
Snugglebug: A Powerful Approach To Weakest Preconditions

Satish Chandra Stephen J. Fink Manu Sridharan
IBM T. J. Watson Research Center

{satishchandra,sjfink,msridhar}@us.ibm.com

Abstract
Symbolic analysis shows promise as a foundation for bug-finding,
specification inference, verification, and test generation. This pa-
per addresses demand-driven symbolic analysis for object-oriented
programs and frameworks. Many such codes comprise large, partial
programs with highly dynamic behaviors—polymorphism, reflec-
tion, and so on—posing significant scalability challenges for any
static analysis.

We present an approach based on interprocedural backwards
propagation of weakest preconditions. We present several novel
techniques to improve the efficiency of such analysis. First, we
present directed call graph construction, where call graph construc-
tion and symbolic analysis are interleaved. With this technique,
call graph construction is guided by constraints discovered during
symbolic analysis, obviating the need for exhaustively exploring a
large, conservative call graph. Second, we describe generalization,
a technique that greatly increases the reusability of procedure sum-
maries computed during interprocedural analysis. Instead of tabu-
lating how a procedure transforms a symbolic state in its entirety,
our technique tabulates how the procedure transforms only the per-
tinent portion of the symbolic state. Additionally, we show how
integrating an inexpensive, custom logic simplifier with weakest
precondition computation dramatically improves performance.

We have implemented the analysis in a tool called
SNUGGLEBUG and evaluated it as a bug-report feasibility
checker. Our results show that the algorithmic techniques were
critical for successfully analyzing large Java applications.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Validation; D.2.5 [Testing and Debugging]: Sym-
bolic execution

General Terms Algorithms, Languages, Verification

Keywords Interprocedural analysis, symbolic analysis, weakest
preconditions

1. Introduction
We consider the problem of finding a precondition φ that necessar-
ily drives a program from a particular entrypoint m to a particular
goal state g. A general solution to this problem would have numer-
ous applications in tools for software engineering, such as:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00.

• Specification discovery and API hardening Here, g could
represent some behavior of a library, and a discovered precon-
dition would illustrate how to make such behavior occur. For
example, g might represent that the library throws a particular
exception at a particular line of code. Presented with a precon-
dition for an exceptional exit, a library developer might either
change the code to avoid the exception, or add the precondition
to the documentation.
• Bug validation Such analysis could reduce the impact of false

positives from a bug-finding tool, by treating each bug report as
a goal state and searching for sufficient preconditions. When a
tool finds a sufficient precondition for a bug report, said report
would be considered “validated”, and hence deserve higher
priority.
• Test case generation Given a precondition φ for method foo,

one may wish to construct a test case that executes foo in a
state satisfying φ (e.g., as a debugging aid). Suppose we con-
struct a “universal driver” program that can execute candidate
sequences of method calls, which embody a space of possible
tests. If we can force the universal driver to the goal state of φ at
the entry of foo, a tool could output the corresponding method
sequence as the desired test.

In this paper, we desire a sound solution to the goal-reachability
problem, one that models the exact semantics of all statements, in-
cluding interprocedural flow and exceptional conditions. When the
analysis finds a precondition φ for g, we insist that the analysis
guarantee that any state which satisfies φ must necessarily drive
program execution to g. No other exceptions will be thrown be-
fore reaching g. A sound analysis must necessarily perform full in-
terprocedural analysis, since the analysis cannot optimistically as-
sume that certain method calls have no side effects or even return
normally.

We propose a solution to this goal-reachability problem based
on backward symbolic analysis. In principle, such an analysis com-
putes weakest preconditions [12] over each control-flow path, going
backwards from the goal statement to the entrypoint. If the com-
puted precondition φ for any path r is satisfiable, then a satisfying
assignment for φ gives inputs that would force execution along r to
the goal.

Backward symbolic analysis suits our problem for a number
of reasons. The analysis is sound and models concrete semantics
(i.e., no abstraction), and hence it outputs no false positives. It
is also demand driven; by design, it explores only states that are
relevant to reaching the goal, unlike symbolic execution [23] and
most testing-based techniques (e.g., [17]). Finally, in contrast to
testing, backward symbolic analysis does not require a complete
program; it can analyze libraries without an execution environment
and client code.

Backward symbolic analysis with concrete semantics is neces-
sarily incomplete. It may fail to find a suitable precondition, even
if one exists, in the presence of loops and recursion. This is not

363

an immediate disqualification of its utility: our experiments show
that for goals arising in realistic programs, a systematic search of
executions even through programs containing loops and recursive
procedures often succeeds in producing a suitable precondition.

Challenges Real-world programs present many challenges for
weakest precondition (wp) analysis. The first problem arises from
the sheer scale of large programs. Even in loop-free programs,
symbolic analysis faces an exponential explosion due to the number
of distinct paths through the program. In straight-line code alone,
handling language features like aliasing and type tests can require
disjunctions, another source of state explosion.

Procedure calls both exacerbate these difficulties and introduce
entirely new challenges, especially for large object-oriented li-
braries and frameworks. For object-oriented programs, performing
interprocedural analysis requires determining the possible targets
of virtual method calls. Unfortunately, standard call graph con-
struction algorithms [18] face myriad difficulties disambiguating
virtual calls in real-world libraries, due to the scale of the pro-
grams, unknown aliasing that clients might establish, and dynamic
language features like reflection. Analyzing all possible virtual call
targets as computed by simpler techniques (e.g., using the type sys-
tem) dramatically reduces analysis scalability.

Even if call graph difficulties were resolved, the standard chal-
lenges of interprocedural analysis remain. The best-known previ-
ous work in this area, ESC/Java [15], performed only intraproce-
dural analysis, requiring programmers to provide appropriate spec-
ifications for called methods. However, the concomitant annotation
burden of this approach can be heavy even with tool assistance [14].
The simplest approach to automatic interprocedural analysis is to
inline callees. However, inlining fails to terminate with recursion,
and furthermore often leads to an exponential explosion in pro-
gram size; moreover, it sacrifices any possibility of reuse of anal-
ysis of a procedure. An alternative solution, long investigated for
interprocedural dataflow analysis [29], works by computing proce-
dure summaries automatically and reusing them to reduce redun-
dant computation. The challenge in this approach, when applied
to symbolic analysis, is to efficiently compute summaries that are
general enough to reuse frequently.

Contributions We present an approach to interprocedural weak-
est precondition computation based on Sharir and Pnueli’s func-
tional interprocedural analysis framework [29]. Our key contribu-
tions lie in the following techniques, which enable analysis of real-
world object-oriented programs:

1. Directed Call Graph Construction We show an iterative algo-
rithm that interleaves symbolic analysis with call graph con-
struction. The call graph grows in stages, driven by feedback
from symbolic analysis, in an attempt to explore only callees
consistent with the goal. Furthermore, the technique requires no
whole-program analysis beyond class hierarchy construction.

2. Generalization We describe a technique to enhance summary
reuse via computation of generalized procedure summaries, in
the context of the Reps-Horwitz-Sagiv (RHS) tabulation-based
analysis framework [26].

3. We show how integrating an inexpensive, custom logic sim-
plifier with weakest precondition computation dramatically im-
proves performance.

We have implemented this approach in a tool called SNUGGLEBUG
and evaluated it on challenging bug-validation tasks from large
framework-oriented Java applications, including the open-source
Tomcat web server and the Eclipse IDE. SNUGGLEBUG succeeded
in establishing concrete preconditions for 29 out of 38 feasible
goals it considered, each within a half-hour limit. To our knowl-

edge, this paper is the first to successfully apply demand-driven
interprocedural symbolic analysis to programs of this scale.

