
Correlation Tracking for
Points-To Analysis of

JavaScript

Manu Sridharan

IBM Research

ECOOP 2012

Julian Dolby Satish Chandra Max Schäfer Frank Tip

1

Tools for Building Web
Apps

‣ Web applications (JavaScript + HTML) increasingly
popular

‣ Often built on rich frameworks like jquery

‣ Provide high-level APIs

‣ Handle many browser quirks

‣ Need better tools for framework-based apps

‣ Bug finding, refactoring, security, ...

2

Importance of Pointer
Analysis

‣ Pointer analysis needed for call graphs

‣ Most method calls are “virtual”

‣ Cannot narrow call targets via types / arity

‣ Analysis must be field-sensitive

var x = {};
// initialize object properties
x.foo = function f1() { return 23; }
x.bar = function f2() { return 42; }
x.foo(); // invokes f1

3

Dynamic Property Accesses

‣ Used frequently inside frameworks

‣ Increases worst-case analysis complexity!

‣ Leads to significant blowup in practice

var f = p() ? “foo” : “baz”;
// writes to o.foo or o.baz
o[f] = “Hello!”;

4

Correlated Accesses

‣ Correlated: prop has same value at both accesses

‣ Standard points-to analysis misses correlation

‣ Analysis merges all properties of src

‣ For frameworks, leads to massive pollution

‣ Contribution: track correlated accesses, improving
precision and scalability

function extend(dest,src) {
 for (var prop in src)
 // correlated accesses
 dest[prop] = src[prop];
}

5

Andersen’s Analysis for
JavaScript

For
dynamic
property
accesses

Statement Constraint

x = {}i {oi} ⊆ pt(x) [Alloc]

v = “name” {name} ⊆ pt(v) [StrConst]

x = y pt(y) ⊆ pt(x) [Assign]

x[v] = y
o ∈ pt(x) s ∈ pt(v)

pt(y) ⊆ pt(o.s)
[StoreField]

y = x[v]
o ∈ pt(x) s ∈ pt(v)

pt(o.s) ⊆ pt(y)
[LoadField]

v = x.nextProp()
o ∈ pt(x) o.s exists

{s} ⊆ pt(v)
[PropIter]

Table 1. Our formulation of field-sensitive Andersen’s points-to analysis in the pres-

ence of first-class fields

3 Field-Sensitive Points-To Analysis for JavaScript

In this section, we formulate a field-sensitive points-to analysis for a core lan-
guage based on the object model of JavaScript. This formulation describes the
existing points-to analysis implementation in WALA [26], which we use as our
baseline. Then, we show that a standard implementation of Andersen’s analysis
runs in worst-case O(N4) time for this formulation, where N is the size of the
program, due to computed property names. Finally, we give a minimal example
illustrating the imprecision that our techniques address.

Formulation The relevant core language features of JavaScript are shown in
the leftmost column of Table 1. Note that property stores and loads act much
like array stores and loads in a language like Java, where the equivalent of array
indices are string constants.4 Property names are first class, so they can be copied
between variables and stored and retrieved from data structures. As discussed
in Section 2, properties are added to objects when values are first stored in
them. The v = x.nextProp() statement type is used to model the JavaScript
for-in construct (see Section 2); it updates v with the next property name of

4
In full JavaScript, not all string values originate from constants in the program text;

as discussed further in Section 5.1, we handle this by introducing a special “unknown”

property name that is assumed to alias all other property names.

