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ABSTRACT
Software construction has typically drawn on engineering metaphors
like building bridges or cathedrals, which emphasize architecture,
specification, central planning, and determinism. Approaches to
correctness have drawn on metaphors from mathematics, like formal
proofs. However, these approaches have failed to scale to modern
software systems, and the problem keeps getting worse.

We believe that the time has come to completely re-imagine the
creation of complex software, drawing on systems in which behavior
is decentralized, self-regulating, non-deterministic, and emergent—
like economies.

In this paper we describe our vision for, and prelimary work
on, the creation of software economies for both open systems and
internal corporate development, and our plans to deploy these ideas
within one of the largest developer communities at IBM.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Reliability; D.2.10 [De-
sign]: Methodologies; J.4 [Social and Behavioral Sciences]: Eco-
nomics; K.4.4 [Electronic Commerce]: Distributed commercial
transactions; K.6.3 [Software Management]: Software develop-
ment

General Terms
Design, Economics, Reliability, Verification

1. INTRODUCTION
Software construction has often been described using metaphors

like building bridges or cathedrals, which emphasize architecture,
specification, central planning, and determinism. These engineering-
based metaphors have gone hand-in-hand with a notion that a spec-
ification has a “correct” implementation. This absolute notion of
correctness provides the underpinnings of both pragmatic and theo-
retical approaches to reaching this ideal: via testing disciplines or
code review for the former, and manual or automated proof tech-
niques for the latter.
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Despite significant progress in both engineering- and mathe-
matics-based approaches to correctness, these techniques have failed
to scale to large systems. This was already true in 1968 with the
identification of the “software crisis” [2], and 40 years of expo-
nential growth in computing has greatly exacerbated the problem.
Furthermore, as systems have moved from a Turing machine “input
tape to output tape” model of computation to one of continuous
interaction with other large systems and with the physical world, the
creation of a complete specification of potential behaviors is often
impossible. Coming ultra-large-scale systems [5] will likely present
further correctness challenges.

In addition to quality issues, a major problem that bedevils the
software industry is the creation of systems on time and on budget –
going back to Brooks’ “mythical man-month” [4]. In a traditional
software organization with staffed resources, the labor market and
the customer requirements are fairly fixed (developers are salaried,
and requirements are often agreed upon in detail before development
commences).

One extremely important aspect of making efficient use of devel-
opers and keeping costs low is to provide accurate budgeting. Note
that inaccurate time and cost estimates are problematic whether
they are too low or too high: if too low, the result is lost revenue
and missed deadlines; if too high, the result is idle employees and
contracts lost due to excessive pricing. For example, if work is
overestimated by 10% on average, an organization with 100,000
software professionals would have the equivalent of 10,000 people
idle – more than the size of Adobe and Facebook combined.

Another critical component of cost control is to promote continual
and accurate sharing of information about the skills of workers, the
needs of different projects, and progress being made or difficulties
encountered. By sharing such information, appropriate prioritization
can be made in assigning the right workers to the right tasks.

1.1 Software Economies
We argue that the time has come to completely re-imagine the

creation of complex software, drawing on metaphors like biology,
economics, and others in which behavior is decentralized, self-
regulating, non-deterministic, and emergent.

In this paper we describe our vision for, and preliminary work
on, a software development process based around the creation of
economies in which supply and demand for fine- or coarse-grained
work products drive the allocation of work and the evolution of
the system. The methods of game theory and mechanism design
are used to create a self-regulating system that drives the develop-
ment process towards a dynamic equilibrium that maximizes overall
utility. Also, by eliciting dollar values for software properties like
quality, time to market, and performance, a market system can en-
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able quantitative evaluation of classic tradeoffs (e.g., quality vs.
time to market) and provide a useful basis for comparing different
software metrics.

