsight can be queried to implement other
client analyses.

We observed that simply reporting a memory problem is
often not sufficient to effectively debug the problem. Mem-
Insight provides useful diagnostic information, call tree
and access paths, for the objects responsible for a memory
problem. A call tree shows us the calling context in which
the problematic objects got allocated and the access paths
reveal the chain of objects that is holding the problematic
object and is preventing it from getting garbage collected.
These information help developers to effectively understand
and fix the memory problems reported by MemInsight.

A key advantage of MemInsight is that it is browser ag-
nostic and requires no modification to a JavaScript runtime.
As such the tool is usable across a variety of JavaScript envi-
ronments, including desktop browsers, browsers on mobile
operating systems like Tizen, and node.js on the server.
Beyond the need for portability, building the tool without
runtime modifications brings advantages in maintainability
and deployability. JavaScript runtimes and browsers evolve
very quickly, making maintaining a modified runtime while
retaining support for the latest browser features an enormous
challenge. Deployment also becomes difficult with a modified
runtime, as users must download and use a custom browser
build for profiling purposes. For all these reasons, we focused
on developing a browser-independent, instrumentation-based
approach to memory profiling.

In MemInsight, we addressed several challenges that arose
due to our pragmatic decision to keep MemInsight browser
independent:
• Reasoning about an object’s staleness requires deter-

mining when the object becomes unreachable. How-
ever, JavaScript does not provide any built-in method
for determining when an object is garbage collected
(from which unreachability times can be computed [14]).
Hence, we had to reconstruct object lifetime informa-
tion in MemInsight with no support from the Java-
Script runtime.
• Tools such as Valgrind typically assume that they are

able to observe all memory accesses in a program. For
web applications, this assumption is very hard to satisfy
without browser modification, due to various native
libraries and the DOM. Furthermore, a user might
wish to purposely exclude certain frameworks from
instrumentation. We designed MemInsight so that it
is resilient to passing of objects back and forth between
instrumented and uninstrumented code.
• The DOM and its manipulation via JavaScript present

special challenges. DOM manipulation can be per-
formed via a wide variety of APIs that would be diffi-
cult to model exhaustively. Also, the notion of staleness
for a DOM node should take into account whether it
is visible on the web page, which is not evident when
just tracing memory accesses.
• Finally, JavaScript is a complex language, and dealing

with features such as closures, constructors, getters and



(A)$
JavaScript$

code$

(B)$
Instrumented$
JavaScript$

code$

Instrumentor$
(C)$

Trace$
(D)$

Enhanced$
Trace$

Life>me$
analysis$

Run$ Client$
analyses$ GUI$

Figure 2: MemInsight tool chain

setters, etc. is not straightforward, particularly when
instrumenting source code rather than a normalized
intermediate representation within a runtime.

To the best of our knowledge, no previous work has shown
how to address all of these challenges together in a realistic
and practical tool that runs on unmodified browser runtimes.
We consider this as our key contribution.

We performed an experimental evaluation to test both
the overhead and usefulness of MemInsight on a variety
of benchmarks. MemInsight incurred a reasonable 41.7X
mean slowdown for the compute-intensive Octane bench-
marks, with the slowdown being hardly noticeable for more
typical web applications. Thus far, MemInsight has been
used to discover or confirm memory issues in ten web and
node.js applications, with several issues discovered by a
product group at Samsung using the tool. In three cases, we
submitted patches to fix discovered issues that were merged
by the developers.

MemInsight is publicly available at https://github.com/
Samsung/meminsight. A replication package for MemInsight
has been successfully evaluated by the Replication Packages
Evaluation Committee and found to meet expectations. We
believe that MemInsight can be modified and extended
easily even if a researcher/developer is not an expert in the
internals of a JavaScript engine.

The rest of the paper is organized as follows. Section 2
gives a detailed overview of debugging a memory issue with
MemInsight. The different phases of MemInsight are out-
lined in Sections 3 and 4, as described above. Sections 5 and 6
respectively present case studies showing MemInsight’s ef-
fectiveness and a quantitative evaluation. Finally, Section 7
discusses related work, Section 8 discusses limitations, and
Section 9 concludes.

2. DEBUGGING WITH MEMINSIGHT
In this section, we highlight the use of MemInsight from

a user’s perspective. We present an example illustrating the
types of memory leaks often present in web applications, and
show how MemInsight’s features combine to help diagnose
the problem.

A small jQuery-based example is shown in Figure 3, based
on a real drag issue found in our shopping list case study
(see Section 5). In function f(), a new div DOM node is
allocated (into variable newDiv) (line 2), made to contain
the text "Hello world" (line 3), and attached to an existing
DOM node identified by the ID 'contents' (line 7). An event
handler function is attached to the newly allocated node
(lines 4–6), which changes the background color when a user
clicks on the div. In function g(), the developer removes this
new div from the DOM by assigning an empty string to the
innerHTML property of the 'contents' node (line 11).

Alas, there is a memory problem. The jQuery framework
caches event handlers associated with DOM nodes, and clears
the cache only when a node is removed using a proper jQuery

1 function f() {
2 var newDiv = $('<div/>');
3 newDiv.html("Hello world");
4 newDiv.click(function () {
5 newDiv.css("backgroundColor", "red");
6 });
7 newDiv.appendTo('#contents');
8 }
9

10 function g() {
11 document.getElementById('contents').innerHTML = '';
12 }

Figure 3: scr_orig.js, a small leak example

API call, e.g. (in this case) $('#contents').empty(). Since
the developer removed the node via innerHTML instead, the
event handler closure remains in jQuery’s cache and becomes
stale, as it does not get used again.

Since the event handler uses variable newDiv (line 5), a
reference to the div element remains in its closure, causing
the DOM element itself to also drag; this is known in the
developer community as leaking of DOM nodes, as it a
common issue in web applications. (We will use the terms
leak and drag interchangeably.) Closure-related drags are
common in JavaScript programs, as even local variables
unrelated to the function for which the closure is created
can get retained by the closure, extending their lifetimes
inadvertently.