8

For for..in
loops

6

Worst-Case Complexity

Java: x.f = y

the object x points to.5 So, assuming a corresponding hasNextProp construct,
for (v in x) { B } could be modeled as:

while (x.hasNextProp()) { v = x.nextProp(); B }

The second column of Table 1 presents Andersen-style points-to analysis
rules for the core language. The only way in which this differs from a standard
Andersen-style analysis for Java [21] is that it supports tracking of property
names as they flow through assignments. We represent the points-to set of a
program variable x as pt(x). The rules are presented as inclusion constraints
over points-to sets of program variables and of properties of abstract objects
(e.g., o.name). We assume that object allocations are named with one abstract
heap object per static statement, e.g., abstract object oi for statement i. Note
that pt-sets track not just abstract objects, but also string constants possibly
representing property names.6

Complexity Computing an Andersen-style points-to analysis can be viewed as
solving a dynamic transitive closure (DTC) problem for a graph of constraints
similar to those in Table 1: o ∈ pt(x) iff x is reachable from o in the graph.
Reachability information is stored by maintaining points-to sets for variables and
for fields of abstract-locations, and “propagating” abstract locations to points-to
sets based on the constraint edges [21]. The problem requires dynamic transitive
closure since the StoreField and LoadField rules introduce new constraints
based on other points-to facts, which translates to adding new graph edges based
on other reachability facts. Most efficient implementations of Andersen’s analysis
essentially work by computing a dynamic transitive closure; see previous work
for details [21].

For Java-like languages, the worst-case complexity of the DTC computation
for points-to analysis is O(N3). The key constraint rules to consider are for field
accesses, e.g., the StoreField rule for a statement x.f = y (reasoning about
LoadField is similar):

o ∈ pt(x)
pt(y) ⊆ pt(o.f)

Note that since the field name is manifest in the Java statement, the field-
name precondition seen in Table 1 is not required in this rule. Via this rule, the
algorithm may add O(N) constraints of the form pt(y) ⊆ pt(o.f) to the graph in
the worst case (since |pt(x)| is O(N)). Considering O(N) abstract locations that
may be propagated across each such generated constraint, and O(N) field-write
statements in the program, we obtain an O(N3) worst-case bound on running
time.
5 Property names from objects in the prototype chain are also considered [7, §12.6.4],

but we elide this detail here for clarity.
6 If a non-String object o is used as a property name in a dynamic property access,

a name is obtained by coercing o to a String [7, §11.2.1]; we elide modeling of this
behavior here for clarity.

9

O(N) new edges *
O(N) locs to propagate *
O(N) statements = O(N3)

JavaScript: x[v] = y

O(N2) new edges *
O(N) locs to propagate *
O(N) statements = O(N4)

Statement Constraint

x = {}i {oi} ⊆ pt(x) [Alloc]

v = “name” {name} ⊆ pt(v) [StrConst]

x = y pt(y) ⊆ pt(x) [Assign]

x[v] = y
o ∈ pt(x) s ∈ pt(v)

pt(y) ⊆ pt(o.s)
[StoreField]

y = x[v]
o ∈ pt(x) s ∈ pt(v)

pt(o.s) ⊆ pt(y)
[LoadField]

v = x.nextProp()
o ∈ pt(x) o.s exists

{s} ⊆ pt(v)
[PropIter]

Table 1. Our formulation of field-sensitive Andersen’s points-to analysis in the pres-

ence of first-class fields

3 Field-Sensitive Points-To Analysis for JavaScript

In this section, we formulate a field-sensitive points-to analysis for a core lan-
guage based on the object model of JavaScript. This formulation describes the
existing points-to analysis implementation in WALA [26], which we use as our
baseline. Then, we show that a standard implementation of Andersen’s analysis
runs in worst-case O(N4) time for this formulation, where N is the size of the
program, due to computed property names. Finally, we give a minimal example
illustrating the imprecision that our techniques address.

Formulation The relevant core language features of JavaScript are shown in
the leftmost column of Table 1. Note that property stores and loads act much
like array stores and loads in a language like Java, where the equivalent of array
indices are string constants.4 Property names are first class, so they can be copied
between variables and stored and retrieved from data structures. As discussed
in Section 2, properties are added to objects when values are first stored in
them. The v = x.nextProp() statement type is used to model the JavaScript
for-in construct (see Section 2); it updates v with the next property name of

4
In full JavaScript, not all string values originate from constants in the program text;

as discussed further in Section 5.1, we handle this by introducing a special “unknown”

property name that is assumed to alias all other property names.