In our conceptualization of a public software economy, coalitions
of users bid for features and fixes. Developers, testers, bug reporters,
and analysts share in the rewards for responding to those bids. The
traditional (unachievable) notion of absolute correctness is replaced
by quantifiable notions of correctness demand (the sum of bids for
bugs) and correctness potential (the sum of the available profit for
fixing those bugs). The research problem then becomes one of game
theory and mechanism design: creating a market in which the re-
wards constantly drive the system towards a correctness equilibrium
in which all bugs or features for which there is enough value and
low enough development cost are fixed or implemented [1].1

In a private software economy, managers estimate the resources
required for development tasks and partition those tasks among an
essentially fixed set of developers. For these cases, we can also apply
ideas from prediction markets, to drive project managers to more
accurately estimate project costs and schedules. Participants in a
prediction market can trade in contracts that payout contingent on
observable outcomes (e.g., “$1 if the release date is before April 10,
$0 otherwise.") The trading price on such a contract can provide a
useful estimate of the probability with which this event will occur [3,
13].

An internal market ecosystem can be created in which employees
earn rewards based on the speed and quality of their work and
the re-use and generation of reusable components, while project
managers are rewarded for accurate prediction of work required for
tasks. In addition, programmers can earn extra rewards when they
collaborate or compete to perform excess work from other projects,
therey reducing idle time between assigned tasks.

IBM has implemented an outcomes-based model for quantifying
the delivery performance of developers working within the CIO-led
organization where IBM’s internal IT initiatives are supported. This
model provides game-based incentives for meeting and exceeding
delivery targets. We are working to extend and improve this system
based around market economy principles. Our initial goal is to
design a system with an equilibrium in which the market incen-
tivizes developers to work efficiently and managers to give accurate
predictions of development time.

2. NASCENT SOFTWARE ECONOMIES
There are already several partial software markets in place. These

systems serve both as illustrations of how market principles can be
applied to software systems and as early indicators that market-based
systems are already arising organically. Here we briefly review a
few such systems.

Vulnerability Markets. One of the earliest software markets to
emerge was for the potentially most expensive bugs: security vulner-
abilities. Several market-based vulnerability reporting systems have
been introduced with the goal of incentivizing users to report bugs
and vulnerabilities. The Mozilla Foundation offers a cash award
of $500 to anyone who reports a valid, critical security bug [8].
Schechter [11] proposes to use a vulnerability market in which the
reward for reporting a security bug grows over time—the current
reward places a valuation on the assurance that the software is free
of vulnerabilities. Ozment [9] has demonstrated that vulnerability

1We use the phrase ‘correctness’ in ‘correctness equilibrium’ not as
a refinement on an equilibrium concept, as might be expected from
game theory, but as a descriptive phrase to indicate the application
to which equilibrium is applied.

markets are essentially auctions for bug reports (in particular, an
open first-price ascending auction).

Freelance Marketplaces. Online freelance marketplaces are
platforms that connect individuals, small-business owners, and even
Fortune 500 companies with freelance technology specialists to sat-
isfy their technological needs. The sites provide vivid details about
workers’ histories and qualifications, and some even feature tools
that let the businesses monitor the work they are paying for [6]. Top-
Coder uses programming competitions to build professional-grade
software outsourced by clients [12]. The rewards for a competition
can vary based on the difficulty of the task, and only the top two
contestants receive awards. On Rent-a-Coder [10], coders place
bids on projects posted by buyers, and buyers chooses a suitable
coder based on the bids and detailed coder profiles. Once the work
is completed the buyers and sellers may rate each other, in contrast
to TopCoder, where most of the reputation information is aggregated
from directly measurable performance metrics.

App Stores. App stores also provide an an interesting example
of software economies. For example, one can view the iPhone as
a “system” and the apps as system components. When viewed in
this manner, the iTunes App Store [7] allows different developers to
compete to produce a winning module for the system. The existence
of an effective micropayment system (most apps are 99 cents) is a
substantial enabler—some applications have aggregated a significant
profit via micropayments from a large user base. The store has a
rating and review system—popular apps may have hundreds of
reviews, including comments from users about outstanding bugs
and desired features. The system serves as an important form of
disintermediation which connects users directly with the developers
of their portions of the overall system.