Assume that the creation of newDiv and buggy removal
of that node by assignment to innerHTML is repeated a few
times. How does one begin to notice a memory problem?

As discussed in Section 1, MemInsight reports which ob-
jects are stale and will not be used again, using an analysis for
computing object lifetimes. Figure 4 shows screen captures
from the MemInsight GUI. The time-line chart (A) shows
the count of all objects with time (in blue) as well as all stale
objects with time (in orange). The increasing count of stale
objects is a cause for concern. The pie-chart on the right
shows which allocation sites are the leading contributors to
stale objects.

If we click on the pie chart slice for line 4 of scr_orig.js,
MemInsight offers details for that allocation site, shown in
Figure 4(C). We see a timeline chart for only the objects
allocated from that site; a call tree leading up to that site
(here it is called from main) and on demand, access paths to
objects allocated at that site. The access paths show that
the function object is held on by a cache internal to jQuery.

We illustrate a case of DOM leak as well. Going through
the list of sites that MemInsight finds having a high count
of stale objects, we come across the DOM nodes allocated at
line 490 in jQuery. For a DOM node d, staleness means that
d is unused, detached from the document tree for the last
time–hence not to be displayed again–and reachable from
some JavaScript variable.



(A) (B)

(C)

Figure 4: A,C. Memory profiling for the example in Fig 3. B. Call tree and access paths for jQuery line 490.

How does the user associate the allocation of DOM objects
at line 490 in jQuery to the program in Figure 3? Details
provided by MemInsight for line 490 show the call tree and
access paths shown in Figure 4(B), which informs us that
the allocation is the result of the $ function called at line 2
in Figure 3. But why does it show increasing staleness? The
access paths reveal the answer: the variable newDiv is in the
closure of the handler allocated at line 4 in Figure 3. We
previously saw why the latter was leaking. This now shows
that, inadvertently, that causes a DOM node leak as well.

Incidentally, to discover DOM staleness, a tool must know
the structure of the DOM as it evolves, noting when DOM
nodes become detached from the main tree. This information
is not evident from JavaScript execution alone: for this
example, the nodes are allocated by calling the native method
createElement and become detached from the main DOM
due to the write to innerHTML at line 11 in Figure 3. Mem-

Insight’s DOM modeling techniques enable it to handle this
case correctly.

3. TRACE GENERATION AND LIFETIME
ANALYSIS

In this section, we detail the trace generation and life-
time analysis functionality of MemInsight. Basic trace
generation, described in Section 3.1, uses source instrumen-
tation to log a detailed trace of an execution’s memory op-
erations. The lifetime analysis, described in Section 3.2,
uses this trace to compute exact object lifetimes, yielding
an enhanced trace. Beyond this core functionality, we also
describe MemInsight’s carefully-designed handling of unin-
strumented code in Section 3.3 and DOM APIs in Section 3.4.
Finally, we discuss handling of various tricky JavaScript con-
structs in Section 3.5, and in Section 3.6 we describe key
optimizations that help to reduce MemInsight’s overhead.



1 var x = {};
2 var y = {};
3 function m(p,q)
4 {
5 p.f = q;
6 };
7 m(x,y);
8 x = null;

Declare x,y,m;

AllocObj 2 at 1;

Write x,2 at 1;

AllocObj 3 at 2;

Write y,3 at 2;

AllocFun 4 at 3;

Write m,4 at 3;

Call 4 at 7;

Declare p = 2,

q = 3;

Putfield 2,"f",3

at 5;

LastUse 2 at 5;

Return at 7;

LastUse 4 at 7;

Write x,0 at 8;

Unreachable

2 at 8;

Unreachable

3 at end;

Unreachable

4 at end;

Figure 5: A simple code example and the corre-
sponding trace. Red entries are added in the en-
hanced trace.

3.1 Basic Trace Generation
Our generated traces must be sufficient to reconstruct

object lifetimes, i.e., when objects are created and become
unreachable. At a minimum, traces must include records
of each object allocation and each memory write, both to
variables and to object fields (“properties” in JavaScript
parlance). (A JavaScript delete operation on an object,
which removes a property, is modeled as a write of null.) To
enable proper handling of JavaScript functions and closures in
the lifetime analysis, the generator logs calls and returns, and
also logs declarations of local variables. Finally, to enable
reasoning about object staleness, we also log information
about uses of each object: an object is used when it is
dereferenced or, for function objects, when it is invoked.

By default, MemInsight enables two optimizations that
reduce trace size and instrumentation overhead. First, we
avoid logging writes when the old and new values are both
of primitive type; such writes are irrelevant for reasoning
about object staleness and leaks. Similarly, by default we
only log the last use of each object, rather than all uses, since
this information is sufficient for detecting staleness. These
optimizations can be disabled at some cost in overhead (see
Section 6), in case the additional information would be useful
for some client analysis (e.g., object-equality profiling [22, 38];
further discussion in Section 7).

Figure 5 shows the generated trace for a simple example.
Most entries includes a source location at the end. The
allocation entries introduce a unique id used to name the
corresponding object throughout the trace. We use a distinct
entry type to identify function object allocation, to ease
handling of closures in the lifetime analysis. In our imple-
mentation, LastUse entries include a timestamp and appear
at the end of the generated trace (since the last use is only
known at the end of the program); a separate post-processing
phase inserts the entries at the appropriate slots.

3.2 Lifetime Analysis
Here we describe how our lifetime analysis computes exact

object lifetimes based on the initial trace, inserting Unreach-
able events into an enhanced trace, shown as the red events
in Figure 5.
Heap graphs The trace as described in Section 3.1 enables
simulation of the execution’s heap graph. At each AllocObj
and AllocFun trace entry, a new vertex is added to the
graph. At each Putfield entry, an appropriate heap graph
edge (labeled with the field name) is added and/or removed.

1 var elem = document.createElement("div");
2 elem.innerHTML = "<p><h1>Hello World!</h1></p>";
3 document.getElementById("x").appendChild(elem);

Figure 6: Example to illustrate handling of DOM-
related code.

