Correct Refactoring of Concurrent Java Code

Max Schiifer! Julian Dolby? Manu Sridharan? Emina Torlak? Frank Tip?

1 Oxford University Computing Laboratory, UK
max.schaefer@comlab.ox.ac.uk
2 IBM T.J. Watson Research Center
{dolby,msridhar,etorlak,ftip}@us.ibm.com

Abstract. Automated refactorings as implemented in modern IDEs for
Java usually make no special provisions for concurrent code. Thus, refac-
tored programs may exhibit unexpected new concurrent behaviors. We
analyze the types of such behavioral changes caused by current refactor-
ing engines and develop techniques to make them behavior-preserving,
ranging from simple techniques to deal with concurrency-related lan-
guage constructs to a framework that computes and tracks synchro-
nization dependencies. By basing our development directly on the Java
Memory Model, we can state and prove precise correctness results about
refactoring concurrent programs. We show that a broad range of refac-
torings are not influenced by concurrency at all, whereas other important
refactorings can be made behavior-preserving for correctly synchronized
programs by using our framework. Experience with a prototype imple-
mentation shows that our techniques are easy to implement and require
only minimal changes to existing refactoring engines.

1 Introduction

Ever since its inception, Java has offered strong support for writing concurrent
code, and with the increasing prevalence of multicore processors in recent years,
concurrent programming has become crucial to exploiting these architectures. It
may, then, come as a surprise that many of the most frequently used refactorings
as implemented in modern Java IDEs are not concurrency-aware. When applied
to concurrent programs, even refactorings that work reliably for sequential code
may introduce concurrency bugs in the form of unexpected new behaviors, race
conditions, deadlocks, or livelocks.

For sequential programs, the refactoring community has generally down-
played the importance of ensuring that refactoring engines handle all corner
cases correctly [11], instead encouraging developers to use regression tests to
ensure that refactorings do not change program behavior. But this approach
is likely to be much less effective in a concurrent setting: concurrency bugs like
race conditions may only occur on particular hardware or with a very rare thread
schedule, making it much more difficult to gain confidence in a refactoring via
regression testing.

While there has been some work on new refactorings designed specifically to
improve the concurrent behavior of existing code [7, 8, 23, 34|, the correctness of



traditional refactorings on concurrent code is not well studied. In his classic guide
to refactorings, Fowler cautions that “these refactorings ... are described with
single-process software in mind” and anticipates that refactorings for concurrent
software will be quite different [11].

This paper presents what is to the best of our knowledge the first systematic
approach to ensuring the correctness of commonly used refactorings on concur-
rent code. We propose to extend the concept of dependence edge preservation,
previously used by Schéfer et al. to ensure correctness of refactorings on sequen-
tial code [27, 28], to the realm of concurrent programs. The newly introduced
dependence edges relate language constructs significant to the underlying mem-
ory model, based on the reordering constraints it imposes. A refactoring imple-
mentation then builds on this framework and ensures that the appropriate edges
are preserved under the transformation, which guarantees that certain behavior
changes are not introduced.

By firmly grounding our dependence edges in the specification of the mem-
ory model, we can formulate and prove precise behavior preservation results
for refactorings that adopt them. For concurrent code, the notion of “behavior
preservation” has to account for the non-deterministic behavior that can easily
arise in concurrent settings. We say that a refactored program preserves the be-
havior of the original one if all behaviors it can exhibit can also be exhibited
by the original program, and vice versa. We investigate a number of commonly-
used refactorings in terms of the Java Memory Model (JMM) [22] and show that
the majority of them always preserve behavior in this sense, assuming they are
behavior-preserving for sequential code. For some other important refactorings,
we can prove that they preserve the behavior of concurrent programs without
data races when enhanced with our techniques. Even for programs with races,
we guarantee not to introduce any new races or deadlocks between actions from
the original code (further discussed in §4.3).

We have implemented our proposed techniques as an extension to an existing
refactoring engine [27, 28] with very moderate effort. We show that the use of
synchronization constructs that would impede refactoring is rare in real-world
Java programs, hence the additional constraints imposed by our framework are
unlikely to prevent common refactoring operations.

The main contributions of our paper are as follows:

— We show that many existing refactoring implementations can introduce con-
currency bugs related to altering possible inter-thread orderings (see §2).

— We present the first comprehensive approach for avoiding such bugs in Java
refactoring engines based on desugaring of the synchronized method modifier
and on preservation of synchronization dependence edges (see §3).

— We relate our techniques to the Java memory model and prove that they
yield a strong behavior preservation guarantee (see §4).

— We describe an implementation of our techniques in an existing refactoring
engine, showing that only moderate implementation effort is required to
obtain behavior preservation for concurrent code (see §5).

Finally, we discuss some related work in §6, before concluding in §7.



class C1 implements TM { class C1 implements TM {
static class Super { static class Super {
static int x, vy; static int x, vy;
} static synchronized void m() {
static class Sub extends Super { ++X; ++V;
static synchronized void m() { }
++X; ++V; }
} static class Sub extends Super {
static synchronized void n() { static synchronized void n() {
if (x !'=y) { print("bug"); } if (x !'=y) { print("bug"); }
} }
} }
public void ml1() { Sub.m(); } public void ml1() { Super.m(); }
public void m2() { Sub.n(); } public void m2() { Sub.n(); }
} }
(a) (b)

Fig. 1. Example showing how the PuLL Up MEMBERS refactoring can change program
behavior; here, the Sub.m() method is pulled up to class Super.

2 Motivating Examples

In this section, we present a number of examples where existing refactorings do
not preserve program behavior in the presence of concurrency. The examples
show that a variety of concurrency bugs may be introduced via existing refac-
torings, and that in some cases the introduced bugs are quite subtle, indicating
the need for a principled approach to refactoring concurrent code.

Ezxample Structure Each example contains a class implementing an interface ™™
(for “Two Methods”) with methods m1() and m2(). A harness provided in Ap-
pendix A executes m1() and m2() in parallel, exposing the concurrency bugs
introduced by the refactorings. In all the example figures, part (a) shows the
original program and part (b) shows the refactored program. The code targeted
by the refactoring is highlighted in dark gray in part (a) of each figure, and code
changed by the refactoring is highlighted in light gray in part (b).

In every example, we will argue that the refactored program can exhibit
some behavior that was not possible in the original program. We have verified
the possibility of these behaviors using the MemSAT tool [32].