Our evaluation showed that the techniques listed above were
critical for successful analysis of these applications. Precomputed
call graphs (without directed call graph construction) often encom-
passed thousands of methods, can overwhelm symbolic analysis,
whereas the directed call graph construction needed at most 93
methods. Generalization improved the frequency of summary-edge
reuse to 87% from 5%, resulting in a factor of two bottom-line
speedup. Finally, the integrated custom simplifier improved perfor-
mance by roughly a factor of ten.

The remainder of this paper proceeds as follows. Section 2 gives
an overview of our techniques, and Section 3 describes our core
analysis architecture. Section 4 presents directed call graph con-
struction, and Section 5 shows generalization. Section 6 presents
other details of our system relevant to performance. Section 7
shows experimental results, Section 8 discusses related work, and
Section 9 concludes.

2. Overview
Here, we give an overview of the key techniques employed
in SNUGGLEBUG, using the examples in Figures 1 and 2. For
Figure 1, we wish to discover a precondition for the public
entrypoint method that will force program execution to line 38,
which throws an exception. This precondition could be useful either
to find bugs or as documentation. In this case, we shall discover that
line 38 is reached if entrypoint is invoked with a NewCarList
containing a Car whose year is not 2009.

First we give an informal taste of the weakest precondition (wp)
propagation [12] at the core of SNUGGLEBUG. Starting backwards
from the goal at line 38 of Figure 1, wp computes the following
symbolic states, all preconditions for reaching the error:

1. Before line 38, true
2. Before line 37, y 6= 2009

3. Before line 36, x.year 6= 2009.
4. Before line 35, x.year 6= 2009 ∧ newCarsOnly

and so on. At each step, we apply the statement’s wp transformer
to a postcondition to arrive at a precondition.

The key challenge in analyzing Figure 1 is handling its virtual
method calls. Continuing the above wp computation backwards in
checkValid() requires analyzing calls to Iterator.next(),
Iterator.hasNext(), and Collection.iterator(). These
calls can have many possible targets in the application or libraries—
had this code relied on the Eclipse UI subsystem, there would be at
least 86 concrete implementations of iterator(), 135 implemen-
tations of hasNext(), and 157 implementations of next(). Which
of these methods should the analysis explore? Answering this ques-
tion accurately is a requirement for efficient analysis of this exam-
ple. In this case, when line 38 is reached from entrypoint, a path
condition constrains the receivers of these calls to the particular
types NewCarList and NewCarList$Itr.

2.1 Directed Call Graph Construction
Directed call graph construction works by iteratively skipping anal-
ysis of certain virtual calls and then choosing call targets based on
feedback from symbolic analysis. In the first pass of backward anal-
ysis of Figure 1, we skip the calls to iterator(), hasNext(),
and next() in checkValid(), reaching entry of entrypoint
with a formula that symbolically represents their return values
and possible effects. On any path from line 38 to the entry of
entrypoint, we have the constraint that c must be a subtype of
NewCarList (due to line 28). With this constraint, the analysis
next decides to expand the iterator() call at line 32 to include

364

1 public class Car {
2 int year;
3 void setYear(int y) { this.year = y; }
4 int getYear() { return year; }
5 }
6 public class NewCarList implements List<Car> {
7 private Car[] elems = new Car[10];
8 public final Iterator iterator() {
9 return new Itr();

10 }
11 public Car set(int i, Car c) {
12 Car old = elems[i];
13 elems[i] = c;
14 return old;
15 }
16 private class Itr implements Iterator {
17 int cursor = 0;
18 public boolean hasNext() {
19 return cursor != elems.length;
20 }
21 public Object next() {
22 return elems[cursor++];
23 }
24 }
25 // other List methods...
26 }
27 public static void entrypoint(Collection<Car> c)
28 checkValid(c, c instanceof NewCarList);
29 }
30 private static void checkValid(Collection<Car> c,
31 boolean newCarsOnly) throws MyException {
32 Iterator<Car> it = c.iterator();
33 while (it.hasNext()) {
34 Car x = it.next();
35 if (newCarsOnly) {
36 int y = x.getYear();
37 if (y != 2009) {
38 throw new MyException(); // GOAL
39 }
40 }
41 // ... other checks.
42 }
43 }

Figure 1. A (contrived) motivating example

NewCarList.iterator() as a target for analysis. In this man-
ner, symbolic analysis gives crucial feedback to the interprocedural
propagation.

Newly-added callees can influence which methods are added to
the call graph in later analysis stages. For our example, after adding
NewCarList.iterator() to the call graph, the analysis discovers
that it returns an object of type NewCarList$Itr (line 9). This
fact constrains the call graph expansion for the calls at lines 33
and line 34, forcing analysis of methods in NewCarList$Itr for
subsequent passes. Notice how the call target selection is guided
by the latest known symbolic constraints, in this case the concrete
type of the return value from NewCarList.iterator().

Directed call graph construction improves scalability because
in practice, the analysis needs to only explore a small portion of an
overapproximate (worst case) call graph. An upfront static analysis
would have difficulty determining the right part of the call graph to
explore—it is the interleaving of interprocedural symbolic analysis
and call graph construction that makes this strategy work.

2.2 Generalization
Our interprocedural analysis algorithm embodies a functional inter-
procedural dataflow analysis [29] using an adaptation of the RHS
tabulation algorithm [26]. In our case, the domain of this dataflow
problem consists of symbolic formulae, where each formula rep-
resents a set of concrete program states. The tabulation algorithm
builds partial procedure summaries on-the-fly, as it discovers pairs

1 public static void test(NewCarList l) throws MyException {
2 Car c1 = new Car();
3 l.set(0,c1);
4 c1.setYear(2008); // a bad car
5 Car c2 = new Car();
6 l.set(1,c2);
7 c2.setYear(2009); // a good car
8 entrypoint(l);
9 }

Figure 2. Motivating example for modular reuse.

of input-output facts for each procedure. The algorithm maintains
a table of input-output summaries for each procedure, and reuses a
computed summary when it propagates an input fact that yields a
“hit” in the summary table.

With symbolic formulae as dataflow facts, our interprocedural
analysis will “hit” in the summary table only when presented with a
syntactically identical formula. However, even when using canoni-
cal forms to represent symbolic formulae, summary reuse based on
syntactic matching often fails. We present generalization, a tech-
nique to compute more general symbolic summaries. Generaliza-
tion lifts summaries over individual symbolic facts into summaries
over more general classes of facts.

We now show informally how generalization applies to the
example code in Figure 2. Here, the test() method invokes
entrypoint() (from Figure 1) with a NewCarList that causes the
previously discussed exception at line 38 in checkValid(). Note
that test() contains two calls to each of NewCarList.set()
and Car.setYear(); we shall show how generalization enables
analyzing each of these methods once and re-using the result.

Consider the symbolic states that arise during wp analysis im-
mediately after the call sites to setYear() and set() in Figure 2
(certain irrelevant conjuncts elided for brevity):

Method, line Postcondition
setYear(), 7 l.elems[0].year 6= 2009 ∧ l.elems.length > 0
setYear(), 4 l.elems[0].year 6= 2009 ∧ l.elems.length > 1

set(), 6 l.elems[0] 6= c2 ∧ l.elems[0].year 6= 2009
set(), 3 read(update(year, c1, 2008), l.elems[0]) 6= 2009

The formula notation will be explained further in Section 3; for
now, just notice that the two formulae for setYear() are syntac-
tically different; likewise for set(). Since these formulae are the
input keys in the summary tables for setYear() and set(),1 the
tabulation-based analysis cannot achieve any reuse for the repeated
calls.