Reasoning about variable writes in the presence of JavaScript
closures is non-trivial, particularly since functions can update
closure variables. For example:

function f() {
var x = { p: 5 } /* o1 */, y = [1,2,3] /* o2 */;
return { set: function (z) { x = z; },

get: function () { return x; }
}

}
var r = f(); r.set(null);

Here, x is present in the returned set and get closures (with
updates via set reflected in future calls to get), but y is not,
since it is not referenced by any nested function. Hence, the
object labeled o2 above becomes unreachable after the call
to f, but o1 remains reachable until after the call to r.set.

The heap graph construction handles closures using an ap-
proach similar to the “cactus stack” method of implementing
first class continuations [6]. Context nodes in the heap graph
represent variable bindings for closures, with parent pointers
for lexical scoping. A separate syntactic analysis computes
which variables from enclosing scopes are captured by each
function, enabling a context to be sealed at function returns
to remove pointers to uncaptured objects. For the example
above, when the call to f completes, sealing removes the
outgoing edge from the context corresponding to variable
y. We correctly handle corner cases in JavaScript semantics,
e.g., writing to an undeclared variable creates a fresh global.
Exact lifetimes Given our simulated heap graph, we use
standard reference counting to compute exact unreachability
times for all objects except those in cyclic data structures,
which reference counting cannot handle. To handle cyclic
structures, we adopt techniques from lazy cycle collection [20].
Whenever an object o’s reference count is decremented to
a non-zero value, o is placed in a cycle queue, as it may
be in an unreachable cycle. To detect the true cycles, we
periodically perform a mark-sweep over the heap, sweeping
only from unmarked nodes in the cycle queue (sufficient since
the base reference counter handles acyclic structures).

To detect exact unreachability times for nodes in cycles,
we adopted the Merlin algorithm [14]. Whenever a node is
placed in the cycle queue, it is stamped with the current
time τ . If the node is already in the queue, its timestamp
is updated. When sweeping unmarked queue nodes, the
queue is first sorted by descending timestamp. After this
sort, we are guaranteed that the node n in or reachable from
an unreachable cycle with the latest timestamp t will be
processed first, and that t is the true unreachability time
for any unmarked node reachable from n. So, we simply
propagate t as the unreachability time for all unmarked nodes
encountered from n. The Merlin algorithm is presented in
detail in Hertz et al. [14]; an extended version of the paper [15]
contains an example of applying the technique.

3.3 Uninstrumented Code
MemInsight works robustly in the presence of uninstru-

mented JavaScript code or native code from the environment.



In principle, uninstrumented code could arbitrarily mutate
any memory locations to which it has access. Attempting
to discover all such behavior via code instrumentation alone
would be difficult or impossible, particularly since invoca-
tions of uninstrumented code may not be observable (e.g.,
a browser invoking an uninstrumented event handler). Fur-
thermore, such detection would require frequent reflective
traversals of all heap state visible to uninstrumented code, a
very costly operation.

In practice, we have found a policy of only tracking refer-
ences created in instrumented code to strike a good balance
between coverage of relevant behaviors and analysis overhead.
The policy is simple: at any variable or field write in instru-
mented code, if the value is a hitherto unseen object–which
must have been allocated by uninstrumented code–we treat
the write as “allocating” the object. For example, consider
line 1 in Figure 6, which creates a DOM node using the
native createElement function. At the write to elem, our
instrumentation emits log entries AllocObj i at 1 and
Write y,i at 1 (i is a fresh object ID), modeling line 1 as
“allocating” the DOM node.

Our analysis does not attempt to infer information about
object references created in uninstrumented code. For the
Figure 6 example, document.createElement is itself a func-
tion object allocated by uninstrumented code. However,
since the function is only invoked, and not assigned to a
variable or field, we do not assign it an object ID. While this
makes our modeling less complete, we found that assigning
object IDs in such cases added excessive noise to tool output
and was not helpful in diagnosing memory issues in instru-
mented code. Unmodeled native code can cause unusual
trace events, e.g., an object “re-appearing” after becoming
unreachable due to an unknown pointer. Our enhanced trace
generator (Section 3.2) detects and handles such issues, and
can report them to the developer in case further modeling
or instrumentation is desired.
MemInsight employs handwritten models for key built-

in functions whose behavior is usually relevant to mem-
ory analyses. Modeled functions include the array-
manipulating functions in Array.prototype (push, pop, etc.),
Object.defineProperty, and setTimeout.

3.4 The DOM
Since the DOM is often involved in leaks and other bad

memory usage patterns (see Section 2), we employ special
handling to provide better visibility into its structure. A
key difficulty in capturing DOM behavior via JavaScript
instrumentation is handling the many ways the DOM may be
mutated. Figure 6 shows two ways to mutate the DOM from
JavaScript: assignment to innerHTML (line 2) and invoking
the appendChild method (line 3). Many other JavaScript
methods mutate the DOM, making fully-manual modeling
arduous. Moreover, the construction of an initial DOM from
static HTML occurs outside of JavaScript execution.

For a baseline handling of all methods of DOM mutation,
MemInsight uses the mutation observers [25] functionality
available in modern browsers. A mutation observer receives
asynchronous notifications of mutation events for a set of
observed DOM nodes. MemInsight attaches a mutation
observer to as many DOM nodes as possible and use the
notifications to reflect DOM mutations into the trace.

To attach its mutation observer, MemInsight performs
an initial DOM traversal after the page loads, attaching the

observer to each DOM node encountered. The observer then
attaches itself to newly-inserted DOM nodes as it is notified
of the insertions. DOM nodes are modeled as having a set
of child nodes rather than an ordered list; this is sufficient
for memory analyses, and it reduces analysis overhead and
complexity.1 DOM tree mutations are modeled with special
AddChild and RemoveChild log entries in the trace.

Let us see how this mutation observer technique works for
the code in Figure 6. Assume that the mutation observer is
already attached to the node with ID x, e.g., through the
initial DOM traversal. After the code executes, the observer
will be notified that the elem node has been added as a
child of x, which it models with an AddChild log entry.
The observer then traverses the DOM sub-tree rooted at
elem, discovering the nodes added at line 2; these nodes
are reflected in the trace via appropriate AllocObj and
AddChild entries.

