
Scaling CFL-Reachability-Based Points-To

Analysis Using Context-Sensitive
Must-Not-Alias Analysis

Guoqing Xu1, Atanas Rountev1, and Manu Sridharan2

1 Ohio State University, Columbus, OH, USA
2 IBM T.J. Watson Research Center, Hawthorne, NY, USA

Abstract. Pointer analyses derived from a Context-Free-Language
(CFL) reachability formulation achieve very high precision, but they
do not scale well to compute the points-to solution for an entire large
program. Our goal is to increase significantly the scalability of the cur-
rently most precise points-to analysis for Java. This CFL-reachability
analysis depends on determining whether two program variables may be
aliases. We propose an efficient but less precise pre-analysis that com-
putes context-sensitive must-not-alias information for all pairs of vari-
ables. Later, these results can be used to quickly filter out infeasible
CFL-paths during the more precise points-to analysis. Several novel tech-
niques are employed to achieve precision and efficiency, including a new
approximate CFL-reachability formulation of alias analysis, as well as a
carefully-chosen trade-off in context sensitivity. The approach effectively
reduces the search space of the points-to analysis: the modified points-to
analysis is more than three times faster than the original analysis.

1 Introduction

Pointer analysis is used pervasively in static analysis tools. There are dozens (or
maybe even hundreds) of analyses and transformations that need information
about pointer values and the corresponding memory locations. Many of these
tools — e.g., software verifiers [1,2], data race detectors [3,4], and static slicers [5]
— require both precision and scalability from the underlying pointer analysis.
The quality of the results generated by such tools is highly sensitive to the
precision of the pointer information. On the other hand, it is highly desirable
for the pointer analysis to scale to large programs and to quickly provide points-
to/aliasing relationships for a large number of variables. To date, existing pointer
analysis algorithms have to sacrifice one of these two factors for the sake of the
other, depending on the kind of client analysis they target.

Of existing pointer analysis algorithms, the family of the refinement-based
analyses [6,7] derived from the Context-Free-Language (CFL) reachability for-
mulation [8] are some of the most precise ones. They achieve precision by simul-
taneously approximating CFL-reachability on two axes: method calls and heap
accesses. Method calls are handled context sensitively: a method’s entry and exit

S. Drossopoulou (Ed.): ECOOP 2009, LNCS 5653, pp. 98–122, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Scaling CFL-Reachability-Based Points-To Analysis Using Context-Sensitive 99

are treated as balanced parentheses and are matched in order to avoid propaga-
tion along unrealizable paths (with the appropriate approximations needed to
handle recursive calls). Heap accesses are handled to precisely capture the flow
of pointer values through the heap: the read (load) and write (store) of a field
of the same object are treated as balanced parentheses. These analyses answer
particular points-to/alias queries raised from a client analysis, starting with an
approximate solution and refining it until the desired precision is achieved.

Refinement-based pointer analyses may not scale well if a client analysis re-
quires highly-refined information for a large number of variables [9]. For example,
the Sridharan-Bodik analysis from [6], when using its default configuration, spent
more than 1000 seconds on computing the whole-program points-to solution for
a simple Java program and the large number of library classes transitively used
by it. This solution was required by our static slicer to compute a program slice
for a particular slicing criterion. It is important to note that the slicer requires
points-to information not only for variables in the application code (i.e., the
program we wrote), but also for variables in all reachable library methods; this
is needed in order to compute appropriate dependence summary edges [5] at call
sites. Less-refined (i.e., more approximate) points-to information, even though
it can be produced quite efficiently, could introduce much more imprecision in
the generated slice. For example, the generated slice contained the entire pro-
gram (i.e., it was very imprecise) if we imposed a 500-second time constraint
on the pointer analysis. In fact, this scalability problem prevents many similar
whole-program analyses from obtaining highly-precise points-to information with
acceptable running time. The goal of the analysis proposed in this paper is to
help the analysis from [6] to generate highly-refined points-to information in a
more efficient way.

Insight. The work performed by the Sridharan-Bodik analysis can be coarsely
decomposed into core work that is performed to find the true points-to rela-
tionships, and auxiliary work performed to filter out infeasible points-to rela-
tionships. As analysis precision increases, so does the ratio of auxiliary work to
core work. In fact, the increase of the amount of auxiliary work is usually much
more noticeable than the expected precision improvement, which is detrimental
to algorithm scalability. In order to obtain high precision while maintaining scal-
ability, staged analysis algorithms [2,10] have been proposed. A staged analysis
consists of several independent analyses. A precise but expensive analysis that
occurs at a later stage takes advantage of the results of an earlier inexpensive but
relatively imprecise analysis. This can reduce significantly the amount of auxil-
iary work that dominates the running time of the precise analysis. Our technique
is inspired by this idea. We propose an analysis which efficiently pre-computes
relatively imprecise results. Later, these results can be used to quickly filter out
infeasible graph paths during the more precise Sridharan-Bodik analysis.

Targeted inefficiency. At the heart of the CFL-reachability formulation pro-
posed in [6] is a context-free language that models heap accesses and method calls/
returns. Given a graph representation of the program (described in Section 2), a

100 G. Xu, A. Rountev, and M. Sridharan

variable v can point to an object o if there exists a path from o to v labeled with
a string from this language. Specifically, v can point to o if there exists a pair of
statements v = a.f and b.f = o such that a and b are aliases. Deciding if a and b are
aliases requires finding an object o′ that may flow to both a and b. This check may
trigger further recursive field access checks and context sensitivity checks (essen-
tially, checks for matched parentheses) that can span many methods and classes.
All checks transitively triggered need to be performed every time the analysis tries
to verify whether a and b may be aliases, because the results may be different under
different calling contexts (i.e., a method may be analyzedunder different sequences
of call sites starting from main). There could be a large number of calling contexts
for a method and it may be expensive to repeat the check for each one of them.

Recent work [11,12] has identified that there exists a large number of equiv-
alent calling contexts. The points-to sets of a variable under the equivalent
contexts are the same; thus, distinguishing these contexts from each other is
unnecessary. This observation also applies to aliasing. Suppose variables a and
b may point to the same object o under two sets of equivalent contexts C1 and
C2, respectively. Clearly, a and b may be aliases under C1 ∩ C2. It is desirable
for the analysis from [6] to remember the aliasing relationship of a and b for this
entire set of contexts, so that this relationship needs to be computed only once
for all contexts in the set. However, because in [6] the context-sensitivity check
is performed along with the field access check, the context equivalence classes
are not yet known when the aliasing relationship of a and b is computed. Ideally,
a separate analysis can be performed to pre-compute context equivalence class
information for all pairs of variables in the program. This information can be
provided to the points-to analysis from [6], which will then be able to reuse the
aliasing relationships under their corresponding equivalent calling contexts. In
addition, this pre-analysis has to be sufficiently inexpensive so that its cost can
be justified from the time saving of the subsequent points-to analysis.

Proposed approach. Since the number of calling contexts (i.e., sequences of
call graph edges) in a Java program is usually extremely large even when treating
recursion approximately, the proposed analysis adopts the following approach:
instead of computing context equivalence classes for every pair of variables, it
focuses on pairs that are not aliases under any possible calling contexts. This in-
formation is useful for early elimination of infeasible paths. The analysis from [6]
does not have to check whether a and b are aliases if this pre-analysis has already
concluded that they cannot possibly be aliases under any calling context. The
pre-analysis will thus be referred to as a must-not-alias analysis.

The key to the success of the proposed approach is to make the must-not-
alias analysis sufficiently inexpensive while maintaining relatively high precision.
Several novel techniques are employed to achieve this goal:

– Aliases are obtained directly by performing a new form of CFL-reachability,
instead of obtaining them by intersecting points-to sets [7].

– The heap access check of the analysis is formulated as an all-pairs CFL-
reachability problem over a simplified balanced-parentheses language [13],

Scaling CFL-Reachability-Based Points-To Analysis Using Context-Sensitive 101

which leads to an efficient algorithm that has lower complexity than solving
the Sridharan-Bodik CFL-reachability. The simplification of the language
is achieved by computing CFL-reachability over a program representation
referred to as an interprocedural symbolic points-to graph, which introduces
approximations for heap loads and stores.