Generalization enables computation of more general symbolic
summaries [10] within a tabulation-based interprocedural analysis
by (1) extracting references to concrete locations in input formu-
lae for procedures and (2) using the frame rule from separation
logic [27] to analyze procedures only with relevant, genericized
conjuncts. Generalization of the postcondition at line 7 yields:

l0 6= 2009 ∧ l0 = read(year, l1)

∧ l1 = l.elems[0] ∧ l.elems.length > 0

Compared to the corresponding formula in the table above, the
reference to the year field has been extracted into a generic
conjunct l0 = read(year, l1) (l0 and l1 are fresh variables;
read is discussed in Section 3). The analysis then reasons via
the frame rule [27] that since setYear() may modify only
year, only this generic conjunct is relevant when analyzing the
method. Hence, the algorithm propagates only the generic conjunct
l0 = read(year, l1), to the callee, yielding the following entry in

1 In the actual tables, the formulae are translated into the callee namespace.

365

setYear()’s input-output table:

l0 = read(year, l1)
setYear()−−−−−−→ l0 = read(update(year, this, y), l1)

The above represents a symbolic summary that applies to an entire
class of facts, namely those that reference the year field. General-
ization of the post-condition for the setYear() call at line 4 again
yields the input fact l0 = read(year, l1), enabling reuse of the
above summary via tabulation. Similar reuse is achieved for the
calls to set(), as we shall show in Section 5.

Generalized summaries promote reuse because methods fre-
quently embody context-independent behaviors. SNUGGLEBUG
computes generalized summaries on demand within the interproce-
dural wp computation, consistent with the overall demand-driven
analysis approach. Section 5 gives further details on how to inte-
grate generalized summary computation into a standard tabulation-
based analysis [26].

2.3 Integrated Tabulation and Simplification
Even with directed call graph construction and generalization,
straightforward propagation of weakest preconditions would not
scale to the size of programs we handle. In particular, we found
that an approach of constructing weakest preconditions composi-
tionally and sending the results to an SMT solver to check decid-
ability (as was done in previous systems [15]) was not practical for
our target programs.

A further key to scalability lies in close co-operation between
wp propagation and formula handling. At each step of wp prop-
agation, SNUGGLEBUG invokes an inexpensive custom procedure
to simplify formulae using language-specific theories, and it drops
formulae from further propagation once proven unsatisfiable. This
technique also increases the effectiveness of directed call graph
construction and generalization. Section 6 describes our formula
handling and other optimizations.

3. Analysis Basics
In this section, we first describe an intraprocedural wp calculation
for Java (Section 3.1) and then extend the analysis to handle proce-
dure calls (Section 3.2). SNUGGLEBUG extends this core analysis
with directed call graph construction (Section 4) and enhancements
for modular reuse (Section 5).

3.1 Intraprocedural Computation
Our intraprocedural analysis operates on a SSA register-transfer
language representation with semantics close to Java bytecode. The
first column of Table 1 shows some of the statements in the lan-
guage; their semantics follow those of Java. The assume statement
is a no-op if its condition is true and hangs otherwise. Follow-
ing a conditional branch with condition c, the taken branch jumps
to assume(c) and the not taken branch to assume(!c). Note that
many statements can throw implicit exceptions corresponding to
built-in Java safety conditions. We abbreviate null pointer, class
cast, and array index out of bounds exceptions as NPE, CCE, and
OOB respectively.

The analysis operates on a control-flow graph (CFG) built over
this representation, where each basic block has at most one state-
ment.2 Each CFG has a unique Entry and unique Exit node. Each
block has distinct outgoing edges corresponding to normal execu-
tion and different cases of exceptional execution. Exceptional edges
from a potentially excepting statement go to either catch blocks or
the exit node.

SNUGGLEBUG represents symbolic states (the domain of the
analysis) as quantifier-free formulae in first-order logic with equal-
ity. Table 2 informally presents some of the vocabulary of this logic

2 We elide some straightforward details involving SSA φ statements.

Functions and Constants
Ti type constants (one per concrete type)
Mi method constants (one per concrete method)
Fi field constants (one per declared field)
sigi constant corresponding to a method signature
read(f, v) f(v), where f is Val → Val

(a relational model of some declared field)
update(f, v, w) functional update of f , i.e. f [v 7→ w]
aread(a, v, i) a(v, i), where a is Val × Index → Val
aupdate(a, w, i, v) functional update of a, i.e. a[(w, i) 7→ v]
typeOf(v) the type of object to which v points
dispatch(t, sig) method to which signature sig

will dispatch to on receiver of type t
subType(t1, t2) true iff type t1 is subtype of type t2 in Java

Axioms
this 6= null
∀f.∀v.∀w.read(update(f, v, w), v) = w
∀f.∀v.∀w.∀u.u 6= v ⇒ read(update(f, v, w), u) = read(f, u)
subType(T1, T2)⇔ T1 is a subtype of T2 in Java
dispatch(T1, sigA.m) = MB.m ⇔
∀x.(x.class = T1 ⇒ x.m() dispatches to target method B.m())
∀x.read(length, x) ≥ 0

Table 2. Some representative symbols and axioms in our theory
for Java programs.

and shows some representative axioms.3 In addition to primitive
values and pointers, the vocabulary expresses relations between
types, methods, fields, and method signatures. The logic models
Java fields as relations manipulated with read and update from the
theory of arrays [25]. Java arrays (which are heap-allocated) are
modeled with two-dimensional arrays (from the theory), indexed
by a base pointer and an array index. The bottom half of Table 2
shows some representative axioms, such as the standard axioms
that define the theory of arrays. Additionally, the table shows ax-
ioms based on the type hierarchy of the program. The last axiom
ensures that the length field of arrays is non-negative.

Table 1 defines the weakest precondition transformers for sev-
eral statements. The notation φ[t2/t1] means φ with all syntactic
occurrences of t1 replaced by t2. Technically, the wp transformer
occurs on an outgoing edge from a basic block (recall that each
basic block has at most one statement). For some statements, wp
must take into account whether the CFG edge represents normal or
exceptional control flow, as indicated in the second column of Ta-
ble 1. Note that the wp transformer for calls in Table 1 only handles
intraprocedural semantics (i.e., reasoning about non-nullness of re-
ceivers and virtual dispatch); Section 3.2 discusses interprocedural
analysis.

Figure 3 gives pseudocode for an iterative computation of in-
traprocedural weakest pre-conditions. The analysis computes a set
(D) of symbolic states at each program point. After computing
wp(s, φpost) for a statement s and formula φpost , the algorithm
(i) invokes a simplifier on the result and (ii) merges the simpli-
fied result with the facts already present before s (line 8). We use
a lightweight but highly effective simplifier for (i), described in
Section 6. For (ii), we perform ad hoc checks to optimize away
certain patterns of redundancy: for example, merge(φ ∧ a, φ∧!a)
simplifies to φ; it is only necessary to propagate φ further. In the
presence of loops, INTRAWP may not terminate, but in practice, we
only need to run it until a suitable D(entry) is obtained, even if it
is not the weakest such condition. (Section 6 contains more details
on handling of loops.)