Pull Up Members The PuLL Up MEMBERS refactoring [11] can introduce
concurrency bugs when it mishandles the synchronized method modifier. Consider
the example program of Figure 1(a). The program includes a class Super that
declares two fields x and y. Its subclass Sub declares two static methods m() and
n() that are respectively invoked by the methods m1() and m2(), and hence may
be run in parallel. Note that m() and n() are both synchronized, which implies that



class C2 implements TM { class C2 implements TM {
static class A { static class A {
synchronized static void m() {} synchronized static void m() {}
synchronized static void n() {} }
} static class B {
static class B {} synchronized static void n() {}
public void m1() { }
synchronized (B.class) { A.m(); } public void ml1() {
} synchronized (B.class) { A.m(); }
public void m2() { }
synchronized (A.class) { A.n(); } public void m2() {
} synchronized (A.class) { B.n(); }
} }
}
(a) (b)

Fig. 2. Example showing how the MOVE refactoring may change program behavior.
Here, the A.m() method is moved to class B.

the code in the body of each method is protected by the same lock, Sub.class.?
As a result, the updates to fields x and y by m() are executed atomically from
method n()’s point of view, and the print statement in n() can never execute.

Now suppose that the PuLL Up MEMBERS refactoring is applied to move
method Sub.m() into its superclass Super. We are not aware of any preconditions
imposed on the PULL Up MEMBERS refactoring in the literature that would
prevent this refactoring, and current IDEs such as Eclipse and IDEA allow it,
producing the code of Figure 1(b).

However, this transformation is not behavior-preserving: the synchronized
method m() is now located in class Super, which means that it is now protected
by the lock Super.class. Method n() is still protected by the lock Sub.class, and
since these locks are different, the methods n() and m() can now be interleaved
in arbitrary ways. In particular, n() may execute in between the field writes in
mQ), leading to “bug” being printed, an impossibility in the original program.

Note, incidentally, that pulling up synchronized instance methods does not
suffer from this problem: such methods synchronize on the receiver object, which
is not changed by the refactoring.

Move Method Figure 2 gives an example where the MOVE METHOD refactor-
ing can introduce a deadlock. In the original program, method m1() first acquires
the B.class lock and then calls A.m(), which in turn acquires the A.class lock
(since it is synchronized). Method m2() acquires the A.class lock and then calls
A.n(), which again acquires lock A.class (this second lock-acquire trivially suc-

3 In Java, a static synchronized method is protected by a lock on the Class-object
associated with the class in which the method is declared.



class C3 implements TM { class C3 implements TM {
int f; int f;
public void m1() { public void ml1() {
int g = 0; int g = 0;
synchronized (this) { int n = f;
g = f; synchronized (this) {
} g = n;
if (g % 2 != 0) { print("bug"); } }
synchronized (this) { g = f; } if (g % 2 '= 0) { print("bug"); }
} synchronized (this) { g = n; }
public synchronized void m2() { }
++f; ++f; public synchronized void m2() {
} ++f; ++f;
} }
}
(a) (b)

Fig. 3. Example showing how the EXTRACT LoOCAL refactoring may change program
behavior. Here, the first read of £ in method m1() is extracted.

ceeds because Java monitors are reentrant). Deadlock is impossible in the original
version of the program, because the only lock that is required by both threads,
A.class, is never held indefinitely by either thread.

Now suppose that we apply the MOVE METHOD refactoring to move method
n() from class A to class B, resulting in the code of Figure 2(b). As with PuLL
Upr MEMBERS, this refactoring is allowed by both the Eclipse and IDEA IDEs.
However, the refactored program may deadlock. Moving the synchronized method
A.n() to class B causes the method to synchronize on B.class. Hence, method m2()
now first attempts to acquire lock A.class and then lock B.class. Since method
m1() still attempts to acquire lock B.class and then lock A.class, we have the
classic scenario where deadlock may occur due to a lack of a consistent locking
order.

Extract Local Here we show that the EXTRACT LOCAL refactoring can intro-
duce an atomicity bug. For Figure 3(a), consider applying EXTRACT LOCAL to
the first read of the f field in method m1(). The EXTRACT LOCAL refactoring
as implemented in Eclipse and IDEA will introduce a new local variable (with a
name interactively chosen by the programmer; we chose n in the example), ini-
tialize it to the selected expression, and replace all occurrences of that expression
with a reference to the variable. Since m1() contains another occurrence of the
expression f, the refactoring produces the code shown in Figure 3(b), declaring
n outside the synchronized block.

4 Eclipse replaces all occurrences by default, with an option to only extract the selected
occurrence, whereas IDEA’s default is to only extract the selected occurrence.



class C4 implements TM { class (C4 implements TM {
static volatile boolean a = false; static volatile boolean a = false;
static volatile boolean b = false; static volatile boolean b = false;
public void m1() { public void ml1() {
boolean x = (a = true); while (!'b);
while (!b); if ((a = true));
if (x); print("ml_finished");
print("ml_finished"); }
} public void m2() {
public void m2() { while (!a);
while (!a); b = true;
b = true; print("m2_finished");
print("m2_finished"); }
} }
}
(a) (b)

Fig. 4. Example showing how the INLINE LOCAL refactoring may change program
behavior. Here, the local x in m1() is inlined.

Unfortunately, this transformation can change program behavior. Note that,
in the original program, accesses to field £ in methods m1() and m2() are protected
by a lock on this. Consequently, the two increments of £ in method m2() are
performed atomically from the point of view of the references to f in m1(), and
hence m1() will only see even values in f. After the refactoring, the reference to f
has been hoisted outside the synchronized blocks in m1(). As a result, the reads of
f in method m1() may occur between the two writes in m2(), making it possible
for m1() to print “bug” (an impossibility in the original program).

Inline Local Figure 4(a) shows an example program that relies only on two
volatile fields a and b to synchronize between threads—the program does not
contain any synchronized blocks or methods. In Java, a write of a volatile field by
one thread guarantees that any other thread that subsequently reads this field
sees all memory updates the former thread has performed, up to and including
the volatile write.® Thus a volatile field can be used as a flag by which one thread
notifies another about the completion of a task or the availability of data.