– The context sensitivity check is performed by combining bottom-up inlining
of methods with 1-level object cloning (i.e., replicating each object for each
call graph edge that enters the object-creating method). Hence, the analysis
is fully-context-sensitive for pointer variables (with an approximation for re-
cursion), but only 1-level context-sensitive for pointer targets. This approach
appears to achieve the desired balance between cost and precision.

The must-not-alias analysis was implemented in Soot [14,15] and was used to
pre-compute alias information for use by the subsequent Sridharan-Bodik points-
to analysis. As shown experimentally, the approach effectively reduces the search
space of the points-to analysis and eliminates unnecessary auxiliary work. On
average over 19 Java programs, the modified points-to analysis (including the
alias pre-analysis) is more than three times faster than the original analysis.

2 Background

This section provides a brief description of the CFL-reachability formulation of
context-sensitive points-to analysis for Java [6]. It also illustrates the key idea
of our approach through an example.

2.1 CFL-Reachability Formulation

The CFL-reachability problem is an extension of standard graph reachability
that allows for filtering of uninteresting paths. Given a directed graph with
labeled edges, a relation R over graph nodes can be formulated as a CFL-
reachability problem by defining a context-free grammar such that a pair of
nodes (n, n′) ∈ R if and only if there exists a path from n to n′ for which the
sequence of edge labels along the path is a word belonging to the language L
defined by the grammar. Such a path will be referred to as an L-path. If there
exists an L-path from n to n′, then n′ is L-reachable from n (denoted by n L n′).
For any non-terminal S in L’s grammar, S-paths and n S n′ are defined similarly.

A variety of program analyses can be stated as CFL-reachability problems [8].
Recent developments in points-to analysis for Java [16,6] extend this formulation
to model (1) context sensitivity via method entries and exits, and (2) heap ac-
cesses via object field reads and writes. A demand-driven analysis is formulated
as a single-source L-reachability problem which determines all nodes n′ such that
n L n′ for a given source node n. The analysis can be expressedby CFL-reachability
for language LF∩RC. Language LF, where F stands for “flows-to”, ensures precise
handling of field accesses. Regular language RC ensures a degree of calling context
sensitivity. Both languages encode balanced-parentheses properties.

102 G. Xu, A. Rountev, and M. Sridharan

Graph representation. LF-reachability is performed on a graph representation
G of a Java program, such that if a heap object represented by the abstract
location o can flow to variable v during the execution of the program, there
exists an LF path in G from o to v. Graph G is constructed by creating edges
for the following canonical statements:

– Allocation x = new O: edge o
new−−→ x ∈ G

– Assignment x = y: edge y
assign−−−→ x ∈ G

– Field write x.f = y: edge y
store(f)−−−−→ x ∈ G

– Field read x = y.f : edge y
load(f)−−−−→ x ∈ G

Parameter passing is represented as assignments from actuals to formals;
method return values are treated similarly. Writes and reads of array elements
are handled by collapsing all elements into an artificial field arr elm .

Language LF. First, consider a simplified graph G with only new and assign
edges. In this case the language is regular and its grammar can be written simply
as flowsTo → new (assign)∗, which shows the transitive flow due to assign
edges. Clearly, o flowsTo v in G means that o belongs to the points-to set of v.

For field accesses, inverse edges are introduced to allow a CFL-reachability
formulation. For each graph edge x → y labeled with t, an edge y → x labeled
with t̄ is introduced. For any path p, an inverse path p̄ can be constructed by
reversing the order of edges in p and replacing each edge with its inverse. In the
grammar this is captured by a new non-terminal flowsTo used to represent the
inverse paths for flowsTo paths. For example, if there exists a flowsTo path from
object o to variable v, there also exists a flowsTo path from v to o.

May-alias relationships can be modeled by defining a non-terminal alias such
that alias → flowsTo flowsTo. Two variables a and b may alias if there exists
an object o such that o can flow to both a and b. The field-sensitive points-to
relationships can be modeled by flowsTo → new (assign | store(f) alias load(f))∗.
This production checks for balanced pairs of store(f) and load(f) operations,
taking into account the potential aliasing between the variables through which
the store and the load occur.

Language RC. The context sensitivity of the analysis ensures that method en-
tries and exits are balanced parentheses: C → entry(i) C exit(i) |C C | ε. Here
entry(i) and exit(i) correspond to the i-th call site in the program. This pro-
duction describes only a subset of the language, where all parentheses are fully
balanced. Since a realizable path does not need to start and end in the same
method, the full definition of RC also allows a prefix with unbalanced closed
parentheses and a suffix with unbalanced open parentheses [6]. In the absence of
recursion, the balanced-parentheses language is a finite regular language (thus
the notation RC instead of LC); approximations are introduced as necessary to
handle recursive calls. Context sensitivity is achieved by considering entries and
exits along a LF path and ensuring that the resulting string is in RC.

Scaling CFL-Reachability-Based Points-To Analysis Using Context-Sensitive 103

2.2 CFL-Reachability Example

Figure 1 shows an example with an implementation of a List class, which is
instantiated twice to hold two objects of class A. One of the List instances is
wrapped in a ListClient object, which declares a method retrieve to obtain
an object contained in its list. We will use ti to denote the variable t whose first
occurrence is at line i, and oi to denote the abstract object for the allocation
site at line i. For example, s31 and o26 represent variable s declared at line 31
and the A object created at line 26, respectively. Literal "abc" is used to denote
the corresponding string object. Class A has a string-typed field f, initialized to
some default value in A’s constructor; the actual code for A is not shown.

The program representation for this example is shown in Figure 2; for simplic-
ity, the inverse edges are not shown. Each entry and exit edge is also treated as an
assign edge for LF, in order to represent parameter passing and method returns.
To simplify the figure, edges due to the call at line 32 are not shown. The context-
insensitive points-to pairs are defined by flowsTo paths. For example, there exists
such a path from o26 to s31. To see this, consider that this17 alias this19 (due
to o27) and therefore l17 flowsTo t19 due to the matching store and load of field
list. Based on this, this5 alias this11 due to o25 (note that because of the call
at line 32, they are also aliases due to o28). Since this5 alias this7 (due to o25 or
due to o28), it can be concluded that t7 alias t11 (due to o4). This leads to the
flowsTo path o26 → t26 → m6 → t7 → . . .→ t11 → p12 → r20 → s31.

Since the precise computation of flowsTo path can be expensive, the analy-
sis from [6] employs an approximation by introducing artificial match edges. If,
due to aliasing, there may be a path from the source of a store(f) edge to the
target of a load(f) edge, a match edge is added between the two nodes. Such
edges are added before the balanced-parentheses checks for heap accesses are
performed. An initial approximate solution is computed using the match edges.
All encountered match edges are then removed, and the paths between their
endpoints are explored. These new paths themselves may contain new match
edges. In the next iteration of refinement, these newly-discovered match edges

1 class List{
2 Object[] elems;
3 int count;
4 List(){ t = new Object[10];
5 this.elems = t; }
6 void add(Object m){
7 t = this.elems;
8 t[count++] = m;
9 }
10 Object get(int ind){
11 t = this.elems;
12 p = t[ind]; return p;
13 }
14 }
15 class ListClient{
16 List list;
17 ListClient(List l){ this.list = l; }

18 Object retrieve(){
19 t = this.list;
20 Object r = t.get(0);
21 return r;
22 }
23 }
24 static void main(String[] args){
25 List l1 = new List();
26 A t = new A(); l1.add(t);
27 ListClient client = new ListClient(l1);
28 List l2 = new List();
29 A i = new A(); i.f = "abc";
30 l2.add(i);
31 A s = (A)client.retrieve();
32 A j = (A)l2.get(0);
33 String str = s.f;
34 }}

Fig. 1. Code example

104 G. Xu, A. Rountev, and M. Sridharan

o26

s31

exit31

entry26

r20
exit20

p12
load(arr_elm)

m6 store(arr_elm)
t7

loa
d(e

lem
s)

t11
load(elems)

this7

this11
entry20

load(list)this19

store(list)
l17

entry27

entry30

o25

entry28

entry25

t4 this5
store(elems)

client27
entry31

entry27

this17

t26

new

entry and exit edges
load and store edges
new and assign edges

l125 new

o28l228 new

o4 new

o29

new

i29
entry30

new
o27

t19

entry26

load(f) str33

"abc"

store(f)

Fig. 2. Illustration of CFL-reachability

are removed, etc. Since we are interested in a highly-refined solution, the ex-
ample and the rest of the paper will assume complete refinement of match
edges.