Example Consider the method setYear in Figure 1. Suppose we
wish to find the precondition for the predicate x.year == 2008

3 Though the axioms include quantifiers, they never arise in the symbolic
state representation.

366

statement edge condition wp(statement , φ)

v = w φ[w/v]
v = v1 op v2 φ[(v1 op v2)/v]
v = w.f normal successor (w 6= null) ∧ φ[read(f, w)/v]

NPE successor (w = null) ∧ φ[fresh(NPE)/exc]
v.f = w normal successor (v 6= null) ∧ φ[update(f, v, w)/f]

NPE successor (v = null) ∧ φ[fresh(NPE)/exc]
v = w[i] normal successor (w 6= null) ∧ (i < read(length, w) ∧ i ≥ 0) ∧ φ[aread(a, w, i)/v]

NPE successor (w = null) ∧ φ[fresh(NPE)/exc]
OOB successor (w 6= null) ∧ (i < 0 ∨ i ≥ read(length, w)) ∧ φ[fresh(OOB)/exc]

w[i] = v normal successor (w 6= null) ∧ (i < read(length, w) ∧ i ≥ 0) ∧ φ[aupdate(a, w, i, v)/a]
NPE successor (w = null) ∧ φ[fresh(NPE)/exc]
OOB successor (w 6= null) ∧ (i < 0 ∨ i ≥ read(length, w)) ∧ φ[fresh(OOB)/exc]

v = new T φ[fresh(T)/v]
assume c φ ∧ c
v1 = (T) v2 CCE successor v2 6= null ∧ ¬(subType(typeOf(v2), T)) ∧ φ[fresh(CCE)/exc]

normal successor (v2 = null ∨ subType(typeOf(v2), T)) ∧ φ[v2/v1]
return v φ[null/ exc][v/ ret]
w = v.m() normal successor, callee meth meth = dispatch(typeOf(v), m()) ∧ v 6= null

NPE successor (v = null) ∧ φ[fresh(NPE)/exc]

Table 1. Specification of wp for representative Java statements. v, w and c variables represent symbolic registers in the input language, and
corresponding free variables in the logic; they can hold values of either primitive types (integers, reals) or pointers. exc is a special variable
that holds a pointer to an exception that has been raised but not caught, and ret represents the return value. fresh(T) returns a fresh value v
from the domain of pointers, such that typeOf(v) = T .

INTRAWP(CFG, postcondition)

1 var D : Statement → {Formula}
2 var worklist : stack of (Statement ,Formula)
3 ∀s ∈ Statement , D(s)← ∅
4 worklist ← {(Exit , postcondition)}
5 while worklist is not empty
6 do (s′, φpost)← get from worklist
7 for each s such that (s, s′) is an edge in CFG
8 do φpre ← merge(D(s), simplify(wp(s, φpost)))
9 if φpre 6= FALSE

10 then D(s)← D(s) ∪ φpre

11 add (s, φpre) to worklist
12 return D(Entry)

Figure 3. Computation of intraprocedural weakest pre-conditions.

at the normal exit of setYear, where x is some global variable.
The symbolic state representing this predicate and normal execu-
tion of setYear is exc = null ∧ read(year, x) = 2008 at
the exit of setYear. Traversing setYear backwards, the analy-
sis first encounters a return statement (not shown in code). Apply-
ing the wp transformer for the return statement substitutes null
for exc, giving read(year, x) = 2008. Applying the wp trans-
former for the putfield statement at line 3, we get this 6= null ∧
read(update(year, this, y), x) = 2008. Before propagating this
formula, the simplifier uses the axiom this 6= null to obtain the
simpler formula read(update(year, this, y), x) = 2008. If later
in the analysis, some path condition ensures that this = x, then
the simplifier will further simplify, based on the theory of arrays,
resulting in y = 2008.

3.2 Interprocedural Computation
We next describe interprocedural analysis assuming some oracle
has provided a call graph; Section 4 discusses our directed call
graph construction.

Our analysis handles procedure calls in a context-sensitive man-
ner, i.e., we only consider realizable interprocedural paths. Con-
text sensitivity is accomplished through a functional approach [29]
based on the Reps-Horwitz-Sagiv (RHS) tabulation algorithm [26],

enhanced to handle merge functions and combination of local and
non-local flows at return sites.

The analysis operates over an interprocedural control flow graph
(ICFG), consisting of CFGs linked via edges from call sites to and
from the Entry and Exit nodes in corresponding callee CFGs. A sin-
gle worklist holds the pending work (symbolic states to propagate),
i.e., the algorithm does not completely analyze a callee before con-
tinuing work in the caller. The global worklist effectively manages
instances of INTRAWP as co-routines. Analogously to the problem
with loops in INTRAWP, the procedure may not terminate in the
presence of recursion.

Propagation of a formula to and from a callee works as follows.
Suppose a formula φ reaches a call site w = v.m(), and assume for
there exists one possible callee A.m. (For multiple possible callees,
the procedure is simply iterated over each callee.) The analysis
first projects φ into A.m’s namespace—substituting formals for
actuals, and so on—and propagates the result φpost to A.m’s Exit.
This symbolic state then propagates through A.m via INTRAWP,
processing any further calls recursively. Whenever as a result of
this propagation, a formula φpre reaches A.m’s Entry, the solver

records a summary edge φpost
A.m()−−−−→ φpre , indicating that φpre

is a sufficient precondition to ensure reaching φpost at the Exit.
Note that for a single φpost , the solver may discover many sufficient
preconditions as it explores more paths. Finally, the solver applies
the summary at the call site by projecting φpre to the caller’s
namespace and conjoining it with wp(w = v.m()), described in
Table 1. Note that the analysis caches summary edges and reuses
them when identical formulae propagate to an Exit node [26].
Section 5 describes techniques to increase the effectiveness of this
reuse.

4. Directed Call Graph Construction
The previous section addressed interprocedural analysis, but it ne-
glected to address the central challenge discussed in Section 2.1:
What call graph should we use, when faced with high degrees of
polymorphism? This section presents a solution called directed call
graph construction, which uses feedback from symbolic analysis
to choose the call graph.

367

INTERWPDEMAND(ICFG, postcondition)

1 var F : {Formula}
2 F ← INTERWP(ICFG, postcondition)
3 F ′ ← {f ∈ F | f has no skolems ∧f is satisfiable }
4 if F ′ 6= ∅
5 then return F ′

6 else for each t ∈ F
7 do choose σmethod from t
8 choose m′ 6∈ targets(σmethod , ICFG) s.t.

t ∧ σmethod = m′ satisfiable
9 if no such m′

10 then continue
11 ICFGnew ← ICFG with m′ as

possible target at site(σmethod)
12 return INTERWPDEMAND(ICFGnew ,

postcondition)
� Failed to expand call graph

13 return ∅

Figure 4. Pseudocode for directed call graph construction.
site(σ) denotes the call site represented by a skolem constant,
targets(σ, ICFG) gives the set of methods in the current ICFG
for site(σ).

Directed construction requires analyzing the program in stages.
The first stage performs symbolic analysis while skipping over
all method calls. If this analysis finds a satisfiable precondition
through a path that does not have any method calls, the computation
terminates, having found a call-free feasible path that reaches the
goal. Otherwise, the algorithm expands the call graph, adding a
callee at some call site. The key insight is that constraints from
symbolic analysis guide the choice of call site and target.

We skip method calls by modifying the intraprocedural wp
computation for calls from Table 1. We introduce skolem constants—
essentially existentially quantified variables—to represent the con-
straints induced by a skipped method. For a call w = v.m(), we
use four types of fresh skolem constants:

1. σret represents the undetermined return value assigned to w.
2. σmethod represents the undetermined target of the method dis-

patch; constraints on this variable guide selection of a target
when expanding the call.

3. For each field f referenced in the post-condition of the call,
σf captures the undetermined side-effects of the method on f .
We introduce an uninterpreted function mod where mod(f, σf)
is an array term (in the theory of arrays; see Section 3.1) that
represents the updates to the relation f performed by the callee.
Java arrays are handled similarly (details elided).

4. σexc represents the undetermined exception value generated
during the execution of the method.