The execution of the program in Figure 4(a) takes place in the following
order. First, the fields a and b are both initialized to false. Then, the thread
executing m1() sets a to true and then spins until b becomes true. The only
assignment to b is in the thread that executes method m2(), meaning the spin-
loop in m1() will continue to be executed until the other thread executes this
assignment. Meanwhile, the thread executing m2() begins by spinning until a

5 In contrast, writes to non-volatile fields without other synchronization may appear
to happen out-of-order from the perspective of other threads.



class C5 implements TM {
int x = 0; int y = 0;
int z = 0;
public void m1() {
int rl = x;
synchronized (this) {}
y=1;
print(rl);
}
public void m2() {
int r2 = y;
synchronized (this) { z++; }
X =1;
print(r2);

(a)

class C5 implements TM {
int x = 0; int v = 0;

AtomicInteger z = new AtomicInteger(0);

public void ml1() {
int rl = x;
synchronized (this) {}
y =1;
print(rl);

}

public void m2() {
int r2 = vy;
z.getAndIncrement();
X =1;
print(r2);

(b)

Fig. 5. Example showing how the CONVERT INT TO ATOMICINTEGER refactoring 7|
may change program behavior. Here, the refactoring is applied to the z field.

becomes true, which happens when the other thread assigns true to a. At that
point, b is set to true, and the thread terminates after printing “m2 finished”’. After
b becomes true, the if-statement in m1() is executed and the thread terminates
after printing “m1 finished”. In summary, the execution of the actions by the two
threads proceeds in a fixed order and always terminates normally.%

Figure 4(b) shows the example program after applying INLINE LOCAL to the
variable x. Note that refactoring has moved the write of the volatile field a after
the spin-loop in method m1(). This means that both threads are now executing
their spin-loop until the other sets the volatile field used in its condition to true.
Neither thread can make progress, resulting in a livelock, which was not possible
in the original version of the program.

Convert Int to AtomicInteger The CONCURRENCER tool of Dig et al. [7]
provides refactorings aimed to help migrate code to the java.util.concurrent li-
braries introduced in Java 1.5. One such refactoring is CONVERT INT TO ATOM-
ICINTEGER, which converts a field of type int and its accesses to the appropriate
operations on an AtomicInteger. The transformation can improve both thread
safety and scalability [7].

Surprisingly, in some corner cases it is possible for CONVERT INT TO ATOM-
ICINTEGER to change program behavior. To explain how, we must introduce
some terminology. The Java Memory Model relates reads, writes, and lock ac-
quire and release events (among others) by the happens-before relation [20]. In-

5 The order in which the two print statements are executed is not constrained.



formally, an operation a happens-before b, written a <y, b, if (1) a is performed
before b by the same thread, or (2) a <y r and ¢ <pp b, where r is a release of
a lock that is later acquired by ¢. Given <y, we can define a data race:

Definition 1. Two accesses to the same field or array element form a data race
iff they are unrelated by <y, and at least one of them is a write.

Now, consider the program in Fig. 5(a). The key thing to notice about this
program is that either m1() or m2() will always print 0, due to the following
reasoning. The placement of the synchronized blocks in m1() and m2() ensures
that the program cannot have a data race on both x and y simultaneously. If
ml() acquires and releases the this monitor before m2(), then the read of x in
m1() happens-before the write of x in m2(), and therefore m1() must print 0. (In
this case, there is no data race on x, but there may be a race on y.) By similar
reasoning, if m2() synchronizes on this before m1(), then m2() must print o.

Now suppose that the CONVERT INT TO ATOMICINTEGER refactoring is ap-
plied to the field z, yielding the program in Figure 5(b). The refactoring removes
the synchronized block from m2() and, with it, the happens-before edges between
the operations on x and v.” That is, the refactored program, unlike the original
one, may race on both x and y. According to the JMM, these races could cause
the refactored program to print two 1’s to the console, which was impossible in
the original program.

This counter-intuitive outcome may be more easily understood in terms of
the compiler transformations allowed by the JMM. In theory, a compiler could
transform the m1() method from the refactored program in Figure 5(b) to the
following:

public void m1() { v = 1; int rl = x; print(rl); }

In this scenario, the compiler removes the synchronized block from mi() after
discovering that no other thread synchronizes on the same object.® Once the
block is removed, the compiler can then reorder the read of x and the write of
y, since they are independent accesses to different memory locations [16]. After
these compiler transformations, there is an interleaving of the refactored program
in which both m1() and m2() print 1.

No Java compiler we know of performs the kind of global reasoning that
is required for the transformations described above. As a result, we have not
observed an execution of the program in Figure 5(b) that prints two 1’s to the
console. In general, we suspect that this sort of bug is very unlikely to arise in
practice for typical hardware and JVMs. Nonetheless, the example illustrates the
difficulty of ensuring the correctness of refactorings with respect to the JMM,
which allows various compiler and hardware optimizations that result in out-of-
order reads and writes of shared memory.

" While the getAndIncrement() method can be thought of as atomically performing a
volatile read and a write of z, the atomicity and volatility of this operation do not
induce any inter-thread happens-before edges because z is accessed only in m2().

8 This assumes the program is run with the harness as described in Appendix A.



3 Techniques for Preserving Concurrent Behaviors

Section 2 showed that it is all too easy for a refactoring that rearranges or moves
code to introduce concurrency bugs by enabling new interactions between par-
allel threads. Here, we describe two relatively simple techniques that can enable
a refactoring engine to avoid introducing a wide variety of concurrency bugs,
including all of those presented in §2. First, §3.1 shows that a simple desugaring
of the synchronized method modifier simplifies the preservation of its semantics
during refactoring. Then, §3.2 describes how the approach of preserving de-
pendence edges to ensure refactoring correctness [28] can easily be extended to
prevent problematic reordering of concurrent code.

3.1 Handling synchronized methods

In the examples of Figures 1 and 2, a refactoring changed program behavior
because moving a synchronized method to another class can result in the method
acquiring a different lock when executed. A straightforward solution to this
problem is to perform a desugaring step before refactoring that transforms a
synchronized method into a method containing a synchronized block that explic-
itly refers to the appropriate lock. For example, the desugaring would transform
the synchronized method A.n() of Fig. 2 into the following form:

static void n() { synchronized(A.class) { } }

In this form, the method can safely be moved to class B without changing program
behavior. In the same vein, method Sub.m() from Fig. 1 would be desugared by
introducing synchronization on Sub.class around its body, so it can be pulled
up to class Super without further ado. After the refactoring, a “re-sugaring” step
then tries to eliminate the introduced synchronized blocks in favor of synchronized
modifiers, which is, however, not possible in these two examples.

The desugaring and resugaring steps are similar to the micro-refactorings
advocated by Schéfer et al. [28], although interestingly here the focus is on
simplifying the language to facilitate refactoring, whereas the latter work put its
emphasis on enriching the language for the same purpose.

3.2 Dependence Edges

In past work [28], Schifer et al. employed the concept of dependence edge preser-
vation to rule out the possibility of behavior change for sequential refactorings.
For example, the INLINE LOCAL refactoring, in its simplest form, takes a decla-
ration T x = e; of a local variable, and replaces every reference to x with a copy
of e. To ensure correctness, the refactoring engine computes all data and control
dependencies of e, in particular all the reaching definitions of read accesses in
e before and after the refactoring, and ensures that dependencies are neither
acquired nor lost.