While the above technique enables accurate modeling of
DOM structure, further modeling is sometimes required to
obtain informative DOM node allocation sites. For the code
of Figure 6, the nodes created by the innerHTML assignment
on line 2 are no longer associated with that line by the
time the (asynchronous) mutation observer runs. To address
this problem, MemInsight performs an eager traversal of
the DOM trees created by innerHTML and such constructs,
recording an accurate location for the corresponding nodes.

Finally, MemInsight flags the root node of the main DOM
tree in the trace. By knowing the root node and processing
AddChild and RemoveChild entries appropriately, client
analyses can determine which nodes reside in the main DOM
tree at any point. Such reasoning is very useful for tracking
object staleness, as the analysis can avoid inaccurately treat-
ing “visible” DOM objects (those in the main DOM tree)
as stale, though no uses may be observed for those nodes.
We have found this functionality to be critical for reasoning
about leaking DOM nodes in practice.

3.5 JavaScript Challenges
JavaScript’s semantics have a number of corner cases that

require careful handling during both trace generation and life-
time computation. Here, we briefly describe MemInsight’s
handling of some interesting language features.
Normalization We built our trace generator atop the Ja-
langi framework [33], which does not normalize code to
a three-address form before instrumentation. Hence, sub-
expressions must be handled carefully, to avoid marking
an object as unreachable too soon. Consider the simple
expression f({a:1}, {b:2}), which allocates two objects
and passes them to f. For this expression, Jalangi provides
three callbacks, first for the {a:1} literal, then for {b:2}, and
finally for the call. In the first callback, the analysis observes
no reference being created to the {a:1} literal, but it clearly
should not be marked unreachable at this point. This issue
could of course be addressed by first normalizing the source
code. But, this would cause extra code bloat, which could
further slow execution. Also, normalization could change
object lifetimes if temporary variables were not carefully
nulled out after use, which would introduce even more bloat.
Instead, the trace generator issues Flush entries at the end
of each source-level statement (e.g., after the call to f for the

1Modeling child ordering is tricky since a single mutation
could change the position of many other child nodes.



example above), and the lifetime analysis only marks nodes
as unreachable at a Flush.
Constructors The complex semantics of JavaScript con-
structor calls require special handling. One key complication
is that any JavaScript function f can be invoked as a con-
structor via the new operator. If f has no explicit return
statement, the value of new f(...) is a fresh object passed
as this to f (see the example below). However, if f returns
some other object o, then o becomes the value of the new

expression. We employ special logic to ensure the this value
is flagged as the return value in the former case, so it does not
appear to become unreachable at the end of the constructor
call.

A second issue is recording a good source location for
constructor-allocated objects. Consider this example:

1 function C() { this.f = 3; }
2 var x = new C();

Line 2 should be associated with the new C object, but at
the source level, the new object cannot be observed until
execution of the C call has already begun. To handle this
common case, our implementation assigns an ID to the this

object at the beginning of a constructor call, and it flags the
object as “under construction.” When an under-construction
object is detected as the value of a completed constructor
call, we clear the flag and log an UpdateLoc entry to update
the allocation site for the object. For the above example, the
C object would be allocated some ID i at the beginning of the
C function, and the log would later include an UpdateLoc
i at 2 entry to set its allocation site as line 2.
Other features Various other JavaScript features require
special handling; we list a few cases here. For prototype
chains, we model the creation of the __proto__ property at
constructor calls, and the prototype property of functions.
We reserve object ID 1 for the JavaScript global object [12]
(whose properties are the global variables), as code can refer-
ence and create aliases to this object. Getters and setters [27],
which respectively enable accessor functions to execute at
property reads and writes, require care. In particular, be-
fore logging a field write, we must ensure that the field is
not a setter, since in this case the write expression invokes
the setter. Finally, JavaScript’s eval construct is handled
fully (including indirect eval, which has different scoping
semantics) by using Jalangi to instrument the code before
evaluation.

3.6 Optimizations
Here, we discuss some of the key optimizations we imple-

mented to make MemInsight scale; these techniques may
apply to other JavaScript dynamic analyses.
Scaling the Lifetime Analysis In principle, one could im-
plement MemInsight’s lifetime analysis in situ with a run-
ning application via code instrumentation—the requisite
heap traversals can be achieved using JavaScript’s reflective
constructs (iteration over object properties and dynamic
property accesses). However, this approach would induce
such high overheads as to make most applications unusable.
To address such cases, Jalangi provides a record-replay
framework [33] that allows for an expensive dynamic analysis
to be executed during an offline replay of the application,
with the analysis running in situ with the replayed application
to ease implementation.

We first implemented our object lifetime analysis using
Jalangi replay, but we found that running the analysis in

situ did not scale, even during offline replay. A key problem
was that JavaScript’s reflective property access constructs
have not been highly optimized in JavaScript runtimes, mak-
ing reflective heap traversals very expensive. Furthermore,
implementing the analysis in situ required careful handling of
both prototype chains and getters and setters during traver-
sals, which was both fragile and further slowed the analysis.
Finally, our custom DOM modeling (Section 3.3) did not
fit well with Jalangi record-replay, as it required persisting
additional information during record mode.

To avoid these issues, we switched to the approach of
generating custom memory traces and running the lifetime
analysis over a simulated heap graph, which led to orders-
of-magnitude speed improvements. MemInsight runs the
lifetime analysis in a concurrent process as the memory trace
is generated by the instrumented application, so in many
cases, the lifetime analysis requires no additional running
time. Also, having full control of the trace format greatly
simplified modeling of DOM operations.
Scaling Trace Generation We implemented a number of
techniques to reduce the overhead of trace generation in Mem-
Insight. Since we were not using Jalangi’s record-replay
feature, we implemented a specialized analysis runtime in Ja-
langi without record support, reducing Jalangi’s baseline
overhead. We also enhanced Jalangi to support optional
disabling of instrumentation for certain language constructs,
and leveraged this feature to completely avoid instrumenting
operations irrelevant to MemInsight (arithmetic operations,
etc.).