The modified wp for skipped calls follows; we show only the non-
exceptional case:

wp(w = v.m(), φ) = σmethod = dispatch(typeOf(v), m())
∧ v 6= null

∧ φ[σret/w][σexc/exc][mod(f, σf)/f](∗)

((*) for each field and array)

Given the modified wp, Figure 4 gives pseudocode for directed
call graph construction. We assume a procedure INTERWP that
computes the interprocedural symbolic analysis described in Sec-
tion 3.2: given an ICFG and post-condition, it returns a set of satisfi-
able preconditions at entry. The for loop from lines 6 to 12 attempts
to expand the call graph. Note the satisfiability check at line 8,
showing how symbolic constraints influence the choice of call tar-
gets. Finally, note that the analysis allows for expanding multiple

targets at a call site. This functionality is needed not only for calls
with multiple possible targets, but also for cases when a callee is
feasible according to constraints over skolem constants, but has be-
havior incompatible with the post-condition (e.g., if we need a non-
null return value and the expanded callee always returns null).

As in Figure 4, SNUGGLEBUG currently computes wp from
scratch in each analysis phase. Reuse of work from previous phases
could yield a large performance benefit, but bounded analysis and
skolem constants make such reuse non-trivial. We plan to investi-
gate reuse across phases further in future work.

4.1 Directed Call Graph Construction Example
Here we illustrate in detail how directed call graph construction
runs on the example of Figure 1, as was discussed at a high level in
Section 2.1. Recall that the goal is to find a concrete execution from
the beginning of entrypoint to line 38. We focus on the loop-free
backwards path π going through lines 37, 36, 35, 34, 33, 32, and
28. The starting formula that we propagate backwards from line 38
is simply true, i.e., the line was executed.

Phase 1 In the first phase, the ICFG contains methods
entrypoint(), checkValid() and Car.getYear().4 During
wp propagation along path π, the flow functions introduce skolem
constants for the method calls iterator(), hasNext(), and
next(), which do not appear in the initial ICFG and so are skipped:

• For next, σmethod,n, σexc,n, σret,n, and σyear,n

• For hasNext, σmethod,h, σexc,h, σret,h, and σyear,h

• For iterator, σmethod,i, σexc,i, σret,i, and σyear,i

We omit exc and the σexc variables from our discussion, as they are
not relevant in this example.

The formula that reaches the entry of entrypoint follows,
applying the appropriate flow functions from Table 1 for each
statement in the path:

σmethod,n = dispatch(typeOf(σret,i), next())
∧ σmethod,h = dispatch(typeOf(σret,i), hasNext())
∧ σmethod,i = dispatch(typeOf(c), iterator())
∧ read(mod(mod(mod(year, σyear,i), σyear,h), σyear,n), σret,n)

= 2009
∧ σret,h = true
∧ c 6= null ∧ σret,n 6= null ∧ σret,i 6= null
∧ subType(typeOf(σret,n), Car)
∧ subType(typeOf(σret,i), Iterator)
∧ subType(typeOf(c), NewCarList)

The read term arises from analyzing Car.getYear(), and the
nested mod terms compositionally indicate the possible side effects
of skipped methods on contents of the year field.

The preceding formula is satisfiable. However, it contains
skolem constants, which indicate that the path which generates
this formula skipped over some calls. Hence, INTERWPDEMAND
must expand the call graph, trying to find a path with no skipped
calls.

Suppose it selects to expand the call to iterator (line 32) next.
The type constraint subType(typeOf(c), NewCarList) indicates
that c must be of type NewCarList. (The constraint arose from
the instanceof check at line 28.) Hence, INTERWPDEMAND
concludes that σmethod,i = NewCarList.iterator(), expands the
call graph accordingly, and recurses.

Phase 2 INTERWPDEMAND performs symbolic analysis over
the expanded call graph. This time the following symbolic state

4 For expository purposes, we assume the expansion of the monomorphic
call to Car.getYear has already occurred.

368

reaches entry, indicating two skipped method calls on the path:
σmethod,n = dispatch(NewCarList$Itr, next())

∧ σmethod,h = dispatch(NewCarList$Itr, hasNext())
∧ read(mod(mod(year, σyear,h), σyear,n), σret,n) = 2009
∧ σret,h = true ∧ c 6= null ∧ σret,n 6= null
∧ subType(typeOf(σret,n), Car)
∧ subType(typeOf(c), NewCarList)

Note that since we analyze NewCarList.iterator, the con-
crete type NewCarList$Itr returned by the method now appears
in the dispatch constraints. Continuing, we successively add
targets next() and hasNext() in the ICFG, both drawn from
NewCarList$Itr.

Phases 3 and 4 After the next two phases, the following symbolic
state reaches entry:

c 6= null ∧ c.elems 6= null
∧ c.elems.length > 0 ∧ c.elems[0] 6= null
∧ c.elems[0].year 6= 2009 ∧ subType(typeOf(c), NewCarList)

(For clarity, we write x.foo for read(foo, x), where foo cannot
be an update or mod term.) Since this formula contains no skolem
constants, it represents a path with no skipped calls. A reader may
verify that this pre-condition at entrypoint would indeed lead the
execution to goal.

Note that the order in which calls are expanded can affect
performance significantly. For example, if our algorithm insisted on
expanding the next() call at line 34 of Figure 1 first, it may have
tried many possibilities before finding the method corresponding
to NewCarList. Our implementation employs simple heuristics to
determine a profitable order to expand calls, which works well in
our experience. Furthermore, our implementation may heuristically
expand more than one in a stage, especially calls to small methods
and single-dispatch calls.

5. Enhancing Summary Reuse
As discussed in Section 2.2, a naı̈ve approach to tabulation-based
interprocedural analysis yields poor reuse of procedure summaries.
Here we describe generalization, a technique that enables compu-
tation of generalized summaries entirely within a tabulation-based
analysis [26].

For generalization, we adapt two ideas to our interprocedural
wp framework. The first idea is to compute underapproximate sym-
bolic summaries [10]. Whereas usual functional IPA creates ta-
bles of how individual input facts map to output facts, a symbolic
summary applies to general classes of input facts.5 Symbolic sum-
maries can give better reuse because they are more generally appli-
cable.

The second idea uses the frame rule [27] to analyze callees with
smaller formulae. Suppose a formula φpost propagated to a call site
of m could be re-written as φI

post ∧ φD
post , in a way that no subterm

of φI
post is written by m. φI

post is the method independent part, and
φD

post is the method dependent part. Then, using the frame rule, for
a call to m we have wp(m, φI

post ∧φD
post) = φI

post ∧wp(m, φD
post).

The advantage of this decomposition is that a summary can be
created and looked up based only on φD

post , and thus applied more
generally.

Algorithm Our generalization algorithm rewrites a formula to a
form in which the above two ideas easily apply, by generalizing
terms referencing locations. Some conditional rewrite rules for
generalization are in Figure 5. The li variables are fresh generic
variables introduced to achieve a symbolic summary, and vret is

5 Note the distinction between tabulation-based summaries in a domain
of symbolic formulae and symbolic summaries in this general sense as
described in [10].

if vret occurs in φ :
φ → φ[li/vret] ∧ li = vret

if read(f, e) occurs in φ :
φ → φ[li/read(f, e)] ∧ lj = e ∧ li = read(f, lj)

if aread(a, e1, e2) occurs in φ :
φ → φ[li/aread(a, e1, e2)] ∧ lj = e1 ∧ lk = e2

∧ li = aread(a, lj , lk)

Figure 5. Conditional rewrite rules for generalization.

the variable assigned the return value of the call, if any.6 After
the rules are applied for all subterms possibly modified by the
callee, the method-dependent conjuncts for φD

post are the li = t
terms where the callee may modify t.7 Now, when the callee is
analyzed—using standard tabulation—the functional IPA creates a
generalized summary based only on φD

post .
For example, consider id(x) { return x; } with call site

q = id(p) and postcondition q > 5. The call modifies only q,
so generalization via the rewrite rules in Figure 5 yields l0 >
5 ∧ l0 = q. φD

post is l0 = q, or l0 = ret in the callee namespace,
and φI

post is l0 > 5. Tabulation of φD
post through id builds the

summary l0 = ret
id()−−→ l0 = x (a fully general summary for

id). Propagating back to the caller and applying the frame rule, we
get φpre is l0 = p ∧ l0 > 5, which simplifies via elimination to
p > 5, as expected.