This approach is appealing since it enables us to apply well-understood con-
cepts and techniques from the compiler construction literature in a refactoring



context. For example, a framework for computing control flow graphs and deter-
mining data dependencies is part of many compiler frontends, and can perhaps
be reused. This contrasts sharply with precondition-based approaches, where suf-
ficient preconditions for behavior preservation have to be invented from scratch.

However, preserving data and control dependencies is not sufficient for con-
current code, as illustrated by the example in Figure 4. There, the expression
a=true has no (intraprocedural) control or data dependencies either before or
after the refactoring, and yet the refactoring causes a behavior change due to
interference with another thread. While in principle it might be possible to avoid
this problem by adding inter-thread control and data dependencies, such an ap-
proach does not seem practical for real-world Java programs.

Looking more closely at the examples, we see that one of the main reasons for
behavior change is the reordering of concurrency-related code by the refactoring.
For example, in Fig. 3, a read of field f is moved out of a synchronized block, and
in Fig. 4, a write and a read of two volatile fields are permuted; such reorderings
enable new concurrent behaviors. We will now introduce synchronization depen-
dencies, which capture this kind of constraint and will prevent such reorderings
from happening.

For example, an access to a field is synchronization dependent on every
synchronized block in which it is nested or which precedes it, so it will lose a
dependence when it is moved out of one of these blocks. Analogous to control
and data dependencies, the refactoring engine will compute all synchronization
dependencies of expressions it moves and checks that dependencies are preserved,
thereby avoiding bugs like those in Figures 3 and 4.

Determining what synchronization dependencies must be modelled and how
exactly they must be preserved requires consulting the memory model defining
possible concurrent behaviors, in our case the JMM. While the detailed speci-
fication of the model is very technical, its main consequences in terms of per-
missible instruction reorderings are neatly summarized in Doug Lea’s “JSR-133
Cookbook” [21], from which we take the matrix in Fig. 6. The JMM classifies
instructions into several categories, five of which figure in the reordering matrix:

1. A normal access is a read or write of a non-volatile shared memory location,
i.e., a field that is not declared volatile, or an array element.

2. A wolatile read is a read of, and a wvolatile write a write of, a field declared
volatile.’

3. A monitor enter is an instruction that acquires a lock; it corresponds to the
beginning of a synchronized block or method.

4. A monitor exit is an instruction that releases a lock; it corresponds to the
end of a synchronized block or method.

An instruction from any of these categories that occurs in a particular execu-
tion of the program is called a (memory) action. Many other instructions, such
as reads or writes of local variables or arithmetic operations, are not relevant to
the memory model and do not give rise to actions.

9 Array elements cannot be declared volatile in Java.



Normal Access

Volatile Read,
Monitor Enter

Volatile Write
Monitor Exit

Normal Access X
Volatile Read, X X X
Monitor Enter

Volatile Write, )4 X

Monitor Exit

Fig. 6. JMM Reordering Matrix from [21]

The matrix specifies under which conditions an action can be reordered with
an action that follows it in some execution. Each cell corresponds to a situation
where an action of the kind indicated by the row label is followed (not necessarily
immediately) by an action of the kind indicated by the column label. If the cell
is labelled X, these two instructions cannot in general be reordered.!®

For example, the X in the first column of the second row indicates that a
volatile read or monitor enter cannot be permuted with a subsequent normal
access, which at source level would correspond to moving a normal access before
a volatile read or out of a synchronized block. On the other hand, the blank cell in
the upper left corner indicates that normal accesses can be reordered, provided
that no other constraints such as data dependencies prohibit it.

Figure 6 shows that as far as reordering is concerned, volatile reads behave
the same as monitor enters, and volatile writes the same as monitor exits. The
former two kinds of actions are collectively referred to as acquire actions, and the
latter two as release actions. Both acquire actions and release actions are termed
synchronization actions (but normal accesses are not). Hence, the matrix can be
summarized by saying that (1) synchronization actions are not to be reordered;
(2) a normal access cannot be moved past a release action; and (3) a normal
access cannot be moved before an acquire action.

We define two kinds of synchronization dependencies in terms of the pro-
gram’s control flow graph:

— A CFG node b has an acquire dependence on a node a if a corresponds to
an acquire action and there is a path from a to b in the CFG. We then say
that there is an acquire edge between a and b.

— A CFG node a has a release dependence on a node b if b corresponds to a
release action and there is a path from a to b in the CFG. We then say that
there is a release edge between a and b.

In terms of these dependencies, Figure 6 implies that during the reorderings
performed by a refactoring,

10 These restrictions are chosen from a pragmatic perspective, presupposing only mod-
erate analysis capabilities, and hence are slightly conservative. For instance, a very
sophisticated global analysis may be able to prove that a volatile field is only acces-
sible from a single thread, and can hence be treated like a normal field [21].



1. a normal access may never lose acquire dependencies,

2. a normal access may never lose release dependencies,

3. a node corresponding to a synchronization action may never gain acquire or
release dependencies.

The matrix does not mention two other kinds of actions defined by the JMM:
external actions and thread management actions. The former category comprises
any action that interacts with the program’s environment (such as input/out-
put), whereas the latter represents the thread management methods from the
Java standard library’s Thread class. External actions do not require any special
treatment. To ensure that no action is ever reordered with a thread management
action, we introduce a third kind of synchronization dependence: a node a has
a thread management dependence on any node b that corresponds to a thread
management action and is reachable from it in the CFG. We require that

4. a node corresponding to an action may never gain or lose a thread manage-
ment dependence.

Synchronization dependencies are easy to compute once we have a control
flow graph of the program to be refactored, in particular since they do not
require any form of alias analysis. For example, a normal access has an acquire
dependence on any preceding volatile read, no matter which field the read refers
to.

In principle, any sequential refactoring can be made safe for concurrent pro-
grams as follows: (1) compute synchronization dependencies on the initial CFG,
(2) perform the refactoring as in the sequential case, yielding an updated CFG,
and (3) recompute synchronization dependencies on the updated CFG and en-
sure that they have been preserved as described above. An implementation of
ExTRACT LOCAL updated in this way will reject the refactoring in Fig. 3 since
f loses its acquire dependence on synchronized(this) { ... }, and an implemen-
tation of INLINE LocAL will reject the refactoring in Fig. 4, since the volatile
read of b gains a release dependence on the volatile write of a.

While the reordering matrix of Figure 6 succinctly represents the implications
of the JMM for code reorderings, some refactorings from our examples can do
more than just reorder code. For example, the EXTRACT LOCAL refactoring is
able to replace multiple identical expressions with the same new local, thereby
possibly replacing multiple field accesses with one access (see Figure 3). Similarly,
applying INLINE LOCAL may duplicate an expression, thereby replacing one field
access with many. The next section examines the implications of our dependence
preservation framework more formally, proving a strong correctness guarantee
even for some refactorings that go beyond code permutations.