Within our trace generation code, we encoded each object’s
metadata in a single 32-bit value to avoid unnecessary heap
allocation. For maintaining the per-object metadata, we im-
plemented two different strategies, one that stored metadata
in a hidden object property and one that kept metadata in
a WeakMap, a recently-added JavaScript feature.2 We found
that while time overhead was mostly comparable for the two
approaches, hidden object properties caused a space blowup
in some cases (see Section 6), likely due to some bad inter-
action with the JavaScript runtime. Hence, MemInsight
uses a WeakMap when available. Finally, we write traces in a
compact binary format, minimizing the amount of overhead
required to create trace entries.

4. CLIENT ANALYSES
Based on the enhanced trace produced by the lifetime anal-

ysis (see Figure 2), we have implemented a number of useful
client analyses to expose possible memory issues in the trace.
As illustrated previously in Figure 1, we compute detailed
information on object staleness to expose drag-related issues.
We also implemented a client that can compute the access
paths retaining some set of objects at some time, as shown
in Figure 4(B). Below we discuss some other useful memory-
related properties that we compute for each allocation site
in the program. A developer could easily compute other
interesting memory analyses using the enhanced trace (see
Section 7 for some discussion).

Let an ‘`-object’ be an object allocated at site `. For each
such site `, we compute the following information:
• isUnused: this flag is set if none of the `-objects are ever

used, indicating that the `-objects may be unnecessary.

2https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/WeakMap



• isOneAliveAtATime: this flag is set if at most one `-
object is alive (i.e., reachable) at any state during the
execution. If this holds, it may be possible to replace
the allocations with a single global object, reducing
stress on the garbage collector.
• isNonEscaping: this flag is set if none of the `-objects

escape their allocating function, indicating an opportu-
nity for stack allocation of the corresponding data.
• isLeaking: the flag is set to true if the objects allocated

at ` exhibit a behavior indicative of a leak.
• consistentlyPointedBy: this property is set to site
`′ 6= ` if each `-object is uniquely pointed-to throughout
its lifetime by an `′-object. In such a scenario, one
may be able to inline the properties of `-objects into
the corresponding `′-objects [9]. This optimization
can boost performance by reducing allocations and
the number of dereferences required to access `-object
properties.

Given an enhanced trace containing unreachability events,
the computation of the boolean flags isUnused and isOne

AliveAtATime is straightforward. We experimented with a
number of techniques for computing the isLeaking flag, and
settled on the following criterion: isLeaking for ` is set to
true if, at all consecutive execution points where the call
stack is empty, the number of stale objects allocated from `
is strictly increasing. We only consider points when the call
stack is empty since this represents an idle state in a web
application (e.g., between event handlers), where temporary
objects should have been released. While this technique can
miss leaks, we found that techniques that tolerated decreases
in stale objects led to too many false positive leak reports.

To compute the remaining two properties, we use an exe-
cution index data structure, as described by Xin et al. [37].
The execution index of a program state s is a sequence of the
form [(`1, q1), (`2, q2), . . . , (`n, qn)], where each `i is a call site
on the call stack for s, and qi is the execution count for `i
in s. By including both the call stack and execution counts
for each contained call site, an execution index uniquely
identifies a function call in an execution. To compute the
isNonEscaping property, we exploit the fact that for any
execution indices e1 and e2, e1 is a prefix of e2 iff e2 is the
execution index of a state reached after calling 0 or more
functions in the dynamic context denoted by e1. We asso-
ciate with each object o the execution index ea of the state in
which the object is created and index eu of the state where
it becomes unreachable; o escapes if ea is not a prefix of eu.
If no `-object escapes, then ` is isNonEscaping.

We compute the consistentlyPointedBy flag as follows.
We associate a meta-property pointedBy with each object o,
initialized to ⊥ when o is created. After creation, if o is then
written into a property of object o′ via a Putfield operation,
we set o’s pointedBy to o′. If o is ever referenced by any
other variable or object property, we set its pointedBy to
>. The consistentlyPointedBy property is set to `′ if the
pointedBy meta-property of each `-object is an `′-object,
and if each paired ` and `′-object have similar lifetimes. We
check for similar lifetimes for two objects by ensuring that
(1) they are both allocated under the same execution index
and (2) they both become unreachable at the same time.
This lifetime check ensures that the parent object “owns” the
child throughout its lifetime. If consistentlyPointedBy is
set to `′ for some `, then the ` objects are a good candidate
for object inlining into the `′ objects.

5. CASE STUDIES
Among the web and node.js applications that have been

tested using MemInsight, memory issues have been discov-
ered or confirmed in ten cases, with several issues found
by a separate product team using the tool. In three cases,
patches were submitted to the developers and accepted. In
this section, we highlight some of these memory issues in
more detail. (None of the issues reported by the product
team are discussed here.)
shopping list Shopping List [36] is a Tizen web application.
For this app, MemInsight showed leaking objects and DOM
nodes deep inside the jQuery library. Call stacks at the
allocation points of the leaking objects showed that they
were allocated due to application calls for attaching event
handlers. Access paths showed that the objects remained
reachable due to pointers from an internal jQuery cache.

The cause of the leak was similar to the defect shown in
Figure 3. The code attempted to clear a DOM element as
follows:

if (self.currentView.resetListOfLists) {
ShoppingListApp.listoflists.innerHTML = "";

}

The correct way when using jQuery would be to use jQuery
construct $(ShoppingListApp.listoflists).empty(); in place
of an assignment to innerHTML. This changes fixed the leak,
and a patch was accepted by the developer.3

annex The annex app was discussed previously in Section 1.
We exercised annex by playing in 1-person mode (the com-
puter responding to human moves) for three moves. Mem-
Insight identified excessive drag, as shown previously in
Figure 1. Most stale objects were being allocated within a
function used for move evaluation. MemInsight’s access
path view for the site revealed that these objects were accu-
mulated in a global recursive data structure corresponding to
computing a minimax game tree. The code uses the following
computation to identify the best (highest-value) computer
move from possible moves:

ret = possible[0];
var value = this.evaluate(ret);
for (var p=1; p<possible.length; p++) {

var v = this.evaluate(possible[p]);
if (v > value){

value = v;
ret = possible[p];