Note that generalization entails a trade-off: fully general sum-
maries are easier to reuse, but potentially more difficult to compute,
because the generalization erases information that could be used to
prune infeasible paths while analyzing the callee. Our system inten-
tionally computes less general summaries than possible at times: it
does not generalize for possibly modified locations not seen in any
call site formula, and it does not generalize for post-conditions con-
straining the return value to be true, false, null, or non-null.

5.1 Generalization Example
Let us consider how generalization affects analysis of test in Fig-
ure 2; the goal again is to find a precondition leading to an excep-
tion at line 38 of Figure 1. For brevity, we elide various irrelevant
conjuncts throughout this discussion. As shown in Section 4, the
analysis discovers a pre-condition for entrypoint with the con-
junct c.elems[0].year 6= 2009, which before line 8 of Figure 2
becomes

l.elems[0].year 6= 2009 (1)
For the setYear call at line 7, since the callee may modify year,
generalization yields

l0 6= 2009 ∧ l0 = l1.year ∧ l1 = l.elems[0] (2)

We propagate the only possibly-modified conjunct, l0 = l1.year,
to the callee. Analysis of setYear yields the summary

l0 = l1.year
setYear()−−−−−→ l0 = read(update(year, this, y), l1)

(3)
which is fully general for setYear. Applying this summary edge
via the frame rule at line 7 (substituting actuals for formals) yields
l0 6= 2009∧ l0 = read(update(year, c2, 2009), l1)∧ l1 = l.elems[0]

(4)
which, after elimination of generic variables, further simplifies to

c2 6= l.elems[0] ∧ l.elems[0].year 6= 2009 (5)

6 We elide similar rules and handling of update and exception variables for
brevity.
7 Our implementation currently uses a simple type-based analysis to reason
about possibly modified locations. Sharper analysis is possible, but it would
be more expensive to compute. We will examine the tradeoff in future work.

369

(if c2 = l.elems[0], the formula becomes false).
Now the analysis reaches the set call at line 6. Since set

modifies the contents of an array (this.elems), generalization of
(5) yields

l0 = l1[l2] ∧ l1 = l.elems ∧ l2 = 0 ∧ c2 6= l0 ∧ l0.year 6= 2009
(6)

Analyzing set with the possibly modified conjunct l0 = l1[l2]
yields the summary edge

l0 = l1[l2]
set()−−−→ (7)

l0 = aread(aupdate(a, this .elems, i, c), l1, l2)

When applied at line 6 with i = 1 and l2 = 0 (different indices),
the aread term simplifies to l.elems[0]. Hence, the formula before
line 6 is (5), unmodified by the call. Analyzing line 5 shows c2 6=
l.elems[0], yielding formula (1) again before line 5.

We shall now see reuse of the above summary edges. Gener-
alization of (1) for the setYear call at line 4 again yields (2), so
clearly summary edge (3) can be reused for the call. Applying the
edge yields

read(update(year, c1, 2008), l.elems[0]) 6= 2009 (8)

before line 4. Generalizing (8) for the set call at line 3 yields

l0 = l1[l2] ∧ l1 = l.elems ∧ l2 = 0 (9)
∧ read(update(year, c1, 2008), l0) 6= 2009

Since the first conjunct is identical to that of (6), we can reuse
summary edge (7) for this call. In this case, we have i = l1 = 1 at
the caller, so the aread term from (7) simplifies to c1. Hence, we
have

read(update(year, c1, 2008), c1) 6= 2009

which simplifies to true. This means test always causes an ex-
ception at line 38 of Figure 1, as expected.

6. The Rest of the Story
As with any non-trivial system, many design decisions strongly
impact the real-world performance of SNUGGLEBUG. Here, we
briefly discuss other important aspects of the system.

Disjunctive formula propagation The cornerstone of our design
is to propagate minterms—the disjuncts of a formula in disjunctive
normal form (DNF)—independently during wp computation. This
separate propagation is possible due to the distributivity property
of wp, wp(s, φa ∨ φb) = wp(s, φa) ∨ wp(s, φb). This design
gives rise to the set of symbolic states D(s) at each program point
in Figure 3; in the implementation, each formula in the set is a
minterm.

Propagating minterms independently has several advantages.
First, it exposes redundant states that need not be explored sepa-
rately. For example, if D(s) contains distinct disjuncts A, B, and
C, we need only propagate A, B, and C independently, not dis-
junctive combinations like A∨B. For similar reasons, propagating
minterms improves reuse of summary edges during interprocedu-
ral propagation. Additionally, independent minterms tend to stay
small—even as there can be more of them— which makes sim-
plification less costly. Instead of repeatedly performing expensive
conversions to DNF, the implementation of each wp transformer
outputs a set of minterms.

On-the-fly simplification Many formulae develop internal con-
tradictions and become unsatisfiable during wp computation; such
formulae must be dropped from propagation early for good per-
formance. One way to detect contradictions is to use a full SMT
solver at each propagation step, but we found this to be too expen-
sive. SNUGGLEBUG, therefore, incorporates a custom, lightweight

(x ≤ y) ∧ (x 6= y)→ x < y

(x < y) ∧ (x 6= y)→ x < y

0 ≤ read(length, x)→ true

(typeOf(a) = T) ∧ (a = null)→ false

subType(a, c1) ∧ subType(a, c2) ∧ subType(c1, c2)→ subType(a, c1)

(typeOf(x) subtype T) ∧ (isFinal(T))→ typeOf(x) = T

read(f, fresh(T))→ δ(T)

Figure 6. Sample rewrite rules in our on-the-fly simplifier.
isFinal is a predicate which identifies final Java classes. δ(T)
denotes the default value for a type in a newly allocated field.

simplifier, serving the simplify() function in Figure 3. Our sim-
plifier relies on a difference constraints solver, a term rewriting en-
gine, and standard elimination techniques to compute solved forms
of constraint systems.

Figure 6 shows some of SNUGGLEBUG’s rewrite rules. Addi-
tional rules (not shown) simplify terms involving method dispatch,
arithmetic, theory of arrays, reflection, etc. Additionally, we canon-
icalize formulae via hash consing and fold constants during term
construction.

Loops, Recursion, and Search Heuristic The algorithm pre-
sented in Section 3.2 does not enforce fixed upper bounds on the
number of times loops and recursion are analyzed; without such
bounds, the algorithm may not terminate. SNUGGLEBUG instead
works with a generous but fixed budget on the number wp steps for
each goal, aborting thereafter.

For typical SNUGGLEBUG applications, we just need one sat-
isfactory precondition to reach the program entry. The selection
of which item in the worklist to process next—i.e. the search
strategy—has a big impact on whether the budget is used well. In
fact, it can be shown that in the presence of common forms of loops,
random selection of items from the worklist can lead to pathologi-
cal behavior, squandering away the budget. As observed in work on
symbolic execution [31, 9]—and well-understood for graph search
algorithms in general—an informed search heuristic is key to per-
formance for such an approach.

Our current search heuristic prioritizes paths with less looping
or call depth, searching for a feasible path in a quasi breadth-
first manner. A secondary heuristic prioritizes program points that
fewer facts have reached, aiming to spread the search effort more
equitably across the program. A rigorous study of search heuristics
in SNUGGLEBUG is a topic for future work.