4 Correctness of Refactorings in the Presence of
Concurrency

In this section, we formalize the synchronization dependence preservation tech-
nique of §3.2 and show that for many refactorings, it yields a strong guarantee



that the exact concurrent behaviors of input programs are preserved. In §4.1 we
give some background on the Java Memory Model, and in §4.2 we present our
formalization based on the memory model. Finally, §4.3 discusses our handling
of programs with data races.

4.1 Java Memory Model Basics

Before formalizing our refactorings, we first describe some necessary concepts
from the Java Memory Model [13, Chapter 17]. The JMM abstracts away from
the concrete syntactic structure of programs, instead considering a program to
be given as the (possibly infinite) set of its threads, and each thread as a set
of memory traces representing possible executions. A memory trace is a list of
actions (introduced in §3.2) paired up with their value, i.e., the value read or
written by a normal or volatile access. These traces are required to obey intra-
thread semantics in the sense that they correspond to executions of threads in
isolation, except that reads of shared locations (fields or array elements) may
yield arbitrary values to account for interaction between threads.

The set of memory traces for a thread is an overapproximation of the behavior
it may actually exhibit when run in parallel with other threads. The JMM defines
the notion of an execution, which chooses a particular trace for every thread
and relates their actions in three ways. The first and simplest relation is the
program order <,,, which reflects the intra-thread ordering of actions, and is
hence determined by the choice of traces. The program order never relates actions
from different threads. Second, the execution defines a global total order <y, on
all synchronization actions in the traces, known as the synchronization order.
For synchronization actions occurring within the same thread, this order has to
be consistent with <. Finally, the execution assigns to every read action r a
corresponding write action W (r) on the same field or array element, requiring
that the value seen by read r is the value written by write W (r).

Based on the program order <, and the synchronization order <y, of an
execution, two additional orders are defined. The synchronizes-with order <g
relates a release action r to an acquire action ¢ if they correspond (i.e., either r
is a write of a volatile field v which is read in ¢, or r exits a monitor m which ¢
enters) and r <y, g. The happens-before order <y}, (described informally in §2)
is defined as the transitive closure of <,, U <g,. This means that a <y b if
either (1) a <p, b, or (2) there is a release action r and an acquire action ¢ such
that a <po 7 <ew ¢ <nb b. As in Defn. 1, a data race is then a pair of accesses to
the same variable, at least one of which is a write, such that these accesses are
not ordered by <y

Finally, the JMM defines a set of legal executions for a program, i.e., those
behaviors that may actually occur when executing the program. To determine
these legal executions, the JMM starts with well-behaved ezecutions, which are
executions in which every read r sees a most recent write W (r) to the same vari-
able in the happens-before order. To derive a legal execution from a well-behaved
execution, one then proceeds to commit data races, i.e., one decides whether a
read sees a value through such a race or not. (This process can proceed one race



at a time or can involve multiple races, and may even be restarted, although
committed choices cannot be undone.) In a correctly synchronized program, i.e.,
a program with no data races, all legal executions are well-behaved, and the
most recent write occurring before a given read is always uniquely defined.

It is perhaps worth pointing out that correctly synchronized programs in this
terminology are only required to be free of the low-level data races defined by
the JMM. They may still contain higher-level races.

4.2 Correctness Proofs

The JMM deals with programs in a very abstract and low-level representation
that is quite far removed from the Java source code a refactoring actually ma-
nipulates. Yet it is this high level of abstraction that allows us to easily establish
our first correctness result:

Theorem 1. Any refactoring that is trace-preserving, i.e., does not alter the set
of memory traces of a program, preserves the behavior of arbitrary concurrent
programs: every possible behavior of the original program is a behavior of the
refactored program and vice versa. This holds even in the presence of data races.

Proof. This is just a reformulation of a result in [16].

Perhaps surprisingly, a great many refactorings (and in particular the major-
ity of all refactorings implemented in Eclipse) are trace-preserving, since many
source-code constructs do not correspond to JMM actions. For example, the
memory model has no concept of classes or methods, so refactorings that re-
organize the program at this level are trace-preserving, among them PurLL Up
METHOD, PUsH DowN METHOD, MOVE METHOD, and type-based refactorings
such as INFER GENERIC TYPE ARGUMENTS. (This assumes the synchronized
method modifier is handled correctly; see §3.1.) The model does not deal with
names either, so RENAME does not become any more complicated in a concurrent
setting.

The JMM also does not model method calls (in a sense, method calls are al-
ways inlined in traces), so the refactorings EXTRACT METHOD, INLINE METHOD,
and ENCAPSULATE FIELD are all trace-preserving (again assuming correct han-
dling of the synchronized keyword).

Two important refactorings that are not trace-preserving in general are IN-
LINE LOCAL and EXTRACT LOCAL, since they may reorder field accesses. Note,
however, that if these two refactorings are applied to expressions that do not
involve field accesses or method calls (e.g., arithmetic expressions on local vari-
ables), they again become “invisible” to the memory model, and Thm. 1 guar-
antees their correctness on all programs.

Thus the JMM concept of traces and memory actions gives us a convenient
criterion to decide whether a refactoring is affected by concurrency at all.

For non-trace-preserving refactorings, we can pursue two directions: we can
identify further subclasses of refactorings for which general results can be proved,



or we can tackle the refactorings one by one to prove that their sequential im-
plementation can be updated to preserve behavior on concurrent programs.

Exploring the former approach first, we note that among those refactorings
that do in fact alter the set of memory traces a program yields, most do not
actually remove any code from the refactored program (at least not code that
corresponds to memory actions), but merely rearrange it. This might entail re-
ordering statements or expressions, or merging pieces of code that do the same
thing.

On the level of the JMM, we describe such transformations as follows:

Definition 2. A restructuring transformation is a partial function p on pro-
grams such that for every program P € dom(p) and every execution E' of p(P)
there is an execution E of P and a mapping f from actions in E to actions of
the same kind in E’. Also, this mapping does not map actions belonging to the
same thread in E to different threads in E'.

Intuitively, for every execution of the transformed program p(P) we can find
a corresponding execution of the original program P. We do not require that this
execution has the same behavior in any sense, but just that there is a mapping
between their actions which shows that no actions of the old program have been
lost, even though new actions may have been introduced.

Most importantly, however, the kinds of all actions need to be preserved.
That means, in particular, that field accesses have to refer to the same fields and
read or write the same values, and monitor operations have to handle the same
locks.