}
}

The same game tree is retained across multiple calls to
evaluate, but the code could equivalently start with a fresh
tree every time, freeing stale memory earlier. We applied
this refactoring and found a drastic reduction in the peak
counts as well as staleness of objects.4 We have contacted
the developer, who has agreed to look at the issue (though
has not confirmed our fix as of this writing).
MemInsight also identified an allocation site with high

count and the isNonEscaping and isOneAliveAtATime flags
set (see Section 4) in the following code (edited for brevity):5

3See http://goo.gl/Xx5eRo.
4The timeline graph for the fixed app appears in the extended
version [15].
5This allocation site was also noted in previous work [33],
by a simpler analysis that only tracked allocation counts; it
did not track whether allocated objects escaped.



return {
type: type,
value: id,
lineNumber: lineNumber,
lineStart: lineStart,
range: [start, index]

};

return {
type: type,
value: id,
lineNumber: lineNumber,
lineStart: lineStart,
start: start,
end: index

};

Figure 7: An excerpt from esprima illustrating bloat
and object inlining

getValue: function(place){
var i = parseInt(place[0]);
var j = parseInt(place[1]);
var mtable = {
0:{ 0:100, 1:-50, 2:40, 3:30, 4:30, 5:40, ...},
1:{ 0:-50, 1:-30, 2:5, 3:1, 4:1, 5:5, ...},
...

};
return parseInt(mtable[i][j]);

}

The object assigned to mtable was identical for each call
to getValue, and these allocations were causing significant
unnecessary churn. The issues could be fixed by replacing
the allocations with a single global object. Performing this
transformation led to a 10% bottom-line speedup for com-
puter move computation, and the fix was accepted by the
developer.6

dataTables DataTables [7] is a popular JavaScript library
that, among other things, provides a way to render a large
table in paginated form, e.g. ten rows at a time with nav-
igation support. We exercised DataTables to reproduce a
previously-identified leak of DOM nodes [8], by loading a
table, navigating through a few pages, and then destroying
the table. MemInsight indicated excessive staleness at the
site allocating the DOM nodes, and the access paths view
showed a settings object on all paths retaining the nodes.
We applied a suggested patch that nulls out the contents of
the settings object [8], and confirmed that the problem was
fixed. Note that MemInsight’s support for reasoning about
visible DOM nodes was critical for identifying the truly stale,
leaking nodes.
esprima Esprima [11] is a widely-used JavaScript parser
written in JavaScript. For our case study, we used an older
version of Esprima with code like the left fragment in Figure 7.
In this code, the object literal being returned points to an
array of length two throughout its lifetime via the range

field. As this array is always accessed through the returned
object, we can reduce bloat in the data structure by inlining
this child array into the object. We ran MemInsight on
the unfixed version, and the consistentlyPointedBy flag
described in Section 4 flagged the site as a candidate for
object inlining. A subsequent commit by the developers
inlined the objects as in the right code fragment of Figure 7,7

yielding a roughly 10% bottom-line speedup when parsing
large JavaScript files. Note that knowledge of object lifetimes
was key to determining that these objects were inlineable.
escodegen Escodegen [10] serializes JavaScript ASTs back to
source code. We noticed poor performance in Escodegen for
large ASTs, so we investigated by running Escodegen with

6See http://goo.gl/hWfIYm.
7See http://goo.gl/I3wLs8.

MemInsight for a smaller input. MemInsight immediately
identified a very high allocation count of SourceNodeMock

objects. However, MemInsight did not show a leak or exces-
sive staleness for the objects. Further manual investigation
showed that SourceNodeMock objects were unnecessary in
the common case, and a patch eliminating the objects yielded
a roughly 10X speedup for large inputs and was accepted by
the developers.8 While MemInsight could not automatically
identify this complex refactoring opportunity, it still provided
useful information, in particular that the objects were not
leaking and that a deeper fix would likely be needed.

6. EVALUATION OF IMPLEMENTATION
MemInsight is implemented primarliy in TypeScript, with

trace generation implemented using the Jalangi frame-
work [33]. The lifetime analysis is implemented in Java
for greater efficiency and to leverage existing libraries. In
addition to the case studies discussed in Section 5, we mea-
sured MemInsight’s effectiveness according to the following
two evaluation criteria:

(EC1) Does MemInsight run with reasonable overhead for
real-world, interactive web applications?

(EC2) Does MemInsight effectively expose DOM-related
memory behavior?

6.1 Overhead
In our experience running with several real-world appli-

cations, we found that the slowdown introduced by Mem-
Insight due to trace generation was reasonably low, with
the applications remaining usable and interactive. Since in-
teractive applications tend not to be very compute-intensive,
our JavaScript instrumentation does not dramatically impact
their usability. As rigorous measurement of overhead on in-
teractive applications is difficult, we also ran MemInsight on
programs from the Octane benchmark suite [29],9 and found
that MemInsight introduced a mean of 41.7X time overhead
(11.8X–102.3X).10 This overhead is comparable with previous
instrumentation tools and analyses [14, 21, 26, 31], and for
real-world web applications, this overhead only applies to
JavaScript execution, typically a small percentage of total
execution time.

We also measured the overhead of MemInsight on Octane
while disabling the two optimizations described in Section 3.1,
namely recording of only the last use of an object and eliding
putfields where the value is a primitive type. We found
that recording all uses had a mean overhead of 55.1X, and
recording all putfields had a mean 47.9X overhead. While
somewhat higher than the default configuration, these over-
heads are still manageable and may be worth incurring to
enable other compelling clients (see Section 7 for further
discussion). Finally, we found that our lifetime analysis ran
in an average of 3.9 seconds on the Octane benchmarks (0.4s–
162.4s). As noted in Section 3.6, MemInsight runs this
phase concurrently with trace generation, and for typical
web applications this phase requires no extra time.

8See http://goo.gl/XlBX51.
9We excluded the mandreel benchmark as, at roughly 277
KLOC (automatically generated from a large C++ program),
it exceeded the size that could be instrumented by Jalangi.

10For a detailed table of all experimental data, see the ex-
tended version of the paper [15].