Not every flowsTo path is feasible. Consider, for example, path o29 → i29 →
m6 → t7 → . . . → t11 → p12 → r20 → s31. Even though this is a valid flowsTo
path, the entry and exit edges along the path are not properly matched. To see
this, consider the following subpaths. First, for the path from this5 to s31, the se-
quence of entry/exit edges is entry(25), entry(27), entry(27), entry(31), entry(20),
exit(20), exit(31). Here the inverse of an entry edge can be thought of as an exit
edge and vice versa. All edges except for the first one are properly matched. Sec-
ond, consider the two paths from o29 to this5: the first one goes through o28 and
the second one goes through o25. The first path contains edges entry(30), entry(30),
entry(28) and the second path contains edges entry(30), entry(26), entry(25). Nei-
ther path can be combined with the path having the unmatched entry(25) to
form a valid string in RC. On the other hand, there exists a path from o26 to
this5 with edges entry(26), entry(26), entry(25), which can be correctly combined.

In the example, suppose that an analysis client queries the points-to set of
s31. The analysis starts from the variable and reaches p12 after traversing back
through the two exit edges. It then finds the matched arr elm edges from m6 to
t7 and from t11 to p12. At this point, the analysis does not know whether t7 and
t11 can alias, and hence, it queries the points-to sets of t7 and t11. For t7, due
to the matched load and store edges for elems, the analysis tries to determine
whether this5 and this7 can be aliases. Since o25 can flow to both variables, they
indeed are aliases. (Note that o28 also flows to both variables, but its inclusion in
the full path starting at s31 leads to unbalanced entry/exit edges.) Eventually,
the conclusion is that t7 and t11 can alias because there exists an alias path
between them with balanced entry and exit edges. From this point, the analysis
can continue with a backward traversal from m6, which encounters o26 and o29.

Scaling CFL-Reachability-Based Points-To Analysis Using Context-Sensitive 105

Only the path from o26 to s31 has the balanced entry/exit property, and the
analysis reports that the points-to set of s31 is {o26}.

2.3 Using Must-Not-Alias Information

The proposed must-not-alias analysis is based on a program representation we
refer to as the interprocedural symbolic points-to graph (ISPG). The definition
and the construction algorithm for the ISPG are presented Section 3. Using this
representation, it is possible to conclude that certain variables are definitely not
aliases. The description of this analysis algorithm is presented in Section 4 and
Section 5. For the example in Figure 2, the analysis can conclude that i29 and s31

cannot be aliases under any calling context. This information is pre-computed
before the CFL-reachability-based points-to analysis from [6] starts.

Consider a match edge — that is, the edge from z to w for a pair of matching

z
store(f)−−−−→ x and y

load(f)−−−−→ w. When the points-to analysis removes this edge,
it normally would have to explore the paths from x to y to decide whether
x alias y. Instead, it queries our must-not-alias analysis to determine whether x
and y may be aliases. If they cannot be aliases, further exploration is unnecessary.
For illustration, consider an example where a client asks for the points-to set of
str33. The store(f) edge entering i29 and the load(f) edge exiting s31 mean that
the points-to analysis needs to determine whether i29 alias s31. However, our
must-not-alias information has already concluded that under no calling context
these two variables can be aliases. Hence, the points-to analysis can quickly skip
the check and conclude that "abc" does not belong to the points-to set of str33. In
contrast, without the must-not-alias information, the points-to analysis would
have to explore further for an alias path between s31 and i26, which involves
traversal of almost the entire graph.

3 Program Representation for Must-Not-Alias Analysis

The must-not-alias analysis runs on the interprocedural symbolic points-to graph.
This section describes the approach for ISPG construction. Section 3.1 shows the
first phase of the approach, in which an SPG is constructed separately for each
method. Section 3.2 discusses the second phase which produces the final ISPG.
To simplify the presentation, the algorithm is described under the assumption
of an input program with no static fields and no dynamic dispatch.

3.1 Symbolic Points-to Graph for a Method

The SPG for a method is an extension of a standard points-to graph, with the
following types of nodes and edges:

– V is the domain of variable nodes (i.e., local variables and formal parameters)
– O is the domain of allocation nodes for new expressions
– S is the domain of symbolic nodes, which are created to represent objects

that are not visible in the method

106 G. Xu, A. Rountev, and M. Sridharan

– Edge v → oi ∈ V ×O shows that variable v points to object oi

– Edge v → si ∈ V × S shows that (1) the allocation node that v may point
to is defined outside the method, and (2) symbolic node si is used as a
placeholder for this allocation node

– Edge oi
f−→ oj ∈ (O ∪ S) × Fields × (O ∪ S) shows that field f of allocation

or symbolic node oi points to allocation or symbolic node oj

In order to introduce symbolic nodes as placeholders for outside objects, the
CFL-reachability graph representation of a method is augmented with the fol-
lowing types of edges. An edge s

new−−→ fp is added for each formal parameter fp
of the method. Here s is a symbolic node, created to represent the objects that
fp points to upon entry into the method. A separate symbolic node is created
for each formal parameter. Similarly, for each call site v = m(), an edge s

new−−→ v
is created to represent the objects returned by the call. A separate symbolic
node is introduced for each call site. For each field dereference expression v.f

whose value is read at least once, edges s
new−−→ t and t

store(f)−−−−→ v are created. Here
symbolic node s denotes the heap location represented by v.f before the method
is invoked, and t is a temporary variable created to connect s and v.f .

The SPG for a method m can be constructed by computing intraprocedural
flowsTo paths for all v ∈ V . A points-to edge v → o ∈ V×(O∪S) is added to the

SPG if o flowsTo v. A points-to edge oi
f−→ oj is added if there exists x

store(f)−−−−→ y
in m’s representation such that oi flowsTo y and oj flowsTo x.

Both symbolic nodes and allocation nodes represent abstract heap locations.
A variable that points to a symbolic node n1 and another variable that points
to an allocation/symbolic node n2 may be aliases if it is eventually decided
that n1 and n2 could represent the same abstract location. The relationships
among allocation/symbolic nodes in an SPG are ambiguous. A symbolic node,
even though it is intended to represent outside objects, may sometimes also
represent inside objects (e.g., when the return value at a call site is a reference
to some object created in the caller). Furthermore, two distinct symbolic nodes
could represent the same object — e.g., due to aliasing of two actual parameters
at some call site invoking the method under analysis. Such relationships are
accounted for later, when the ISPG is constructed.

The introduction of symbolic nodes is similar to pointer analyses from
[17,18,19,20,12]. These analysis algorithms use symbolic nodes to compute a
summary for a caller from the summaries of its callees during a bottom-up
traversal of the DAG of strongly connected components (SCC-DAG) in the call
graph. Unlike previous analyses that create symbolic nodes to compute the ac-
tual points-to solution, we do so to approximate the flow of heap objects in order
to perform a subsequent CFL-reachability analysis on the ISPG. This reachabil-
ity analysis, described in Section 4 and Section 5, identifies alias relationships
among allocation and symbolic nodes, and ignores the points-to relationships
involving variables. These results are used to reduce the cost of the alias path
exploration for the points-to analysis outlined in Section 2.

Scaling CFL-Reachability-Based Points-To Analysis Using Context-Sensitive 107

actual ai ∈ Vp, formal fi ∈ Vm

ai → n ∈ SPGp, fi → s ∈ SPGm

n
entry(e)−−−−→ s ∈ ISPG

ret ∈ Vm, r ∈ Vp, ret → n ∈ SPGm, r → s ∈ SPGp

n
exit(e)−−−→ s ∈ ISPG

Fig. 3. Connecting method-level SPGs

3.2 Interprocedural Symbolic Points-To Graph

In order to perform interprocedural analysis, the SPGs of individual methods
are connected to build the ISPG for the entire program. The ISPG is not a
completely resolved points-to graph, but rather a graph where SPGs are trivially
connected. Figure 3 shows the rules for ISPG construction at a call site r =
a0.m(a1, . . . , ai, . . .). Suppose the call site is contained in method p.

In the figure, e denotes the call graph edge that goes from p to m through this
particular call site. The callee m is assumed to have an artificial local variable
ret in which the return value of the method is stored. For a formal-actual pair
(fi, ai), an entry edge is added between each object/symbolic node n that ai

points to in caller and the symbolic node s created for fi in the callee. The
second rule creates an exit edge to connect the returned object/symbolic nodes
n1 from the callee and the symbolic node s created for r at the call site. Similarly
to the entry and exit edges in the CFL-reachability formulation from Section 2,
the entry and exit edges in the ISPG are added to represent parameter passing
and value return. The annotations with call graph edge e for these ISPG edges
will be used later to achieve context sensitivity in the must-not-alias analysis.