Given this very liberal specification, it is impossible to prove that such a
transformation preserves behavior. Instead, we will show that a restructuring
transformation cannot introduce new data races or new deadlocks between ex-
isting actions if it respects the synchronization dependencies introduced in the
previous section.

Definition 3. A restructuring transformation is said to respect synchronization
dependencies if its mapping f fulfills the following three conditions for all actions
a,b.

1. If a <4 b, then also f(a) <., f(b).
2. If a is an acquire action and a <, b, then also f(a) <j,, f(b).
3. If b is a release action and a <,, b, then also f(a) <, f(b).

Since <y, is a total order, the first requirement says that f cannot swap
the order of synchronization actions, whereas the second and third requirements
prohibit reordering normal accesses to appear before acquire actions or after
release actions. Note that this is just a formalization of the synchronization
dependencies introduced in §3.2.!

We first establish a slightly technical result.

11 For brevity, we mostly ignore thread management actions in this section, but all
results can easily be extended to cover them as well.



Lemma 1. Let a synchronization dependence respecting restructuring be given,
and let a and b be actions. If a <y b, then either f(b) <j, f(a) or f(a) <i,, f(D).

Proof. We first treat the case where a is an acquire action. In this case, we can
actually prove that a <y b implies f(a) <}, f(b) by induction on <yp:

If a <,0 b, then f(a) <[, f(b), and hence f(a) <j;, f(b), by Defn. 3. Other-
wise we have a release action [ and an acquire action g such that a <,, | <g
q <mp b. As before, this means that f(a) <, f(l); since f preserves action
kinds and <y, we have f(I) <., f(q), and finally f(q) <{, f(b) by induction
hypothesis. Together this again shows f(a) <{,, f(b).

Now consider the general case where a is not necessarily an acquire action.
If a <p6 b, then f(a) <l f(b) or f(b) <}, f(a), since f does not map actions
across threads. Otherwise, a <,, | <gw ¢ <pp b for some release action ! and
an acquire action g. But by Defn. 3 this gives f(a) <[, f(I). As above we see
f) <l f(q),and f(q) <}, f(b) follows since ¢ is an acquire action. In summary,
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we get f(a) <j, f(b), establishing the claim.
Now our first result follows effortlessly:

Theorem 2. If there is a data race between two actions f(a) and f(b) in exe-
cution E’, then there is already a data race between a and b in E.

Proof. Follows directly from the previous lemma and the definition of a data
race.

This result ensures that a synchronization respecting restructuring can never
introduce a new data race between two actions carried over from the original
program, although there may well be a data race involving actions introduced
by the transformation.

We immediately gain an important corollary:

Corollary 1. A restructuring transformation that does not introduce any new
actions will map correctly synchronized (i.e., data race free) programs to correctly
synchronized programs.

A similar result can be established for deadlocks.

Lemma 2. If there is a deadlock in an execution E’ of p(P) caused by locking
actions in rng(f), then the same deadlock occurs in E.

Proof. We sketch the proof for the case of two deadlocking threads. In that
case, there are threads ¢ and ¢ and monitor enter actions 11,1, l2,l5. Writing
L(ly) for the lock acquired by action /3 and similarly for the others, we require
L(ly) = L(1}) and L(l3) = L(l}); actions I3 and s belong to ¢, whereas I} and 1}
belong to ©'.

By the definition of f, the same must be true of f(l1), f({1), f(l2), f(15). In
order for ¥ and ¥’ to deadlock, we must have f(l1) <po f(l2), f(l5) <po f(1}),
f(lh) <so f(1Y), and f(I}) <s f(l2). By definition of f, the same is true of
11,04,12,15 due to the totality of <y, over all synchronization actions, the fact
that <;, and <, are consistent, and the first point of Def. 3.



Again, this proves that the transformation cannot introduce a deadlock only
involving actions from the original program, but does not preclude the existence
of deadlocks involving newly introduced actions.

The above two results establish a certain baseline. They apply to a wide
range of refactorings (and indeed non-behavior-preserving transformations), but
only guarantee very basic properties.

We conclude this section by establishing the correctness of two very important

refactorings on correctly synchronized programs (we discuss programs with races
in §4.3):

Theorem 3. The refactorings EXTRACT LOCAL and INLINE LOCAL preserve
the behavior of correctly synchronized programs if they preserve the behavior of
sequential programs and respect synchronization dependencies.

Proof (Outline). For EXTRACT LOCAL, note that if we extract copies ey, ..., e,
of an expression e into a local variable, there cannot be any acquire or thread
management actions between the individual copies, since the refactoring needs to
preserve synchronization dependencies. In a well-behaved execution this means
that the read actions in all copies see the same values, hence correctness for
sequential programs ensures behavior preservation.

For INLINE LOCAL, the refactoring may move field reads over acquire actions,
which would seem to make it possible for them to see values written by different
field writes than before the refactoring. For correctly synchronized programs,
however, this is not possible, since the read must already have been preceded
by corresponding acquire actions in the original program to prevent data races.
So again read actions will see the same values as in the original program, and
sequential correctness ensures behavior preservation.

The above argument can be made somewhat more precise, but a rigorous
proof would need a formalization of the correspondence between source-level Java
programs and programs as they are viewed by the JMM. Such an undertaking
is beyond the scope of this work, so we content ourselves with this intuitive
argument.

Apart from pragmatic considerations described in the following subsection,
there are some technical details of the JMM specification that make it unlikely
that the above correctness result can be extended to hold on programs with data
races. Concretely, our definition of dependence edges allows INLINE LOCAL to
perform a so-called “roach motel reordering”, in which an access is moved inside
a synchronized block [22], and EXTRACT LOCAL to perform a redundant read
elimination. While the authors of the JMM originally claimed that these trans-
formations are formally behavior-preserving [22], later research has shown that
this is not the case [5, 16]. Arguably this indicates a fault with the specification
of the JMM, but it remains an open problem whether the model can be changed
to accommodate these and similar transformations.



class C6 implements TM {
int x = 0, v = 0;
public void ml1() {
int tmp = x;

y = tmp+tmp;
}
public void m2() {
X =1;
}
}
(a)

class C6 implements TM {
int x = 0, v = 0;
public void ml() {
Y = X+X;

}

public void m2() {
x =1;
}
}

(b)

Fig. 7. INLINE LoCAL applied to tmp in m1() in the presence of a possible data race.

4.3 Handling Programs with Races

Theorem 3 only states that EXTRACT LOCAL and INLINE LOCAL are correct
for programs without data races. For programs with data races, it is possible
for these refactorings to remove or introduce concurrent behaviors. For example,
consider Figure 7, where INLINE LOCAL is applied to tmp in m1(). If m1() and
m2() can run concurrently, there is a possible data race on the x field. In the
original program, m1() can assign either 0 or 2 to field y, depending on when m2()
executes. In the modified program, x is read twice, enabling the new behavior of
ml() assigning 1.