8

‣ View analysis as dynamic transitive closure

‣ nodes are memory locations, edges model copying

‣ field reads / writes introduce new edges

‣ often implemented via points-to set propagation

Rule: Rule:

7

Imprecision with
Correlated Accesses

function extend(dest,src) {
 for (var prop in src)
 dest[prop] = src[prop];
}

Andersen’s normal form
{ prop = src.nextProp(),
 tmp = src[prop],
 dest[prop] = tmp }

Possible trace
tmp = src[prop];
prop = src.nextProp();
dest[prop] = tmp;

Imprecise: prop
re-defined between

accesses

8

Tracking Correlated
Accesses

function extend(dest,src) {
 for (var prop in src)
 if (*) {
 // copy for “foo”
 prop1 = “foo”;
 dest[prop1] = src[prop1];
 } else if (*) {
 // copy for “baz”
 prop2 = “baz”;
 dest[prop2] = src[prop2];
 } else ...
}

function extend(dest,src) {
 for (var prop in src)
 dest[prop] = src[prop];
}

‣ Specialize code for
each property
name, preventing
conflation

‣ But we only
discover property
names during
analysis...

9

Function Extraction +
Context Sensitivity

function extend(dest,src) {
 for (var prop in src)
 // extract accesses into
 // fresh function
 (function ext(p) {
 dest[p] = src[p];
 })(prop);
}

function extend(dest,src) {
 for (var prop in src)
 dest[prop] = src[prop];
} ‣ Analyze new functions with

clone per property name

‣ Similar to object
sensitivity / CPA

ext contexts: p == “foo”, p == “baz”, ...

10

Details

‣ Detect correlated accesses with simple data flow
analysis

‣ Function extraction handles this, unstructured
control flow, other corner cases

‣ Context sensitivity handles correlated accesses
across function calls

‣ See paper for further information

11

Implementation

‣ Built using WALA, re-using JS feature handling

‣ lexical accesses

‣ dynamically-computed property names

‣ Function.prototype.call() and apply()

‣ Unsound in general (e.g., for eval)

‣ But still useful, e.g., for bug finding

12

Evaluation

‣ Five popular web frameworks

‣ Six small benchmarks for each

‣ Compared with built-in WALA analysis

‣ Ran with and without call / apply handling

‣ ‘+’ enables handling, ‘-’ disables handling

‣ Manually transformed one jquery function

13

Results: Scalability

All our experiments were run on a Lenovo ThinkPad W520 with a 2.20 GHz
Intel Core i7-2720QM processor and 8GB RAM running Linux 2.6.32. We used
the OpenJDK 64-Bit Server VM, version 1.6.0_20, with a 5GB maximum heap.

5.3 Results

Framework Baseline− Baseline+ Correlations− Correlations+

dojo * (*) * (*) 3.1 (30.4) 6.7 (*)
jquery * * 78.5 *
mootools 0.7 * 3.1 *
prototype.js * * 4.4 4.5
yui * * 2.2 2.1

Table 3. Time (in seconds) to build call graphs for the benchmarks, averaged per
framework; ‘*’ indicates timeout. For dojo, one benchmark takes significantly longer
than the others, and is hence listed separately in parentheses.

Performance We first measured the time it takes to generate call graphs for our
benchmarks using the different configurations, with a timeout of ten minutes.
The results are shown in Table 3. Since our benchmarks are relatively small,
call graph construction time is dominated by the underlying framework, and
different benchmarks for the same framework generally take about the same
time to analyze. For this reason, we present average numbers per framework,
except in the case of dojo where one benchmark took significantly longer than
the others; its analysis time is not included in the average and given separately
in parentheses.

Configuration Baseline− does not complete within the timeout on any bench-
mark except for mootools, which it analyzes in less than a second on average.
However, once we move to Baseline+ and take call and apply into considera-
tion, mootools also becomes unanalyzable.