Figure 4 shows part of the ISPG built for the running example, which connects
SPGs for methods main, retrieve, add, and get. Symbolic nodes are represented
by shaded boxes, and named globally (instead of using code line numbers). For
example, in method add, S1 is the symbolic object created for this, S2 is created
due to the read of this.elems, and the ISPG contains an edge fromS1 to S2. Name
S3 represents the object to which formal m points; due to t[count++]=m, the SPG
contains an edge from S2 to S3 labeled with arr elm. Due to the calls to add at lines
26 and 30, entry edges connect O25 and O28 with S1, and O26 and O29 with S3.

The backbone of an ISPG is the subgraph induced by the set of all allocation
nodes and symbolic nodes. Edges in the backbone are either field points-to edges
oi

f−→ oj computed by the intraprocedural construction described in Section 3.1,
or entry/exit edges created at call sites, as defined above. Variable points-to
edges (e.g., this7 → S1 from above) are not included in the backbone. Section 4
and Section 5 show how to perform CFL-reachability on the backbone of an
ISPG to compute the must-not-alias information.

Why use the ISPG? The benefits of performing the alias analysis using the
ISPG backbone are two-fold. First, this graph abstracts away variable nodes, and
partitions the heap using symbolic and allocation nodes (essentially, by defining

108 G. Xu, A. Rountev, and M. Sridharan

S1

m6S2
arr_elm

this7 S3

t7

elems

S4

p12S5
arr_elm

this11 S6

t11

elems

add

get

O25

client27 l125

S10

l228

O27 O28

s31

S11

j32
main

S7

t19

list

this19

S8 S9

r20

retrieve

entry31

exit31

i29

O29

t26

O26

exit32

Variable points-to edge Field points-to edgef

entryi Entry edge at call site i exiti Exit edge at call site i

exit20

entry30 entry26

entry32

entry30

entry26

entry20

Fig. 4. Illustration of the ISPG for the running example

equivalence classes for these nodes). Hence, the backbone of an ISPG contains
fewer nodes and edges than the graph representation for CFL-reachability points-
to analysis from Section 2. Second, the ISPG allows simple modeling of the alias
computation — the CFL-reachability used to formulate the context-insensitive
version of the problem, as described in the next section, is restricted to a language
memAlias which is simpler to handle than the more general CFL-reachability
for context-insensitive points-to analysis [6,7].

4 Context-Insensitive Memory Alias Formulation

This section defines a CFL-reachability formulation of a context-insensitive ver-
sion of the must-not-alias analysis. The context sensitivity aspects are described
in the next section. Hereafter, the term “node” will be used as shorthand for
“allocation or symbolic node in the ISPG”, unless specified otherwise.

Two nodes o1 and o2 are memory aliases if they may denote the same heap
memory location. We describe the memory aliases using relation memAlias ⊆
(O ∪ S) × (O ∪ S). This relation is reflexive, symmetric, and transitive, and
therefore is an equivalence relation. The computation of memAlias is formulated
as a CFL-reachability problem over the backbone of the ISPG. The relation has
the following key property: for any pair of variables v1 and v2 in relation alias
computed by the points-to analysis from Section 2, there must exist ISPG edges
v1 → o1 and v2 → o2 such that the ISPG backbone contains a memAlias path
from node o1 to node o2 (and also from o2 to o1). For a variable pair (v1, v2) for
which such a pair (o1, o2) does not exist, the points-to analysis from Section 2
does not need to explore alias paths between v1 and v2, since all such work is
guaranteed to be wasted. This section presents an efficient algorithm for solving

Scaling CFL-Reachability-Based Points-To Analysis Using Context-Sensitive 109

o1
fld2

ISPG edge
memAlias path

memAlias f memAlias f
| memAlias memAlias

|

fld2
o2

fld3 fld3

o3 o4 o5

o7

fld1

o8

fld1
o6

o9

fld4 fld4
| entry
| entry
| exit
| exit

Fig. 5. Language memAlias

the all-pairs memAlias-path problem. We first assume that the backbone of the
ISPG is free of recursive data structures. The approximation for recursive data
structures is addressed later in the section.

Figure 5 shows the grammar for language memAlias and an example illus-
trating several such paths. An edge label f shows the field name for an ISPG
edge oi

f−→ oj . As before, f̄ denotes the inverse of the edge labeled with f .
The existence of a memAlias path from o1 to o2 also means that there is a
memAlias path from o1 to o2. For this reason, the figure uses double-headed
arrows to show such paths. In this example, o7 memAlias o9 because of path
o7 fld1 o3 fld2 o1 fld2 o4 fld3 o2 fld3 o5 fld1 o8 fld4 o6 fld4 o9.

Example. For illustration, consider the ISPG shown in Figure 4. Some of the
memAlias pairs in this graph are (S7, O27), (S1, S4), (S2, S5), (S3, S6), (S6,
O29), (S11, O29), (S9, O29), and (S10, O29).

Production memAlias → memAlias memAlias encodes the transitivity of the
relation. The productions for entry/exit edges and their inverses allow arbitrary
occurrences of such edges along a memAlias path; this is due to the context in-
sensitivity of this version of the analysis. Production memAlias → f̄ memAlias f
says that if x and y are reachable from the same node z through two paths, and
the sequences of fields along the paths are the same, x and y may denote the
same memory location. This is an over-approximation that is less precise than
the alias information computed by the analysis from Section 2.

Consider the sources of this imprecision. Suppose x, y, z and w are nodes in
the ISPG and variables vx, vy, vz and vw point to them. If w and z are memory

aliases, and there exist two points-to edges x
f←− z and w

f−→ y in the ISPG, x
and y are memory aliases based on our definition. The existence of these two
edges can be due to four combinations of loads and stores in the program:

– vx = vz.f and vy = vw.f : in this case, x and y are true memory aliases
– vx = vz.f and vw.f = vy: x and y are true memory aliases because there

exists a flowsTo path from vy to vx.
– vz.f = vx and vy = vw.f : again, x and y are true memory aliases
– vz.f = vx and vw.f = vy: this case is handled imprecisely, since x and y do

not need to be aliases. Our approach allows this one source of imprecision
in order to achieve low analysis cost.

110 G. Xu, A. Rountev, and M. Sridharan

Precision improvement.It is important to note that two allocation nodes (i.e.,
non-symbolic nodes) are never memory aliases even if there exists a memAlias
path between them. Hence, in the final solution computed by the analysis, node
x is considered to not be an alias of y if (1) there does not exist a memAlias
path between them, or (2) all memAlias paths between them are of the form

x
fi...f0−−−−→ oi memAlias oj

f0...fi−−−−→ y, where oi and oj are distinct allocation
nodes.

Soundness. The formulation presented above defines a sound must-not-alias
analysis. Consider any two variables v1 and v2 such that v1 alias v2 in the
approach from Section 2. It is always the case that there exist ISPG edges
v1 → o1 and v2 → o2 such that o1 and o2 are declared to be memory aliases by
our analysis. Here one of these nodes is a symbolic node, and the other one is
either a symbolic node or an allocation node. The proof of this property is not
presented in the paper due to space limitations.

4.1 Solving All-Pairs memAlias-Reachability

Solving CFL-reachability on the mutually-recursive languages alias and flowsTo
from [6] yields O(m3k3) running time, where m is the number of nodes in
the program representation and k is the size of LF. As observed in existing
work [21,22,13], the generic bound of O(m3k3) can be improved substantially in
specific cases, by taking advantage of certain properties of the underlying
grammar. This is exactly the basis for our approach: the algorithm for memAlias-
reachability runs in O(n4) where n is the number of nodes in the ISPG backbone.
The value of n is smaller than m, because variable nodes are abstracted away
in the ISPG; Section 6 quantifies this observation. This algorithm speeds up
the computation by taking advantage of the symmetric property of memAlias
paths. This subsection assumes that the ISPG is an acyclic graph; the extension
to handle recursive types is presented in the next subsection.