It is impractical to require refactorings to preserve the concurrent behaviors
of programs with races while still enabling standard transformations. Note that
the refactoring in Figure 7 is behavior-preserving if the program is sequential;
hence, its correctness depends on whether m1() and m2() can execute in parallel.
Unfortunately, for Java programs, determining what code can execute in paral-
lel requires expensive whole-program analysis [24], and may even be impossible
when refactoring library code with unknown clients. Hence, to enable standard
refactorings on sequential code to proceed (the common case), we allow refac-
torings like that of Figure 7 even when programs may have data races.

We expect that issues involving refactorings and data races will arise very
rarely in practice. Java best practices generally discourage the use of data races,
and hence most races encountered in practice are likely to be unintentional. A
similar situation arises with the practice of ignoring Java reflection in refactoring
engines—while in principle the use of reflection could cause many refactorings
to be incorrect, in practice it rarely causes a problem.

5 Implementation

In this section, we describe our experience implementing the techniques described
in §3 for correctly refactoring concurrent code. We first present an implemen-
tation that is purely intraprocedural, handling procedure calls pessimistically.



Then, we discuss a technique that handles procedure calls more precisely while
remaining amenable to implementation in a refactoring tool.

Intraprocedural implementation Our intraprocedural implementation operates
on a control-flow graph, as described in §3.2. In addition to the dependencies
described earlier, method calls are handled conservatively by treating them as
thread management actions, preventing any reordering across them. To approx-
imate calling contexts, the start node of every method also counts as an acquire
action, and the end node as a release action. Recall that this dependence compu-
tation is only required for refactorings like INLINE LOCAL and EXTRACT LOCAL
that alter memory traces; the many refactorings that do not affect memory traces
require no changes (see Theorem 1).

We implemented the computation of synchronization dependence edges using
the control flow analysis of Nilsson-Nyman et al. [25]. Their analysis is imple-
mented in the attribute grammar system JastAdd [10] as an extension of the
JastAddJ Java compiler [9]. These new dependence edges were then integrated
into the refactoring engine developed by the first author [27, 28], which is likewise
based on JastAddJ. Since that engine already uses dependence edges to ensure
preservation of control and data flow dependencies, we simply introduced three
new kinds of edges (acquire, release, and thread management dependence edges)
and implemented the checks to ensure their preservation. In particular, we ex-
tended the implementations of EXTRACT LOCAL and INLINE LOCAL to preserve
synchronization dependencies, and we ensured that they correctly identify the
problematic examples presented earlier in this paper, while passing all existing
regression tests [28].12

To ensure correct handling of the synchronized keyword, we implemented
the desugaring step described in §3.1 that replaces synchronized modifiers with
synchronized blocks before the refactoring, and performs the reverse transfor-
mation afterwards where possible. The existing name binding machinery in the
refactoring engine then ensures that synchronized blocks are handled correctly.

The amount of code required to add the above features was quite modest.
The analysis for computing synchronization dependence edges was implemented
in about 70 lines of JastAdd, and the sugaring/desugaring of synchronized in less
than 50 lines. Updating existing refactorings to make use of these new techniques
was a matter of adding only two lines of code.

Better Handling of Procedure Calls The main limitation of the intraprocedu-
ral implementation is its coarse treatment of method calls, which in particular
prevents extracting and inlining most expressions involving such calls. Fortu-
nately, we found that a simple and practical analysis could prove that 70-90%
of calls have no synchronization dependencies in practice, enabling many more
refactorings to proceed.

Note that procedure calls already present a significant challenge for refac-
toring tools in the case of sequential code, due to unknown data dependencies,

12 Note that our implementation of EXTRACT LocAL does not do any clone detection,
and hence only ever extracts a single copy of an expression.



possible side effects, etc. Detecting these effects can be very expensive, as it re-
quires a precise call graph and reasoning about pointer aliasing. The real-world
refactoring engines we are aware of currently do not even attempt to detect these
issues, leaving reasoning about the correctness of refactoring procedure calls to
the user. In what follows, we concentrate solely on how to analyze procedure calls
to determine synchronization dependencies; to preserve behavior, a refactoring
tool would have to combine this analysis with other techniques to handle issues
pertinent to sequential code.

To construct synchronization dependence edges for method calls, we must
know if the invoked method may perform monitor operations, accesses to volatile
fields, or thread management operations. Given the relative rarity of such op-
erations, one would expect that an analysis with a very coarse call graph could
still provide much better information than the pessimistic approach described
before.

More precisely, we want to find out how many methods in a typical Java
program involve synchronization, where we say that a method m involves syn-
chronization if

. m is declared synchronized or contains a synchronized block, or

. m contains an access to a volatile field, or

. m calls a thread management method from the standard library, or
. m calls a method m’ which involves synchronization.

=W N

We implemented a simple stand-alone analysis in WALA [33] that examines
all methods in a given program to see whether they involve synchronization. To
make the analysis cheap, the call graph used is based solely on a class hierarchy
(required by many refactorings) and declared types of variables, and the call
graph of any method is pruned to 200 methods. If a method has more than 200
transitive callees, we conservatively assume that it involves synchronization.

We ran this analysis on the DaCapo 2006-10-MR2 benchmarks [3] and Apache
Ant 1.7.1 [1], another large Java program.'® For each benchmark, Table 1 gives
the total number of methods examined, the number of methods that may involve
synchronization, the number of methods proved not to involve synchronization,
and the number of methods for which the analysis exceeded the threshold. The
last two columns give the mean number of callees that need to be analyzed per
method and the percentage of methods proved to not involve synchronization.

In summary, the results show that a simple and cheap analysis can establish
for 70-90% of methods in real world programs that they never involve synchro-
nization, and hence cannot give rise to synchronization dependence edges. The
analysis does not require a precise call graph, and the work it does can easily be
bounded, thus it is certainly feasible to integrate such an analysis into a refac-
toring engine.'* Note also that for code that does not involve synchronization,

3 The lusearch benchmark is excluded from the table since the results were identical
to luindex.

14 The analysis as described here does not consider native methods. A conservative
handling could always treat native methods as thread management actions that pro-



number of methods
benchmark|total|synch|no synch|aborted|mean analyzed|% no synch
antlr 2680, 617 2063 2 4.2 76.98%
bloat 4094 740 3354 156 13.0 81.92%
chart 6607| 694 5913 85 8.5 89.50%
eclipse 3726/ 924 2802 30 6.4 75.20%
fop 5653| 706 4947 26 5.0 87.51%
hsqldb 5457 1212 4254 62 6.4 77.79%
jython 8755| 1543 7212 334 14.3 82.38%
luindex 2737|511 2226 16 6.2 81.33%
pmd 4121 530 3591 105 9.2 87.14%
xalan 5821| 858 4963 31 7.7 85.26%
apache-ant |10486| 2876 7610 96 6.1 72.57%

Table 1. Analysis results for finding methods that do not involve synchronization

tracking synchronization dependencies does not change the behavior of a refac-
toring tool; hence, these data indicate that refactoring tools enhanced with our
techniques will behave as before for most code.