Table 1: DOM node measurements

app base model init unknown det
annex 45 290 215 0 46

shopping 604 1298 993 0 1592
dataTables 607 233 47 0 768
hackerweb 8 1850 185 14 872

6.2 DOM Handling
Table 1 quantifies the effectiveness of MemInsight’s DOM

modeling for the three web applications used as case studies
(to be described further in Section 5), and also hackerweb [13],
an additional app that does significant DOM mutation. For
each application, the table gives the number of DOM nodes
with allocation sites from our baseline handling of uninstru-
mented code (“base”), nodes with allocation sites from the
additional DOM modeling of Section 3.3 (“model”), nodes
in the initial DOM from parsing static HTML (“init”), and
nodes with unknown allocation sites (“unknown”). Overall,
MemInsight’s DOM modeling was very effective, exposing
many more DOM allocation sites via modeling as compared
to the baseline. The “det” column gives the number of nodes
observed to be detached from the main DOM tree during
execution. Such nodes must be carefully managed to avoid
leaks, and the significant number of detached nodes in the
apps shows the property’s importance for a memory profiler.

7. RELATED WORK
Object lifetime analyses Our enhanced trace format has
similarities to garbage collection traces [14], used to simulate
garbage collection algorithms. We adopted the Merlin algo-
rithm [14] to compute exact object lifetimes (see Section 3.2).
Later work by Ricci et al. [31] enhances the GC trace format
in a fashion similar to ours with call/return information.
Resurrector [39] is a lifetime analysis technique which incurs
much less overhead than Merlin while maintaining mostly-
precise lifetimes. Resurrector leverages a modified virtual
machine, so we cannot easily adopt its techniques.
Biographical profiling In the context of functional lan-
guages executed by graph reduction, Röjemo and Runci-
man [32] present a profiler that measures lag, drag (staleness)
and void. Lag is the time from creation until first use, and
void is an object that is never used. All of these metrics can
be computed using MemInsight, with lag requiring tracing
of the first and last use of each object.
Leak detection One application of MemInsight is leak
detection for JavaScript programs. Much previous work on
leak detection exists; we will cover the most pertinent here.
AjaxScope [18] includes a leak detector specifically aimed
at finding heap cycles involving DOM nodes, which could
not be garbage collected in older browsers. JSWhiz [30] is a
static analysis that detects memory leaks caused by misuses
of the Google Closure framework.

Chilimbi and Hauswirth present the SWAT tool [4] which
uses statistical profiling to predict if an object is stale or
will be used again, based on its previous access patterns. In
Sleigh [3], Bond and McKinley adapt the SWAT approach
to Java and reduce the overhead by using unused bits in the
object header. MemInsight computes staleness precisely
without modifying the runtime, but with higher overhead
than these approaches. Shaham et al. [34, 35] use an instru-

mented VM to find stale objects and the references keeping
it alive. Furthermore the tool computes when a programmer
can safely remove a reference to reduce staleness. Mem-
Insight enables a programmer to do the same by providing
access paths and last use sites.

With LeakBot [24] Mitchell and Sevitsky detect leaks in
enterprise Java applications by identifying memory regions
that grow unboundedly, based on initial heap snapshots and
selective tracing. A similar approach is taken in Cork [17],
using summarization instead of snapshots. Detecting growing
regions is complementary to staleness as currently computed
by MemInsight, and we leave this to future work.

GC assertion frameworks [1] allow programmers to write
assertions about object lifetimes and then verify these asser-
tions based on a garbage collection trace. LeakChaser [41]
allows the programmer to assert invariants about object life-
times and to define transaction boundaries in the program
that correspond to object lifetimes. Mitchell [23] uses heap
dominators to present a view of a memory use that allows
a programmer to see which objects are responsible for large
subgraphs. As future work we will consider similar ways to
present results to the programmer.
Bloat Reduction Many techniques have been proposed for
helping developers detect run-time bloat. Copy profiling [40]
and the more general reference propagation profiling [42]
track data flow to expose issues like excessive allocation of
temporary objects. Object-equality profiling [22, 38] explores
another way of reducing bloat, in which sets of equivalent
objects are replaced with a single representative object. Ca-
chetor [28] is able to find repeated allocation of identical
objects. Techniques similar to these could be implemented
atop MemInsight when configured to record all reads and
writes to the heap; we plan to investigate such techniques in
future work.

Object inlining is a well-studied method for reducing
bloat [9]. Lhoták and Hendren [19] studied possibilities
of object inlining in Java applications via tracing. They also
performed a finer-grained inlining analysis, where individual
fields are considered for inlining into the parent instead of
only entire objects. This finer-grained analysis could also be
built on MemInsight.

8. LIMITATIONS
Being a dynamic analysis technique, MemInsight can

miss a real memory issue if it does not happen during a test
execution. Moreover, MemInsight may not be able to detect
a memory issue if the application is run for a short period of
time (e.g. a single move in the annex game is not sufficient
to expose the memory drag problem.) This limitation can
be removed by testing a web application more exhaustively.
Also, MemInsight uses heuristics to detect memory leaks
and drags. We developed these heuristics based on existing
research results and our experience with several web apps.
In case of drag or leak reports, a dynamic analysis based on
a single execution cannot conclusively infer that a stale or
a leaky object is not going to be used in future. Therefore,
MemInsight can give false warnings.

9. CONCLUSIONS
We have presented MemInsight, a platform-independent

tool for detailed memory profiling of JavaScript applications.
On unmodified JavaScript runtimes, MemInsight can handle



complex JavaScript constructs, expose memory behavior of
DOM objects, and compute exact object lifetimes. Our
experimental results show that these rich features can be
achieved with reasonable runtime overhead, and that Mem-
Insight’s functionality can expose memory issues in real-
world applications.

References
[1] E. Aftandilian and S. Z. Guyer. GC assertions: using

the garbage collector to check heap properties. In PLDI,
pages 235–244, 2009.

[2] HTML5WebApps - Annex. https://01.org/

html5webapps/webapps/annex. Accessed: 2015-07-14.