The pseudocode of the analysis is shown in Algorithm 1. The first phase con-
siders production memAlias → f̄ memAlias f . Strings in the corresponding lan-
guage are palindromes (e.g., abcddcba). Once a memAlias path is found between
nodes a and b, pair (a, b) is added to set memAlias (line 9). The memAlias set
for this particular language can be computed through depth-first traversal of the
ISPG, starting from each node n (line 4-13). The graph traversal (line 5) is imple-
mented by function ComputeReachableNodes, which finds all nodes n′ that
are reachable from n, and their respective sequences ln,n′ of labels along the paths
from which they are reached (n′ could be n). Sequence ln,n′ will be referred to as
the reachability string for a path between n and n′. Due to space limitations, we
omit the detailed description of this function. Also, for simplicity of presentation,
we assume that there exists only one path between n and n′. Multiple paths and
their reachability strings can be handled in a similar manner. The function returns
a map which maps each pair (n, n′) to its reachability string ln,n′ . A similar map
cache accumulates the reachability information for all nodes (line 7). For any pair
of nodes (a, b) reachable from n such that ln,a = ln,b, there exists a memAlias

Scaling CFL-Reachability-Based Points-To Analysis Using Context-Sensitive 111

Algorithm 1. Pseudocode for solving all-pairs memAlias-reachability.
SolveMemAliasReachability (ISPG backbone IG)

1: Map cache // a cache map that maps a pair of nodes (n, a) to their reachability string ln,a

2: List endNodes // a worklist containing pairs of nodes that are two ends of a sequence of edges
that forms a memAlias path

3: /* phase 1: consider only production memAlias → f̄ memAlias f */
4: for each node n in IG do
5: Map m ←− ComputeReachableNodes(n)
6: for each pair of entries [(n, a), ln,a] and [(n, b), ln,b] in m do
7: cache ←− cache ∪ [(n, a), ln,a] ∪ [(n, b), ln,b] // remember the reachability information
8: if ln,a = ln,b then
9: memAlias ←− memAlias ∪ (a, b) // a memAlias path exists between a and b
10: endNodes ←− endNodes ∪ (a, b)
11: end if
12: end for
13: end for
14: /* phase 2: consider production memAlias → memAlias memAlias */
15: /* a worklist-based algorithm */
16: while endNodes �= ∅ do
17: remove a pair (a, b) from endNodes
18: if (a, b) has been processed then
19: continue
20: else
21: mark (a, b) as processed
22: end if
23: for each (c, a) in memAlias do
24: for each (b, d) in memAlias do
25: memAlias ←− memAlias ∪ (c, d)
26: endNodes ←− endNodes ∪ (c, d)
27: end for
28: end for
29: for each [(a, c), la,c] in cache do
30: for each [(b, d), lb,d] in cache do
31: if la,c = lb,d then
32: /* add to the worklist all pairs of nodes with a memAlias path between them */
33: memAlias ←− memAlias ∪ (c, d)
34: endNodes ←− endNodes ∪ (c, d)
35: end if
36: end for
37: end for
38: end while

path between them (line 9). This pair is added to relation memAlias and to a list
endNodes for further processing.

Phase 1 complexity. Each graph traversal at line 5 takes time O(m), where
m is the number of edges in the ISPG backbone. The for loop at lines 6-12
takes O(m2). Note that when a reachability string is generated, the hashcode of
the string is computed and remembered. Hence, line 8 essentially compares two
integers, which takes constant time. Since there are O(m) nodes in the program,
the complexity of computing all memAlias paths in this phase is O(m3).

The second phase employs a worklist-based iteration which considers the en-
tire memAlias language. As usual, the phase computes a closure by continuously
processing pairs of nodes between which there exists a memAlias path. Such pairs
of nodes are contained in list endNodes , and are removed from the list upon pro-
cessing. Lines 23-28 update the transitive closure of memAlias . Next, all nodes
reachable from a or from b are retrieved from cache , together with their reach-
ability strings (line 29 and 30). Due to the caching of reachability information,

112 G. Xu, A. Rountev, and M. Sridharan

graph traversal is no longer needed. If reachability strings la,c and lb,d match, a
memAlias path exists between c and d. Hence, pair (c, d) is added to memAlias
and to worklist endNodes .

Phase 2 complexity. Each while iteration (lines 17-37) takes O(m2) time. The
worst case is that all possible pairs of nodes (a, b) in the ISPG backbone have
been added to endNodes and processed. There are O(m2) such pairs; hence, the
worst-case time complexity for the entire algorithm is O(m4).

Although a slightly modified algorithm is used in the actual context-sensitive
version of the analysis (presented in the next section), the description from above
illustrates the key to computing memAlias-reachability. It is important to note
again that the design of this efficient algorithm is due to the specific structure
of the grammar of language memAlias . Since the grammar is symmetric and
self-recursive (instead of being mutually-recursive), the finite number of open
field parentheses can be computed a priori (i.e., stored in the cache). Thus, at
the expense of the single source of imprecision discussed earlier, this approach
avoids the cost of the more general and expensive CFL-reachability computation
described in Section 2.

4.2 Approximation for Recursive Data Structures

Existing analysis algorithms have to introduce regularity into the context-free
language and approximate either recursive calls [16,6], or recursive data struc-
tures [23] over the regularized language. Because memAlias-reachability is per-
formed over the backbone of an ISPG, we focus on the handling of cycles con-
sisting of field points-to edges caused by recursive data structures.

The key to the handling of a recursive type is to collapse an ISPG SCC caused
by the recursion. For any path going through a SCC, a wildcard (*) is used to
replace the substring of the path that includes the SCC nodes. The wildcard
can represent an arbitrary string. During the string comparison performed by
Algorithm 1, two paths match as long as the regular expressions representing
them have non-empty intersection. Figure 6 shows an example of reachability
checking in the presence of recursive types. In this example, it is necessary to
check whether the two regular expressions fld1 ∗ fld2 fld3 fld6 and fld1 ∗ fld6
have non-empty intersection.

a
fld1g fld6 fld3 fld2 * fld1 a fld1 * fld6 j

g memAlias j
b h

c
fld2

d
fld3

e
fld4

fld5

g
fld6

fld1

i
fld2

fld3fld6

j

Fig. 6. Handling of recursive data structures

Scaling CFL-Reachability-Based Points-To Analysis Using Context-Sensitive 113

The handling of recursive types requires modifications to the comparison of
reachability strings. If neither string contains wildcards, no changes are needed.
If at least one string contains wildcards, it is necessary to consider the corre-
sponding finite automata and to check if there exists a common sequence of state
transitions that can lead both automata to accepting states. Although deciding
whether two general-form regular expressions have non-empty intersection is a
non-trivial problem, the alias analysis needs to handle a significantly simplified
version of the problem in which the regular expressions do not contain general
closure. In practice, the cost of this processing is insignificant.

Formulation of points-to analysis from memAlias . Although we use lan-
guage memAlias to formulate an alias analysis, a points-to relation pointsTo can
be easily derived from the following production: pointsTo → var pts memAlias .
Here var pts is the label on an ISPG edge from a variable node to a (symbolic
or allocation) node. The set of all such edges forms the complement of the back-
bone edge set. All var pts edges are constructed in the intraprocedural phase
of ISPG construction, as described in Section 3.1. For example, in Figure 4,
j32 pointsTo O29 because j32 var pts S11 and S11 memAlias O29 hold.

Due to the approximations described earlier and the limited context sensitivity
(discussed shortly), the points-to information derived from memAlias is less
precise than the solution computed by the analysis from Section 2. However, as
shown in our experimental results, a large number of infeasible alias pairs can
be eliminated early, leading to considerable overall performance improvement.

5 Context-Sensitive Must-Not-Alias Analysis

A context-sensitivity check can be performed along with the heap access check
to guarantee that a memAlias path contains balanced entry and exit edges. Pre-
vious work [24,11] has shown that heap cloning (i.e., context-sensitive treatment
not only of pointer variables, but also of pointer targets) is one of the most
important factors that contribute to the precision of the analysis. Existing anal-
ysis algorithms achieve heap cloning primarily in two ways: (1) they maintain a
push-down automaton to solve CFL-reachability over language RC described in
Section 2, or (2) they explicitly clone pointer variables and pointer targets (i.e.,
allocation nodes) for each distinct calling context [11,25,12], so that the cloned
nodes are automatically distinguished. In order to achieve both efficiency and
precision, we develop a hybrid algorithm that combines both approaches.