3. PUBLIC SOFTWARE ECONOMIES
In this section we discuss the application of market mechanisms to

increasing software correctness and functionality in “public software
economies” (as described in detail in our previous work [1]). Public
economies involve projects with a direct connection to a large user
base and would typically be organized around a single large-scale
piece of software.2 Our proposed system unifies many of the partial
market-based mechanisms described in Section 2, incorporating
bug reporters (as in vulnerability markets), feedback providers (as
in the App Store) and developers and validators (as in freelance
marketplaces). The system also aggregates user demand for fine-
grained tasks like fixing a particular bug. We believe these properties
can provide the necessary scale to bring about a fundamental change
in software development.

3.1 Market Function
The key distinguishing aspect of the market that we envision is

that users can bid for a bug fix or feature.3 Bids can be as little
as a penny, but the market aggregates demand from users (using
either manual or automatic classification – itself a component of
the market). Even very small bids may generate sufficient aggre-
gate demand to make it worthwhile for a developer to satisfy them.
Existing bug reporting systems do not elicit valuations from users
for bug fixes; by doing so, the market provides users with a direct
means to influence developer actions.

Briefly, the market comprises the following entities: a set of
Users (individuals, corporations, etc.), a set of Jobs, a set of Work-
2Both open-source systems like Mozilla Firefox and closed-source,
single-supplier systems like Adobe Photoshop would be candidates,
albeit with some differences in mechanism.
3Bug bids may be solicited for program crashes, as an additional
alternative to the already common “Report to [Vendor]” dialog.
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ers (which may overlap with the user set), and a set of Kinds
which are used to categorize jobs (e.g. correctness, feature,
security, mac, etc.). A user may offer a reward for a particular
job at some time. A worker able to perform a job has an associated
cost, namely their time and materials and including the opportunity
cost.

The function of this market incorporates both the aggregation of
user bids (like bug voting systems) and multiple competing workers
(like TopCoder). This exchange structure, with information and
preferences (e.g., costs for different kinds of work, values for differ-
ent kinds of fixes) on both sides, is designed to provide for a more
efficient market place. Of course, there are challenges in enabling
such a market to function; e.g., demand for jobs must be accurately
aggregated, successful completion of a task must be identified, and
so on.

However, we can already consider how the system’s performance
can be characterized in some interesting quantitative ways. For a
particular job, the demand is the sum of the individual user rewards
bid for that job. For the complete software system, the market
demand is the sum of of the demand for all of the jobs.

The Kinds can be used to evaluate the nature of the demand. For
instance, the sum of all bids for jobs of kind correctness is the
correctness demand for the system. Note that a correctness demand
of 0 does not imply that there are no bugs in the software – just
that there are no bugs to which any users attach value for fixing.
This could mean that the software is flawless, or it could mean that
nobody cares about using it. Analogously, we can quantify the
demand for security, new features, support for a particular platform,
and so on.

Intuitively, the jobs that are “worth doing” for workers are those
where the cost of performing the work is less than the expected
reward. We define the potential value of a job as the net reward that
can be obtained by the worker who can perform it for the lowest
cost (or 0 if the reward is less than their cost). Ideally, whenever the
potential value of a job is greater than 0, the market should drive the
work to happen.

The market potential is the sum of the potential values of all jobs,
and the correctness potential is the sum of the potential values of all
rewards whose kind is correctness. In correctness equilibrium,
the correctness potential of a system is zero and all bugs that are
“worth fixing” have been fixed. There may still be plenty of latent
bugs, or even significant correctness demand, but there are no longer
any bugs that a worker can fix without losing money.

3.2 Market Principles
The open question of course is how to design a market that op-

erates in the manner we have just described. There are four funda-
mental principles that we have idenitified for the market design:

• Autonomy. All of the actions necessary to bring jobs to
completion should be driven by market forces; the process is
never gated by an entity outside of the market.

• Inclusiveness. Everyone who provides information or per-
forms work that leads to improvements should share in the
rewards.