Constraining Search with Overapproximation As noted in other
work [19], abstract interpretation can aid symbolic analysis by
cheaply computing overapproximate information. We use an ad hoc
pre-pass of abstract interpretation to determine certain invariants
such as constants, known array lengths, and non-nullness. The
symbolic analysis uses these invariants to simplify formulae and
prune infeasible paths.

More importantly, overapproximate analysis will be a key tool
necessary to synthesize loop invariants, enabling better handling of
loops; this is a topic of future work for us.

Other details We implemented our algorithm using the T.J. Wat-
son Libraries for Analysis (WALA) [32]. The interprocedural anal-
ysis is built on WALA’s tuned tabulation solver [26], aiding scal-
ability. The implementation handles all features of (sequential)
JVM bytecode semantics, including intra- and inter-procedural ex-
ceptional control flow, string constants, and reflection via class ob-
jects manipulated with ldc. We additionally handle many native

370

Benchmark Version Source kLOC
ant 1.7.0 88

antlr 2.7.2 38
batik 1.6 157
tomcat 6.0.16 163

eclipse.ui 3.3.1 305

Table 3. Information about our benchmarks, popular open-source
Java programs. eclipse.ui consists of the plugins from Eclipse
in the org.eclipse.ui.* namespace.

methods from the standard libraries with models, including many
features of reflection.

Our analysis does not reason about concurrency. The implemen-
tation does not model exactly the semantics of some bitwise opera-
tors, floating point arithmetic, and integer overflow issues. For any
native method m in a client program, we assume that (1) m cannot
throw an exception, (2) m can return an arbitrary value, and (3) m
does not modify the heap.

When SNUGGLEBUG pushes a symbolic state to an entrypoint,
it uses the SMT solver CVC3 [6] as a final check of satisfiability. In
practice, most of the satisfiability queries are decidable. However,
our logic can encode nonlinear constraints over integers, which are
undecidable. The solver may return “unknown” in such cases; the
tool interprets this result as “unsat” and continues searching.

7. Evaluation
We evaluated our algorithm by using it to validate null dereference
warnings output by FindBugs [21]. As noted in Section 1, bug
validation is just one possible use of SNUGGLEBUG; we chose this
client for the evaluation to obtain an unbiased source of goals for
our analysis. Also, note that SNUGGLEBUG-style sound analysis
may not present the best tradeoffs for bug validation; a real-world
tool may choose to trade off some soundness (e.g., by assuming
some methods do not throw exceptions) for better performance.

We consider a report of a possible null-pointer exception (NPE)
at program point p validated if our analysis discovers a precondi-
tion φ for the closest public method m such that if m is invoked
with parameters satisfying φ, p must throw an NPE. The emphasis
on public methods is deliberate: a potential problem in a private
method may prove infeasible if all callers of the private method es-
tablish an appropriate invariant. Hence we try to establish interpro-
cedural feasibility from a public method, which makes for a more
useful client, but also for much more challenging analysis.

Note, that our validation procedure does not verify that a state
satisfying the precondition φ can actually be constructed via the
public APIs of the corresponding classes. Other work has addressed
test generation respecting such invariants [11], but such issues fall
outside the scope of this paper.

We ran FindBugs v.1.3.4 on a number of open-source Java
programs, and selected for this experiment those in which Find-
Bugs reported potential null pointer bugs, shown in Table 3. To-
gether, these benchmarks comprise more than 750,000 lines of non-
comment non-whitespace code, with millions of lines of dependent
libraries.

To measure the effectiveness of our techniques, we ran the
following five analysis configurations:

Production All described techniques enabled.
NoGeneralization Generalization (Sec. 5) disabled.
NoSimplification On-the-fly simplification (Sec. 6) disabled.
NoFeedback-CHA Analysis over a pre-computed call graph

based on class hierarchy analysis instead of directed call graph
construction (Sec. 4)

Configuration Validated Not Avg. Time
Validated Per Goal (s)

Production 29 0 93
NoGeneralization 27 2 193
NoSimplification 11 18 1122

NoFeedback-CHA 12 17 1057
NoFeedback-Andersen 8 21 1331

Table 4. Comparison of results across five configurations.

NoFeedback-Andersen Analysis over a pre-computed call graph
based on Andersen’s analysis [2] instead of directed call graph
construction (Sec. 4)

All experiments ran on a dual-processor IBM ThinkCentre run-
ning Windows XP, with two 3GHz Pentium 4 processors and 2GB
of RAM. Our analysis infrastructure (described in Section 6) ran
on the Sun JDK 1.6 with 1GB of max heap space.

7.1 Results
Does the analysis work for large programs? From the 750,000
lines of source code considered, FindBugs reported findings for 56
possible NPE bugs in the considered categories. We examined each
finding by hand and with SNUGGLEBUG. SNUGGLEBUG success-
fully validated 29 of the 56 findings (52%).

Of the remaining 27 findings, we concluded based on manual
inspection that 18 are infeasible, i.e., there is no feasible path from
a public entrypoint that results in the NPE. Infeasibility in all of
these cases was due to some invariant enforced interprocedurally.

The remaining 9 findings represent cases that we believe to
be feasible, but SNUGGLEBUG could not find a valid precondition
within the allotted time (30 minutes). Overall, SNUGGLEBUG suc-
ceeded in finding a precondition for 29 of 38 feasible cases (76%).
SNUGGLEBUG failed to validate a few cases due to non-linear arith-
metic beyond the reach of the SMT solver, inability to reason about
type conversions between integers and unsigned ints and floats, and
an incomplete model of native methods related to the Java security
model. The remaining cases presented a bigger search space than
SNUGGLEBUG could handle in the time limit, often requiring anal-
ysis of complex XML parsing libraries.

The remainder of this section evaluates particular techniques
presented in this paper. We restrict our attention to the 29 validated
findings for the remainder of this section, since the other cases time
out on all configurations.

Table 4 compares results across the five configurations. The sec-
ond column shows the number of bugs validated by each configu-
ration; the remaining tasks timed out with the 30 minute limit. The
last column reports the arithmetic mean of running time for each
task. This time represents the end-to-end wall-clock time, includ-
ing call graph construction, refinement, and calls to the SMT solver.
When tasks time out, we assign a time of 30 minutes; so when time-
outs occur, the reported time is a lower bound.

Figure 7 presents more details on the distribution of times for
the 29 tasks considered. The figure shows for each configuration,
the percentage of tasks completed as a function of time. The results
show that over half the tasks are “easy”, in that Production validates
the goal in one minute or less. The Production configuration vali-
dated each of the 29 goals in 13 minutes or less. NoSimplification,
NoFeedback-CHA and NoFeedback-Andersen seem effective only
for some “easy” tasks; these configurations discover no precondi-
tions after three minutes of analysis.

How effective is directed call graph construction? The last two
rows of Table 4 consider results with pre-computed call graphs
instead of directed call graph construction. The NoFeedback-CHA

371

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0 1 2 4 5 6 7 8 10 11 12 13 14 16 17 18 19 20 22 23 24 25 26 28 29

Time (minutes)

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f B
ug

s
Va

lid
at

ed

 Production

NoGeneralization

NoFeedback-CHA

NoSimplification

NoFeedback-Andersen

Figure 7. Comparison of running times across configurations.

configuration builds a call graph with class hierarchy analysis; this
call graph is conservative but imprecise.

The NoFeedback-Andersen configuration builds a call graph
on-the-fly with context-insensitive Andersen’s pointer analysis [2],
as implemented in WALA [32]. The WALA implementation han-
dles many difficult language features, including reflection patterns
and models of many native methods. We initialize points-to sets
for parameters to entrypoints with objects of all possible parame-
ter subtypes non-deterministically, which may still be incomplete
due to missing subtypes for parameter fields. With WALA’s rel-
atively conservative treatment of reflection, call graph construc-
tion for large programs on the Java 1.6 libraries would exceed the
30 minute timeout; we limited the call graph construction to 25K
nodes, which ran to completion for all cases in a couple of minutes.