5.1 Analysis Overview

This subsection gives a high-level overview of the proposed approach; the detailed
definitions are presented in the next subsection. The analysis uses bottom-up
propagation on the call graph to ensure context sensitivity for pointer variables,
with appropriate approximations for recursion. This enables a summary-based
approach to propagate reachability strings from callees to callers, which yields
efficiency. By composing summary functions (i.e., reachability strings for nodes

114 G. Xu, A. Rountev, and M. Sridharan

that parameters and return variables point to in the ISPG) at call sites, reach-
ability strings for nodes in callees are concatenated with reachability strings
for nodes in callers. At each call graph edge e, if the analysis enters the callee
through edge entry(e), it has to exit through edge entry(e) or exit(e). This type
of context sensitivity corresponds to the classical functional approach [26]. How-
ever, functional context sensitivity does not automatically enforce heap cloning.
A (symbolic or allocation) node in a method may represent different objects if
the method is inlined to a caller through different call chains. If these objects
are not differentiated, imprecise memAlias paths may be derived.

Our proposal is to perform lightweight cloning for (symbolic and allocation)
nodes when composing summary function at a call site. In this cloning, there may
be several “clones” (copies) of an ISPG node, each annotated with a different call-
ing context. The level of cloning, of course, has an impact on the analysis precision.
Since the primary concern is efficiency, the level of cloning is restricted to 1, and
thus, each symbolic or allocation node in the analysis has only one call graph edge
associated with it. In fact, for some programs in our benchmark set, increasing the
level of cloning to 2 (i.e., a chain of two call graph edges) makes the alias analysis
too expensive compared to the cost reduction for the subsequent points-to analysis.

5.2 Analysis Details

This subsection defines the context-sensitive alias analysis using the rules shown
in Figure 7. The analysis state is represented by cache map cache, worklist
endNodes , and relation memAlias , whose functions are similar to those defined
in Algorithm 1. In the rules, ε denotes the empty string and operator ◦ represents
string concatenation.

The first rule describes the intraprocedural analysis with a rule of the form
endNodes , cache ,memAlias ⇒ endNodes ′, cache ′,memAlias ′ with unprimed and
primed symbols representing the state before and after an SPG field points-
to edge p

f−→ o is traversed. The intraprocedural analysis performs backward
traversal of the SPG for the method being processed, and updates the state
as described above. When edge p

f−→ o is traversed backwards, the reachability
from p to n is established for any n already reachable from o: that is, for any
[(o, n), lo,n] ∈ cache where lo,n is a reachability string. Given the updated cache ,
it is necessary to consider the set of pairs (a, b) of nodes reachable from p such
that the corresponding reachability strings lp,a and lp,b have non-empty inter-
section (represented by predicate Overlap); this processing is similar to the
functionality of lines 6-12 in Algorithm 1.

The second rule describes the processing of an entry edge from o to s, corre-
sponding to a call graph edge e. In this rule, pe denotes the clone of node p for
e. Here o represents a symbolic or allocation node to which an actual parameter
points, s represents a symbolic node created for the corresponding formal parame-
ter in the callee, and pc is a node reachable from s. Node pc may represent a node in
the callee itself (i.e., when c is the empty string ε), or a node in a method deeper in
the call graph that is cloned to the callee due to a previously-processed call. When

Scaling CFL-Reachability-Based Points-To Analysis Using Context-Sensitive 115

[Intraprocedural state update]
[(o, n), lo,n] ∈ cache
cache ′ = cache ∪ [(p, n), f ◦ lo,n] ∪ [(p, p), ε]
pairs = { (a, b) | [(p, a), lp,a], [(p, b), lp,b] ∈ cache ′ ∧ Overlap(lp,a, lp,b) }
memAlias ′ = memAlias ∪ pairs
endNodes ′ = endNodes ∪ pairs

endNodes , cache ,memAlias ⇒p
f−→o endNodes ′, cache ′,memAlias ′

[Method call]
[(s, pc), ls,p] ∈ cache
px = pe if c = ε and px = pc otherwise
triples = { [(o, px), ls,p] } ∪ { [(o, se), ε] }∪

{ [(o, q), ls,p ◦ ln,q] | (pc exit(e)−−−→ n ∨ pc entry(e)−−−−→ n) ∧ [(n, q), ln,q] ∈ cache}
cache ′ = cache ∪ triples
pairs = { (a, b) | [(p, a), lp,a], [(p, b), lp,b] ∈ cache ′ ∧ Overlap(lp,a, lp,b) }
memAlias ′ = memAlias ∪ pairs
endNodes ′ = endNodes ∪ pairs

endNodes , cache ,memAlias ⇒o
entry(e)−−−−→s endNodes ′, cache ′, memAlias ′

Fig. 7. Inference rules defining the context-sensitive alias analysis algorithm

a call site is handled, all nodes that are reachable from a symbolic node created for
a formal parameter, and all nodes that can reach a node pointed-to by a return
variable, are cloned from the callee to the caller. All edges connecting them are
cloned as well. The algorithm uses only 1-level cloning. If the existing context c of
node p is empty, it is updated with the current call graph edge e; otherwise, the
new context x remains c. Note that multiple-level cloning can be easily defined by
modifying the definition of px.

In addition to updating the cache with (o, px) and (o, se), it is also necessary to
consider any node n in the caller’s SPG that is connected with pc either through
an exit(e) edge (i.e., pc is a symbolic node pointed-to by the return variable), or
through an entry(e) edge (i.e., pc is a symbolic node created for another formal
parameter). The analysis retrieves all nodes q in the caller that are reachable
from n, together with their corresponding reachability strings ln,q, and updates
the state accordingly. Now q becomes reachable from o, and the reachability
string lo,q is thus the concatenation of ls,p and ln,q.

After all edges in the caller are processed, the transitive closure computation
shown at lines 16-38 of Algorithm 1 is invoked to find all memAlias pairs in the
caller as well as all its (direct and transitive) callees. This processing is applied
at each call graph edge e, during a bottom-up traversal of the call graph.

Termination. To ensure termination, the following approximation is adopted:
when a call-graph-SCC method m is processed, edge a

f−→ b (which is reachable

from m’s formal parameter) is not cloned in its caller n if an edge ae f−→ be

(where e is the call graph edge for the call from n to m) already exists in n.

116 G. Xu, A. Rountev, and M. Sridharan

Table 1. Java benchmarks

Benchmark #Methods #Statements #SB/ISPG Nodes #SB/ISPG Edges
compress 2344 43938 18778/10977 18374/3214
db 2352 44187 19062/11138 18621/3219
jack 2606 53375 22185/12605 21523/15560
javac 3520 66971 23858/14119 23258/3939
jess 2772 51021 22773/13421 21769/4754
mpegaudio 2528 55166 22446/12774 21749/4538
mtrt 2485 46969 20344/11878 19674/3453
soot-c 4583 71406 31054/18863 29971/5010
sablecc-j 8789 125538 44134/26512 42114/9365
jflex 4008 25150 31331/18248 30301/4971
muffin 4326 80370 33211/19659 32497/5282
jb 2393 43722 19179/11275 18881/3146
jlex 2423 49100 21482/11787 20643/3846
java cup 2605 50315 22636/13214 21933/3438
polyglot 2322 42620 18739/10950 18337/3128
antlr 2998 57197 25505/15068 24462/4116
bloat 4994 79784 38002/23192 35861/5428
jython 4136 80067 34143/19969 33970/5179
ps 5278 84540 39627/23601 38746/5646

The processing of a SCC method stops as soon as the analysis determines that
no more nodes need to be cloned to this method during the interprocedural
propagation.

6 Experimental Evaluation

The proposed approach was implemented using the Soot 2.2.4 analysis frame-
work [14,15]. The analyses included the Sun JDK 1.3.1 20 libraries, to allow
comparison with previous work [11,6]. All experiments were performed on a
machine with an Intel Xeon 2.8GHz CPU, and run with 2GB heap size. The
experimental benchmarks, used in previous work [12], are shown in Table 1.
Columns Methods and Statements show the number of methods in the original
context-insensitive call graph computed by Soot’s Spark component [27], and the
number of statements in these methods. The ISPG was constructed using this
call graph. Columns #SB/ISPG Nodes (Edges) shows the comparison between
the number of nodes (edges) in the Sridharan-Bodik (SB) graph representation of
the program, and the number of nodes (edges) in the corresponding ISPG back-
bone. On average, the numbers of ISPG backbone nodes and edges are 1.7× and
5.6× smaller than the numbers of SB nodes and edges, respectively.