6 Related Work

6.1 Correctness of Refactorings

Correctness of refactorings has long been a primary concern in the literature.
Opdyke [26] champions a pre- and post-condition based approach, specifying
global conditions a program has to meet for the refactoring to be correct. Gris-
wold [14] views refactorings in terms of their effects on the program dependence
graph, which gives rise to a treatment of refactoring correctness in terms of
dependence preservation as espoused in earlier work by the first author [27, 28].

Tip et al. [30, 31] develop an approach based on type constraints to reason
about the correctness of refactorings related to generalization such as EXTRACT
INTERFACE. This work was later extended to support refactorings that introduce
generics [12, 18], and a refactoring that assists programmers with the transition
from legacy classes to functionally equivalent ones that replace them [2].

In recent work by Steimann and Thies [29], the correctness of refactorings in
the face of access modifiers such as public and private is considered. Like our
work, theirs is concerned with situations where the application of existing refac-
torings such as MOVE CLASS unexpectedly change a program’s behavior without
appropriate changes to access modifiers. To avoid such problems, Steimann et
al. propose a constraint-based approach similar in spirit to that of [30, 31].

hibit reordering; we verified that this treatment does not significantly impact the
numbers in Table 1. For the Java standard library, the API documentation pro-
vides more precise information about what synchronization actions a native method
entails.



All the above approaches explicitly or implicitly restrict their attention to se-
quential programs. Papers that do deal with concurrency related issues, like [17],
usually strengthen their preconditions to prevent refactoring code that looks like
it might be run in a concurrent setting.

6.2 Java Compilers

Java compilers are generally very cautious about optimizing concurrent code.
While we could not find any published work on the optimizations performed by
recent systems, it appears that previous versions of the Jikes virtual machine’s
just-in-time compiler utilized a notion of synchronization dependence edges not
unlike the one we use in this paper to prevent code motion of memory operations
across synchronization points [4]. Their dependencies would appear to be more
restrictive than ours (forbidding, for instance, roach motel reordering), and they
are based on the pre-Java 5 memory model. Also recall that for practicality,
we allow some non-behavior-preserving transformations for programs with data
races (see §4.3), which clearly must be disallowed in a compiler.

6.3 Dependencies for Concurrent Programs

There has been some work in the slicing community on slicing concurrent pro-
grams. For this purpose, several authors have proposed new dependencies to
complement the classic control and data dependencies in analysing concurrent
programs. Cheng [6] proposes three new kinds of dependencies: selection depen-
dence to model control dependencies arising from non-deterministic selection,
synchronization dependence to model synchronization between processes'®, and
communication dependence to model inter-process communication.

Krinke [19] instead introduces interference dependencies that model the in-
teraction between threads due to the use of shared variables; no synchronization
constructs are considered. In particular, it seems that such dependencies would
have to take data races and all their possible outcomes into account, which would
make them unsuitable for our purposes.

Both authors treat the problem at a fairly abstract level. Zhao [35] consid-
ers the problem of computing the dependencies proposed by Cheng for Java
programs. His approach does not seem to be directly based on the pre-Java 5
memory model, though, and in particular does not handle volatile accesses.

6.4 Refactoring and Concurrency

Recently, there has been a lot of interest in refactoring programs to enhance
their concurrent behavior. The REENTRANCER tool transforms programs to be
reentrant, enabling safe parallel execution [34]. The CONCURRENCER tool of Dig
et al. [7] (discussed in §2) aims to adapt sequential Java code to use concurrent

15 Despite the name, this is a very different concept from the synchronization depen-
dencies introduced in this work.



libraries, and the RELOOPER tool [8] reorganizes loops to execute in parallel.
Note that while our techniques would prevent the potentially problematic CON-
CURRENCER transformation described in §2, devising conditions under which
such a transformation is safe under the JMM remains as future work.

Finally, several researchers have tackled the problem of implementing refac-
torings for X10, a Java-based language with sophisticated concurrency support,
and have reported promising first results [23].

7 Conclusions

We have investigated the problem of making existing sequential refactoring im-
plementations concurrency-aware so that they do not change the behavior of
concurrent code. We have shown examples of how basic refactorings can break
concurrent programs, even if they work correctly for sequential code. Some prob-
lems can be solved simply by improved handling of concurrency-related language
constructs such as the synchronized keyword. A more subtle problem is the re-
ordering of memory actions by refactorings, which calls for a principled solution.

We have tackled this problem by introducing synchronization dependencies
that model ordering constraints imposed by the memory model. A refactoring has
to respect them in the same way it has to respect control and data dependencies,
avoiding problematic code reordering that could change the behavior.

We have related these dependencies to the specification of the Java memory
model, and proved that respecting them makes some key refactorings behavior-
preserving on correctly synchronized programs. For a broad class of transforma-
tions we can also prove that they do not inadvertently introduce new data races
or deadlocks. But perhaps the most reassuring result is that the majority of
refactorings do not need any special treatment to work on concurrent programs.

This work has laid the foundations on adapting basic refactorings to a con-
current setting. While our discussion has been focused on Java and its current
memory model, adapting the techniques to other high-level languages, such as
C#, and their memory models [15] should be straightforward, as they are based
on similar concepts.

One possible area of future work would be to consider more complex refac-
torings that do more than just moving code around. For instance, some ad-
vanced refactorings like CONVERT LOCAL VARIABLE TO FIELD introduce new
shared state, which is challenging to handle correctly in a concurrent environ-
ment. While synchronization dependencies alone are not enough to solve this
kind of problem, the concepts and techniques developed in this work can hope-
fully serve as a basis for addressing new challenges.
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Execution harness

The examples presented in §2 can all be executed in a common harness, shown in
Figure 8. The method Harness.runInParallel() takes an argument of interface type
™, which defines methods m1() and m2(). To use the harness, the programmer
must (i) create a subtype T of ™ that provides methods m1() and m2() and
(ii) invode runInParallel() with an instance ¢ of T, resulting in the concurrent
execution of t.m1() and t.m2(). For instance, the example of Figure 1 could be
run by Calling Harness.runInParallel(new C1()).