• Transparency. The system should be transparent with re-
spect to both the flow of money in the market and the tasks
performed by workers in the market.

• Reliability. The system should be immune to manipulation,
robust against attack (e.g., via insertion of untrusted code),
and prevent “shallow” work which would have to be re-done
later.

For there to be a market, there has to be a source of funding.
Most obviously, as we have described, users can directly bid with
their own funds. However, other funding models are possible: for
example, a portion of the sale price paid by the user could be placed
in escrow, with the user able to allocate the funds as she sees fit.

In all of these cases, the proposed market is funded with real
money, which can be earned by those contributing to the software.
The only differences are the degree to which the money in the market
is fungible to the bidders. In particular, the sale price escrow model
is applicable to completely closed source systems – and allows users
to “tunnel through” the organizational barriers that separate them
from developers.

4. PRIVATE SOFTWARE ECONOMIES
Here we describe the potential benefits of market mechanisms

in “private software economies,” in which the size and user base
of the software is potentially smaller than in a public economy,
but the number of software systems under development is much
larger. In a private economy, market incentives have the potential to
reduce costs, increase predictability, and provide insights on which
processes and tools yield the greatest benefits in the development
process.

Our main discussion is in regard to scoring systems, designed to
incentivize desired behaviors at a fine-grained level (e.g., for each
development task). But we also note that competition platforms can
find a role in private economies, where otherwise idle developers
can compete for some subset of tasks and additional compensation.
A side benefit of this system is the information it yields on which de-
velopers are the top performers. A preliminary competition system
named Liquid is already being piloted within IBM GBS.

4.1 Scoring Systems
A scoring system could directly reward faster task completion,

greater use and development of reusable components, higher quality
code, or more accurate predictions of the required resources for
tasks, yielding better overall outcomes than the more coarse-grained
evaluations typically employed today. Additionally, game theory
can be used to identify potentially undesirable outcomes of a scoring
system before it is put into use. Here, we describe some initial work
on such a scoring system and show the benefits of bringing game
theory to bear on the problem.

Outcomes Model. Our goal is to tune the outcomes-based in-
centive system currently applied to IBM’s internal IT initiatives.
Within the project delivery environment, software professionals (de-
velopers4) execute tasks assigned by their project managers (leaders)
to produce project deliverables. In the outcomes model, each com-
pleted assignment has an associated “Blue Sheet” that records the
original cycle time and effort planned for the task (as established
by the leader), the actual completion time and effort that it required,
a self-assessment of the deliverable quality against specified stan-
dards, and the extent that reuse of pre-existing assets was leveraged
to complete the deliverable. The Blue Sheet parameters are used as
inputs to compute scores for both practitioners and leaders, and top
scorers are recognized for their achievement.

A Simplified Problem. In trying to create a scoring rule for the
outcomes model with provable properties, we will start by making
some simplifications. Initially, the only inputs to our system are
estimated and actual effort – the amount of work time that the
4We use the term “developer” for brevity; incentivized scoring
applies equally well to software designers, testers, etc.
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developer spends on the task. Cycle time, quality, and reuse are
temporarily ignored. We note that studying a system with this
simplification complements the more typical approach of focusing
only on software quality. As an additional simplification, we focus
on devising a scoring system that need only satisfy the following:

• Developers should be incentivized to finish tasks as quickly
as possible.

• Leaders should be incentivized to predict the time required
for tasks as accurately as possible.

We can initially formalize the problem as a two-player sequential
game between the leader and the developer. The leader “plays”
first by estimating the effort (ê) that some development task will
take. The developer “plays” second by completing the task, which
results in an actual amount of effort applied (e). We denote the
scoring function for leaders as L(e, ê) and the scoring function for
developers as D(e, ê) (a higher score is better).