[3] M. D. Bond and K. S. McKinley. Bell: bit-encoding
online memory leak detection. In ASPLOS, pages 61–72,
2006.

[4] T. M. Chilimbi and M. Hauswirth. Low-overhead mem-
ory leak detection using adaptive statistical profiling. In
ASPLOS, pages 156–164, 2004.

[5] Chrome developer tools overview. https://developer.

chrome.com/devtools/index. Accessed: 2015-07-14.

[6] W. Clinger, A. Hartheimer, and E. Ost. Implementation
strategies for continuations. In Proceedings of the 1988
ACM Conference on LISP and Functional Programming,
LFP ’88, pages 124–131, New York, NY, USA, 1988.
ACM.

[7] Datatables - table plug-in for jQuery. http://

datatables.net/. Accessed: 2015-07-14.

[8] Datatables patch-1. http://www.mozartrocks.ro/

dt-test/patch-1.html. Accessed: 2015-07-14.

[9] J. Dolby and A. Chien. An automatic object inlining
optimization and its evaluation. In PLDI, 2000.

[10] Escodegen. https://github.com/Constellation/

escodegen. Accessed: 2015-07-14.

[11] Esprima. http://esprima.org. Accessed: 2015-07-14.

[12] ECMAScript language specification - ECMA-
262 edition 5.1: The global object. http://www.

ecma-international.org/ecma-262/5.1/#sec-15.1.
Accessed: 2015-07-14.

[13] Hackerweb – a simply readable hacker news web app.
http://hackerwebapp.com/. Accessed: 2015-07-14.

[14] M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S. McKin-
ley, and D. Stefanovic. Generating object lifetime
traces with Merlin. ACM Trans. Program. Lang. Syst.,
28(3):476–516, 2006.

[15] S. Jensen, M. Sridharan, K. Sen, and S. Chandra.
Meminsight: Platform-independent memory debugging
for JavaScript. Technical Report SRA-FCS-2015-001,
Samsung Research America, 2015.

[16] jQuery. http://jquery.com. Accessed: 2015-07-14.

[17] M. Jump and K. S. McKinley. Cork: dynamic memory
leak detection for garbage-collected languages. In POPL,
pages 31–38, 2007.

[18] E. Kiciman and B. Livshits. AjaxScope: A platform for
remotely monitoring the client-side behavior of Web 2.0
applications. ACM Trans. Web, 4(4):13:1–13:52, Sept.
2010.

[19] O. Lhoták and L. Hendren. Run-time evaluation of
opportunities for object inlining in Java. Concurrency
and Computation: Practice and Experience, 17(5-6):515–
537, 2005.

[20] R. D. Lins. Cyclic reference counting with lazy mark-
scan. Inf. Process. Lett., 44(4):215–220, 1992.

[21] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building customized program analysis tools with
dynamic instrumentation. In PLDI, pages 190–200,
2005.

[22] D. Marinov and R. O’Callahan. Object equality profiling.
In OOPSLA, pages 313–325, 2003.

[23] N. Mitchell. The runtime structure of object ownership.
In ECOOP, pages 74–98, 2006.

[24] N. Mitchell and G. Sevitsky. Leakbot: An automated
and lightweight tool for diagnosing memory leaks in
large Java applications. In ECOOP, pages 351–377,
2003.

[25] DOM standard: Mutation observers. http://dom.spec.
whatwg.org/#mutation-observers. Accessed: 2015-07-
14.

[26] N. Nethercote and J. Seward. Valgrind: A framework
for heavyweight dynamic binary instrumentation. In
PLDI, 2007.

[27] M. D. Network. Working with objects: Defining
getters and setters. https://developer.mozilla.org/

en-US/docs/Web/JavaScript/Guide/Working_with_

Objects#Defining_getters_and_setters. Accessed:
2015-07-14.

[28] K. Nguyen and G. H. Xu. Cachetor: detecting cacheable
data to remove bloat. In ESEC/FSE, 2013.

[29] Octane. https://developers.google.com/octane/.
Accessed: 2015-07-14.

[30] J. Piennar and R. Hundt. JSWhiz - static analysis for
JavaScript memory leaks. In Proceedings of the 10th
annual IEEE/ACM international symposium on Code
generation and optimization, 2013.

[31] N. P. Ricci, S. Z. Guyer, and J. E. B. Moss. Elephant
Tracks: portable production of complete and precise GC
traces. In ISMM, pages 109–118, 2013.

[32] N. Röjemo and C. Runciman. Lag, drag, void and use;
heap profiling and space-efficient compilation revisited.
In Proceedings of the First ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP
’96, pages 34–41, New York, NY, USA, 1996. ACM.

[33] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi:
A selective record-replay and dynamic analysis frame-
work for JavaScript. In ESEC/FSE, 2013.



[34] R. Shaham, E. K. Kolodner, and M. Sagiv. On the
effectiveness of GC in Java. In ISMM, 2000.

[35] R. Shaham, E. K. Kolodner, and M. Sagiv. Heap profil-
ing for space-efficient Java. In PLDI, 2001.

[36] HTML5WebApps - Shopping list. https://01.

org/html5webapps/webapps/shopping-list. Accessed:
2015-07-14.

[37] B. Xin, W. N. Sumner, and X. Zhang. Efficient program
execution indexing. In PLDI, pages 238–248, 2008.

[38] G. H. Xu. Finding reusable data structures. In OOPSLA,
2012.

[39] G. H. Xu. Resurrector: a tunable object lifetime pro-
filing technique for optimizing real-world programs. In
OOPSLA, pages 111–130, 2013.

[40] G. H. Xu, M. Arnold, N. Mitchell, A. Rountev, and
G. Sevitsky. Go with the flow: profiling copies to find
runtime bloat. In PLDI, pages 419–430, 2009.

[41] G. H. Xu, M. D. Bond, F. Qin, and A. Rountev.
Leakchaser: helping programmers narrow down causes
of memory leaks. In PLDI, pages 270–282, 2011.

[42] D. Yan, G. H. Xu, and A. Rountev. Uncovering per-
formance problems in Java applications with reference
propagation profiling. In ICSE, 2012.