The rest of this section presents an experimental comparison between the op-
timized version and the original version of the Sridharan-Bodik analysis. Specif-
ically, queries were raised for the points-to set of each variable in the program.

6.1 Running Time Reduction

Table 2 compares the running times of the two analysis versions. Since the anal-
ysis cannot scale to compute fully-refined results, it allows users to specify a

Scaling CFL-Reachability-Based Points-To Analysis Using Context-Sensitive 117

Table 2. Analysis time (in seconds) and precision comparison

Benchmark Original Optimized Speedup Precision
SB ISPG Alias SB′ Total Casts Ins mA 1H SB

compress 1101 59 20 203 282 3.9 6 0 0 0 2
db 1180 62 10 198 270 4.4 24 0 6 6 19
jack 1447 223 37 241 501 2.9 148 14 40 42 49
javac 1727 86 20 339 445 3.9 317 0 38 40 55
jess 1872 92 51 228 371 5.0 66 6 8 8 38
mpegaudio 866 56 20 185 261 3.3 13 1 4 4 4
mtrt 873 67 16 192 275 3.2 10 0 4 4 4
soot-c 3043 159 64 672 895 3.4 797 7 72 89 142
sablecc-j 4338 445 59 2350 2854 1.5 327 6 35 30 62
jflex 3181 151 43 1148 1342 2.4 580 1 12 2 43
muffin 3378 232 50 599 891 3.8 148 2 20 21 69
jb 802 58 9 287 354 2.3 38 0 3 2 24
jlex 833 54 14 237 305 2.7 47 1 4 3 14
java cup 1231 73 10 342 425 2.9 460 24 24 24 372
polyglot 707 48 15 208 271 2.6 9 0 2 1 4
antlr 1211 87 13 453 553 2.2 77 7 4 3 28
bloat 3121 139 80 1655 1874 1.7 1298 80 91 80 148
jython 1576 83 64 415 562 2.8 458 11 29 30 167
ps 2676 236 73 1226 1535 1.7 667 17 41 189 49

threshold value to bound the total number of refinement passes (or nodes vis-
ited) — once the number of passes (or nodes visited) exceeds this value, the
analysis gives up refinement and returns a safe approximate solution.

We inserted a guard in the points-to analysis code that returns immediately
after the size of a points-to set becomes 1. If the points-to set contains multiple
objects, the refinement continues until the maximum number of passes (10)
or nodes (75000) is reached. Because the same constraint (i.e., #passes and
#nodes) is used for both the original version and the optimized version, the
optimized version does not lose any precision — in fact, it could have higher
precision because it explores more paths (in our experiments, this affects only
ps, in which two additional downcasts are proven to be safe).

The running time reduction is described in Table 2. Column SB shows the
running time of the original version of the Sridharan-Bodik analysis. Columns
ISPG, Alias, and SB ′ show the times to build the ISPG, run the must-not-alias
analysis, and compute the points-to solution. Column Speedup shows the value
of Refine/Total. On average, using the must-not-alias information provided by
our analysis, the points-to analysis ran more than 3 times faster, and in some
case the speedup was as large as five-fold.

The smallest performance improvement (1.6×) is for sablecc-j. We inspected
the program and found the reason to be a large SCC (containing 2103 methods)
in Spark’s call graph. The fixed-point iteration merged a large number of sym-
bolic/object nodes in the SCC methods, resulting in a large reachability map
and limited filtering of un-aliased variables. In general, large SCCs (containing
thousands of methods) are well known to degrade the precision and performance
of context-sensitive analysis. Large cycles may sometimes be formed due to the
existence of a very small number of spurious call graph edges. Based on this
observation, we employ an optimization that uses the original (un-optimized)

118 G. Xu, A. Rountev, and M. Sridharan

version of the points-to analysis to compute precise points-to sets for the re-
ceiver variables at call sites that have too many call graph edges in Spark’s call
graph. This is done if the number of outgoing call graph edges at a call site
exceeds a threshold value (e.g., the current value is 10). Hence, the approach
pays the price of the increased ISPG construction time to reduce the cost and
imprecision of the memAlias computation.

Note that our analysis does not impose heavy memory burden — once the
must-not-alias analysis finishes and relation memAlias is computed, all reach-
ability maps are released. The only additional needed memory is to hold the
relation and the ISPG nodes. Both the reachability analysis and the subsequent
points-to analysis ran successfully within the 2GB heap limit. We also performed
experiments with 2-level-heap cloning (defined in Section 5). Due to space lim-
itations, these results are not included in the paper. For some programs in the
benchmark set, the analysis ran out of memory; for others, the memAlias com-
putation became very slow. Thus, 1-level heap cloning appears to strike the right
balance between cost and precision.

6.2 Analysis Precision

Column Precision in Table 2 shows a precision comparison between a points-to
solution derived from relation memAlias (as described at the end of Section 4)
and those computed by other analyses. The table gives the number of down-
casts that can be proven safe by context-insensitive points-to analysis (Ins), our
analysis (mA), object-sensitive analysis with 1-level heap cloning (1H), and the
Sridharan-Bodik analysis (SB). From existing work, it is not surprising that
Ins and SB have the lowest and highest precision, respectively. Analyses 1H
and mA have comparable precision. Although mA is fully context-sensitive for
pointer variables, this does not have a significant effect on precision. The rea-
son is that heap cloning is more important than context-sensitive treatment of
pointer variables [24,11,6]. Even though mA can prove a much smaller number
of safe casts than SB, it does prune out a large number of spurious aliasing rela-
tionships. For example, the points-to set of a variable computed by mA can be
much smaller than the one computed by Ins. Thus, the analysis proposed in this
paper could either be used as a pre-analysis for the Sridharan-Bodik points-to
analysis (in which case it significantly reduces the overall cost without any loss
of precision), or as a stand-alone analysis which trades some precision for higher
efficiency (e.g., since it is significantly less expensive than 1H).

7 Related Work

There is a very large body of work on precise and scalable points-to analysis
[28,11]. The discussion in this section is restricted to the analysis algorithms
that are most closely related to our technique.

CFL-reachability. Early work by Reps et al. [8,29,30,31,32] proposes to model
realizable paths using a context-free language that treats method calls and re-

Scaling CFL-Reachability-Based Points-To Analysis Using Context-Sensitive 119

turns as pairs of balanced parentheses. Based on this framework, Sridharan et al.
defined a CFL-reachability formulation to precisely model heap accesses, which
results in demand-driven points-to analyses for Java [16,6]. Combining the CFL-
reachability formulations of both heap accesses and interprocedural realizable
paths, [6] proposes a context-sensitive analysis that achieves high precision by
continuously refining points-to relationships. The analysis is the most precise
one among a set of context-sensitive, field-sensitive, subset-based points-to anal-
ysis algorithms, and can therefore satisfy the need of highly-precise points-to
information. However, the high cost associated with this precision is an obstacle
for the practical real-world use of the analysis, which motivates our work on
reducing the cost while maintaining the precision.

Zheng and Rugina [7] present a CFL-reachability formulation of alias analy-
sis and implement a context-insensitive demand-driven analysis for C programs.
The key insight is that aliasing information can be directly computed without
having to compute points-to information first. Similarly to computing a points-to
solution, this analysis also needs to make recursive queries regarding the aliasing
relationships among variables. Hence, our pre-computed must-not-alias informa-
tion could potentially be useful to improve the performance of this analysis.

Must-not-alias analysis. Naik and Aiken [33] present a conditional must-not-
alias analysis and use it to prove that a Java program is free of data races. The
analysis is conditional, because it is used to show that two objects can not alias
under the assumption that two other objects can not alias. If it can be proven
that any two memory locations protected by their respective locks must not
alias as long as the two lock objects are distinct, the program cannot contain
potential data races. Our analysis uses the must-not-alias relationship of two
memory locations to disprove the existence of alias paths between two variables.
These two analyses are related, because both use must-not-alias information to
disprove the existence of certain properties (data race versus alias path).