The following scoring functions satisfy the desired properties for
the case of a single task:

D(e, ê) = 2ê− e L(e, ê) = e− (ê− e)2

Independent of the leader’s strategy, it is always optimal for the de-
veloper to work as quickly as possible since this minimizes effort e
and maximizes D(e, ê). Let e∗ denote this optimal effort. The exact
value of e∗ is private to the developer, but the leader has information
on how e∗ is distributed. Given the optimal strategy of the devel-
oper, it is optimal for the leader to predict ê = E[e∗] (where E[·] is
expectation) based on her information, as this estimate minimizes
E[(ê− e∗)2] and thus maximizes the leader’s expected score. These
strategies form a Nash equilibrium. Fixing the developer’s strat-
egy, the leader cannot benefit by deviating from her own strategy.
Furthermore, because the developer’s strategy strictly dominates all
other strategies and the leader has a unique best-response, this is a
unique Nash equilibrium.

Note the above analysis does not immediately hold when the
game is repeated (where the developer and leader participate across
multiple tasks). While the above strategies remain an equilibrium
for the repeated game, care is needed to show that other undesirable
equilibria don’t arise.

Open Challenges. Our simplified game captures a vastly sim-
pler problem than real-world development. We hope to extend the
game to capture the following properties:

• Optimizing assignment size. As formulated, both the lead-
ers and developers may be tempted to split reasonably-sized
assignments into many smaller assignments: it may be eas-
ier to predict the time required for the small tasks, thereby
increasing the leader scores but reducing the overall effective-
ness of the development plan. The scoring rules should be
enhanced to discourage this behavior.

• Rewarding challenging assignments. In our current game,
a developer who completes a complex task in time t gets
no additional reward over someone else who only completes
an easy task in time t (assuming accurate estimated times).
We’d like to add a “complexity” measure for tasks to suitably
reward stronger developers.

• Component reuse. The overall cost of development may be
reduced significantly if, rather than just being incentivized
to complete tasks as quickly as possible, developers are re-
warded for creating reusable components (to accelerate the

work of others) and learning to reuse existing components (to
accelerate their own future work).

• Quality. We’d also like to integrate a notion of quality in
the game to promote an optimal time-quality tradeoff; for
example, it would be desirable to reduce the overall reward to
a developer who completes a task very quickly but introduces
bugs that are only discovered later.

Additional issues include those of eliciting information from de-
velopers, who may have information that can help the leader to
generate a more accurate estimate. We are concerned also about
preventing collusion between developers and leaders, whereby co-
ordinated deviations lead to higher total scores across repeated
interactions but without improving development efficiency. We also
seek to ensure that there are no new biases introduced where some
tasks are ex ante more likely to lead to higher scores over a given
time frame than other tasks.

Analyzing the above in a rigorous game-theoretic setting should
provide new insights into fundamental tradeoffs and ways to improve
the development process.

4.2 Assets and Meta-Assets
Another application of markets is to assign quantitative scores

to various assets in a development organization, such as reusable
components. Given detailed data on tasks and scoring systems tying
the data to desirable global outcomes, one could devise statistical
analyses to measure the historical value of assets, e.g., how the reuse
of a component contributed to a good outcome and a good score.

Similarly, market mechanisms could enable quantative compar-
isons of tools aimed at predicting the future value of assets; we
deem such tools meta-assets. Meta-assets could include code-level
metrics like cyclomatic complexity along with the various other
metrics tested for correlation with post-release defect density by the
empirical software engineering community (test coverage, devel-
oper turnover, etc.). As the market’s scoring system comes closer to
capturing the actual monetary value of an asset, meta-assets that can
accurately predict impact on scores become more valuable. Also
note that given historical data, one can easily test new meta-assets
and compare their predictive power to others.

5. CONCLUSIONS
We have proposed a re-imagining of the software development

process in terms of decentralized, self-regulating economies. Such
economies would drive market participants to game-theoretic equi-
libria that maximize the overall utility of the system, encompassing
software quality, time to market, and other desirable features. The
economies would also provide a quantitative basis for evaluating
tradeoffs in the development process and the utility of various meta-
assets like software metrics. We have sketched preliminary instanti-
ations of these principles for public and private software economies
and described some challenges that need to be addressed in order to
make such economies a reality.
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