Our improved analysis fares much better. Correlations− analyzes most bench-
marks in less than five seconds, except for one dojo benchmark taking half a
minute, and the six jquery benchmarks, which take up to 80 seconds. Adding
support for call and apply again impacts analysis times: the analysis now times
out on the jquery and mootools tests, along with the dojo outlier (most likely
due to a sophisticated nested use of call and apply on the latter), and runs
more than twice as slow on the other dojo tests; on prototype.js and yui, on
the other hand, there is no noticeable difference. However, our precision mea-
surements indicate that some progress has been made even for the cases with
timeouts in Correlations+ (see below).

Our timings for the “+” configurations do not include the overhead for finding
and extracting correlated pairs, which is very low: on average, the former takes
about 0.1 seconds, and the latter even less than that.

18

‣ Dramatic improvements with Correlations–

‣ Useful for an under-approximate call graph

‣ For ‘+’ configs, issues remain with call / apply

14

Results: Highly-Polymorphic
Calls

Framework Baseline− Baseline+ Correlations− Correlations+

dojo ≥239.4 (≥240) ≥226.4 (≥225) 0.0 (1) 1.0 (≥11)
jquery ≥244.0 ≥249.0 3.0 ≥9.0
mootools 0.0 ≥29.2 0.0 ≥0.0
prototype.js ≥164.5 ≥166.0 0.0 0.2
yui ≥29.0 ≥34.5 0.0 0.0

Table 5. Number of highly polymorphic call sites (i.e., call sites with more than five
call targets) for the benchmarks, averaged per framework; ‘≥’ indicates that the result
is a lower bound due to timeout. The outlier on dojo is separated out.

The correlation-tracking configurations report very few highly polymorphic
call sites: the maximum number is 11 such sites on the problematic dojo bench-
mark under configuration Correlations+, and the maximum number of call tar-
gets is 22 on some of the jquery benchmarks. We inspected several of these sites
and found that they involved higher-order functions and callbacks, justifying
the higher call graph fanout. The baseline configurations, on the other hand,
produce very dense call graphs with many highly imprecisely resolved call sites,
some with more than 300 call targets.

Note that even for cases where Correlations+ times out, the number of highly-
polymorphic call sites is dramatically reduced compared to Baseline+. This result
is an indication that correlation tracking is still helpful in these cases, even
though further work on scalability is needed. For clients that do not require a
full call graph, the partial call graph computed by Correlations+ would likely be
more useful than that of Baseline+ due to its lower density.

In summary, these results clearly show that correlation tracking significantly
improves scalability and precision of field-sensitive points-to analysis for a range
of JavaScript frameworks.

6 Other Languages

We have shown that correlation tracking improves analysis of several common
JavaScript frameworks. But while our work focuses on JavaScript, there are
analogs in other languages. Some languages allow writing code equivalent to the
extend function from prototype.js, and most languages provide string-indexed
maps that can cause a similar precision loss. We briefly discuss both cases.

Dynamic property accesses in Python. Like JavaScript, Python is a highly dy-
namic scripting language with features for reflective property access: dir lists all
properties of an object, and getattr and setattr provide first-class property
access. An equivalent of the extend function of Figure 1 can easily be written:

def extend(a, b):
for f in dir(b): setattr(a, f, getattr(b, f))

20

‣ Again, big wins with correlation tracking

‣ Also significant improvements under timeouts

‣ More useful under-approximation

15

Related Work

‣ Other JS heap analyses: TAJS [SAS09,SAS10],
JSRefactor [OOPSLA11], CFA2 / DrJS [ESOP10],
Gulfstream [WebApps10]

‣ Cannot analyze JS frameworks

‣ Complexity: Chaudhuri’s technique [POPL08] may
shave a log factor

‣ Context sensitivity: influenced by CPA
[ECOOP95] and object sensitivity [TOSEM05]

16

Conclusions
‣ Scalable points-to analysis for JS is hard

‣ Both in theory and in practice

‣ Correlated accesses cause imprecision

‣ Solution: track correlated accesses

‣ extract into new functions

‣ analyze with targeted context sensitivity

‣ Future work: attack remaining bottlenecks

http://wala.sourceforge.net

17

http://wala.sourceforge.net
http://wala.sourceforge.net