Improving the scalability of points-to analysis. Similarly to our technique,
there is body of work on scaling of points-to analysis. Rountev and Chandra [34]
present a technique that detects equivalence classes of variables that have the same
points-to set. The technique is performed before the points-to analysis starts and
can speed up context-insensitive subset-based points-to analysis by a factor of two.
Work from [35] observes that such equivalence classes still exist as points-to sets are
propagated, and proposes an online approach to merge equivalent nodes to achieve
efficiency. A number of other approaches have employed binary decision diagrams
and Datalog-based techniques (e.g., [36,37,38,39,40]) to achieve high performance
and precision. Our previous work [12] identifies equivalence classes of calling con-
texts and proposes merging of equivalent contexts. This analysis has strong context
sensitivity — it builds a symbolic points-to graph for each individual method, and
clones all non-escaping SPG nodes from callees to callers. Although the technique
proposed in this paper uses a variation of this ISPG as program representation, it
is fundamentally different from this previous analysis. In this older work, which is
not based on CFL-reachability, both variable and field points-to edges are cloned

120 G. Xu, A. Rountev, and M. Sridharan

to compute a complete points-to solution. The technique in this paper formulates a
new alias analysis as a CFL-reachability problem, uses a completely different anal-
ysis algorithm, employs a different form of context sensitivity, and aims to reduce
the cost of a subsequent points-to analysis that is based on a more general and ex-
pensive CFL-reachability algorithm.

8 Conclusions

The high precision provided by CFL-reachability-based pointer analysis usu-
ally comes with great cost. If relatively precise alias information is available
at the time heap loads and stores are matched, many irrelevant paths can be
eliminated early during the computation of CFL-reachability. Based on this ob-
servation, this paper proposes a must-not-alias analysis that operates on the
ISPG of the program and efficiently produces context-sensitive aliasing informa-
tion. This information is then used in the Sridharan-Bodik points-to analysis.
An experimental evaluation shows that the points-to analysis is able to run 3×
faster without any precision loss. This technique is orthogonal to existing CFL-
reachability-based points-to analysis algorithms — it does not aim to compute
precise points-to information directly, but rather uses easily computed aliasing
information to help the points-to analyses quickly produce a highly-precise solu-
tion. These scalability results could directly benefit a large number of program
analyses and transformations that require high-quality points-to information at
a practical cost, for use on large programs in real-world software tools.

Acknowledgments. We would like to thank the ECOOP reviewers for their
valuable and thorough comments and suggestions. This research was supported
in part by the National Science Foundation under CAREER grant CCF-0546040.

References

1. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in poly-
nomial time. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 57–68 (2002)

2. Fink, S., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate veri-
fication in the presence of aliasing. In: ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 133–144 (2006)

3. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
308–319 (2006)

4. Voung, J.W., Jhala, R., Lerner, S.: RELAY: Static race detection on millions of
lines of code. In: ACM SIGSOFT International Symposium on the Foundations of
Software Engineering, pp. 205–214 (2007)

5. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
ACM Transactions on Programming Languages and Systems 12(1), 26–60 (1990)

6. Sridharan, M., Bodik, R.: Refinement-based context-sensitive points-to analysis
for Java. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 387–400 (2006)

Scaling CFL-Reachability-Based Points-To Analysis Using Context-Sensitive 121

7. Zheng, X., Rugina, R.: Demand-driven alias analysis for C. In: ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 197–208 (2008)

8. Reps, T.: Program analysis via graph reachability. Information and Software Tech-
nology 40(11-12), 701–726 (1998)

9. Sridharan, M. (2006), http://www.sable.mcgill.ca/pipermail/soot-list/

2006-January/000477.html

10. Kahlon, V.: Bootstrapping: A technique for scalable flow and context-sensitive
pointer alias analysis. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 249–259 (2008)

11. Lhoták, O., Hendren, L.: Context-sensitive points-to analysis: Is it worth it? In:
International Conference on Compiler Construction, pp. 47–64 (2006)

12. Xu, G., Rountev, A.: Merging equivalent contexts for scalable heap-cloning-based
context-sensitive points-to analysis. In: ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 225–235 (2008)

13. Kodumal, J., Aiken, A.: The set constraint/CFL reachability connection in prac-
tice. In: ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, pp. 207–218 (2004)

14. Soot Framework, http://www.sable.mcgill.ca/soot

15. Vallée-Rai, R., Gagnon, E., Hendren, L., Lam, P., Pominville, P., Sundaresan, V.:
Optimizing Java bytecode using the Soot framework: Is it feasible? In: International
Conference on Compiler Construction, pp. 18–34 (2000)

16. Sridharan, M., Gopan, D., Shan, L., Bodik, R.: Demand-driven points-to analy-
sis for Java. In: ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 59–76 (2005)

17. Chatterjee, R., Ryder, B.G., Landi, W.: Relevant context inference. In: ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
133–146 (1999)

18. Wilson, R., Lam, M.: Efficient context-sensitive pointer analysis for C programs.
In: ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pp. 1–12 (1995)

19. Cheng, B., Hwu, W.: Modular interprocedural pointer analysis using access paths.
In: ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pp. 57–69 (2000)

20. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java pro-
grams. In: ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pp. 187–206 (1999)

21. Melski, D., Reps, T.: Interconvertibility of a class of set constraints and context-
free-language reachability. Theoretical Computer Science 248, 29–98 (2000)

22. Rehof, J., Fähndrich, M.: Type-based flow analysis: From polymorphic subtyping
to CFL-reachability. In: ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 54–66 (2001)

23. Kodumal, J., Aiken, A.: Regularly annotated set constraints. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 331–341
(2007)

24. Nystrom, E., Kim, H., Hwu, W.: Importance of heap specialization in pointer
analysis. In: PASTE, pp. 43–48 (2004)

25. Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis
with heap cloning practical for the real world. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 278–289 (2007)

http://www.sable.mcgill.ca/pipermail/soot-list/2006-January/000477.html
http://www.sable.mcgill.ca/pipermail/soot-list/2006-January/000477.html
http://www.sable.mcgill.ca/soot

122 G. Xu, A. Rountev, and M. Sridharan

26. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Muchnick, S., Jones, N. (eds.) Program Flow Analysis: Theory and Applications,
pp. 189–234. Prentice-Hall, Englewood Cliffs (1981)

27. Lhoták, O., Hendren, L.: Scaling java points-to analysis using SPARK. In: Hedin,
G. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)

28. Hind, M.: Pointer analysis: Haven’t we solved this problem yet? In: PASTE, pp.
54–61 (2001)

29. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 49–61 (1995)

30. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In:
ACM SIGSOFT International Symposium on the Foundations of Software Engi-
neering, pp. 104–115 (1995)

31. Reps, T.: Solving demand versions of interprocedural analysis problems. In: Fritz-
son, P.A. (ed.) CC 1994. LNCS, vol. 786, pp. 389–403. Springer, Heidelberg (1994)

32. Reps, T., Horwitz, S., Sagiv, M., Rosay, G.: Speeding up slicing. In: ACM SIGSOFT
International Symposium on the Foundations of Software Engineering, pp. 11–20
(1994)

33. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 327–338 (2007)

34. Rountev, A., Chandra, S.: Off-line variable substitution for scaling points-to anal-
ysis. In: ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, pp. 47–56 (2000)

35. Hardekopf, B., Lin, C.: The ant and the grasshopper: Fast and accurate pointer
analysis for millions of lines of code. In: ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 290–299 (2007)

36. Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis
using BDDs. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 103–114 (2003)

37. Lhoták, O., Hendren, L.: Jedd: A BDD-based relational extension of Java. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
158–169 (2004)

38. Whaley, J., Lam, M.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pp. 131–144 (2004)

39. Zhu, J., Calman, S.: Symbolic pointer analysis revisited. In: ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pp. 145–157 (2004)

40. Bravenboer, M., Smaragdakis, Y.: Doop framework for Java pointer analysis
(2009), doop.program-analysis.org

doop.program-analysis.org

	Scaling CFL-Reachability-Based Points-To Analysis Using Context-Sensitive Must-Not-Alias Analysis
	Introduction
	Background
	CFL-Reachability Formulation
	CFL-Reachability Example
	Using Must-Not-Alias Information

	Program Representation for Must-Not-Alias Analysis
	Symbolic Points-to Graph for a Method
	Interprocedural Symbolic Points-To Graph

	Context-Insensitive Memory Alias Formulation
	Solving All-Pairs memAlias-Reachability
	Approximation for Recursive Data Structures

	Context-Sensitive Must-Not-Alias Analysis
	Analysis Overview
	Analysis Details

	Experimental Evaluation
	Running Time Reduction
	Analysis Precision

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