Table 4 shows that both configurations with pre-computed call
graphs are ineffective, failing to validate most of the tasks within
the time limit and degrading performance by at least a factor of ten.
As just discussed, our best-effort Andersen call graph is potentially
unsound due to difficulties with pointer analysis and library entry-
points; this accounts for the 4 cases where NoFeedback-Andersen
failed to validate a bug found by NoFeedback-CHA.

Figure 8 presents data illustrating the size of the program subset
explored while validating the call graph. The figure shows that with
directed call graph construction, roughly 50% of the tasks explored
a call graph of 10 nodes or less. The largest expanded call graph
contained 93 nodes.

For the pre-computed call graphs, we define an Effective Call
Graph as follows. For each task, let d be the maximum depth
of the expanded call graph built by the Production configuration.
Given a pre-computed call graph G and an entrypoint e, we define
the Effective Call Graph to consist of those nodes in G which
are reachable from e via breadth-first-search (BFS) up to depth d.
Assuming an oracle provided the necessary depth d, the Effective
Call Graph is the smallest known to be sufficient for the task.

Figure 8 shows that the effective call graph using Andersen’s
analysis is typically a factor of ten larger than the one built by
directed construction, and the class-hierarchy call graph is at least
a factor of ten larger still. We conclude that directed call graph
construction is crucial.

How effective is our summary-based reuse? We measured sum-
mary edge reuse as follows: each time a fact propagates interpro-
cedurally to a callee, we record whether or not a summary edge
already exists; we call the percentage of times a summary edge
already exists the reuse factor. Across all runs, the Production con-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000
Effective Call Graph Size (Nodes)

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f T
es

t C
as

es

Production

NoFeedback-CHA

NoFeedback-Andersen

Figure 8. Effective call graph sizes.

1 public void setPrefix(String prefix) throws DOMException {
2 if (this.isReadonly()) {
3 throw createDOMException(DOMException.NO_MOD_ALLOWED_ERR,
4 "readonly.node",
5 ...);
6 }
7 String uri = this.getNamespaceURI();
8 if (uri == null) {
9 throw createDOMException(DOMException.NAMESPACE_ERR,

10 "namespace",
11 ...);
12 }
13 String name = this.getLocalName();
14 if (prefix == null) {
15 this.setNodeName(name);
16 }
17 if (!prefix.equals("") &&
18 !DOMUtilities.isValidName(prefix)) {

Figure 9. Excerpt from batik-0.6, AbstractNode.java

figuration saw a reuse factor of 87%, while the NoGeneralization
configuration saw a reuse factor of 5.3%. Table 4 shows that gener-
alization improves performance by more than a factor of two (93s
vs. 193s, on average). We conclude that tabulation-based modular
analysis with generalization is effective for interprocedural propa-
gation of weakest preconditions.

Note that although our reuse factor is already 87%, it is possible
that increasing reuse further by a small amount could have a large
impact on bottom-line performance, e.g., if repeated analysis of
large methods were avoided. Also, there could be further large
performance benefits from reusing work across phases of directed
call graph construction, as discussed in Section 4.

What is the impact of on-the-fly simplification? Table 4 reports
that without on-the-fly simplification, performance degrades by at
least a factor of 10, and 18 of the 29 tasks fail to finish within
30 minutes. As with pre-computed call graphs, Figure 7 suggests
that NoSimplification is effective only for “easy” tasks, making no
further progress after the first two minutes of analysis.

7.2 Examples from Experiments
In this section, we offer selected short code excerpts from the ex-
perimental study, in order to illustrate how the concepts discussed
in this paper arise in real-world examples.

Example from Apache Batik Figure 9 shows an excerpt from
batik-0.6, an instance method from class AbstractNode. The

372

1 public String[] findManagedBeans(String group) {
2 ArrayList results = new ArrayList();
3 Iterator items = descriptors.values().iterator();
4 while (items.hasNext()) {
5 ManagedBean item = (ManagedBean) items.next();
6 if ((group == null) && (item.getGroup() == null)) {
7 results.add(item.getName());
8 } else if (group.equals(item.getGroup())) {
9 results.add(item.getName());

10 }
11 }
12 String values[] = new String[results.size()];
13 return ((String[]) results.toArray(values));
14 }

Figure 10. Excerpt from tomcat-6.0.16, Registry.java

goal is to reach line 17 with prefix equal to null. It is easy to see
that prefix must be null at entry to reach this goal. However,
a sound analysis must find a precondition that also satisfies the
following conditions:

1. The virtual call to isReadonly() (line 2) must return false to
proceed beyond the first conditional.

2. The virtual call to getNamespaceURI() (line 7) must return a
non-null value to continue past the second conditional.

3. The virtual calls to getLocalName() (line 13) and
setNodeName() (line 15) must then return without throwing
an exception to continue to the goal.

4. The type of this must be such that the concrete methods to
which the above calls dispatch together exhibit the required
behavior.

The batik source code includes 85 concrete subtypes of
AbstractNode, with dozens of implementations of the virtual
methods just described. Only a few subtypes can be instantiated
as this and satisfy these criteria. It is difficult for a human to ex-
amine all 85 types and reason about whether any such type satisfies
these criteria. 8

Our analysis with pre-built call graphs failed to find a satisfi-
able precondition, since the conservatively computed call graphs
expose a search space that is too big. However, the directed call
graph construction succeeded in narrowing the search for the ap-
propriate subtype of AbstractNode, relying on type and dispatch
constraints handled by the theorem prover to rule out types asso-
ciated with (dead-end) method implementations explored in early
iterations.

Example from Apache Tomcat Figure 10 shows an example from
Apache Tomcat, similar in spirit to the motivating example of
Figure 1. The goal is to find a precondition such that execution
reaches line 8 with group == null.

Clearly group must be null at method entry to reach the goal.
However, other conditions also must be satisfied:

1. The descriptors field (of declared type HashMap) of this
must be non-null, and descriptors.values().iterator()
must return a non-null, non-empty Iterator.

2. The items.next() call must return a non-null item, and
item.getGroup() cannot return null.

Note that it is impossible for a human to determine whether
this condition is feasible from inspecting just this code snippet; one
must also check that the conditions on callees (such as getGroup)
are satisfiable.

8 In fact, when first looking at this example, we hypothesized that the
condition was infeasible.

Analysis of this example requires the same type of reasoning as
previously discussed for Figure 1. Through several iterations, the
analysis determines appropriate Set and Iterator implementa-
tions that are consistent with these conditions, and verifies that that
iterator can return a ManagedBean such that item.getGroup()
!= null.

8. Related Work
Backward symbolic analysis ESC/Java [15] pioneered practi-
cal weakest-precondition analysis for Java. SNUGGLEBUG follows
ESC in performing abstraction-free, underapproximate backwards
symbolic reasoning, checking satisfiability with a theorem prover.
ESC generated verification conditions of worst-case quadratic size,
pushing exponential search factors into the theorem prover. In con-
trast, SNUGGLEBUG manages the exponential search space di-
rectly, allowing for path pruning via inexpensive on-the-fly sim-
plification (Sec. 6).

ESC employed only intraprocedural analysis, relying on user
annotations and specifications to reason across procedure calls.
To reduce the annotation burden, the ESC/Java team developed
Houdini [14], a tool to infer specifications for unannotated pro-
grams. Houdini generated a large set of candidate specifications
for each procedure and checked them using ESC/Java. In contrast,
SNUGGLEBUG follows a more direct approach to generating pro-
cedure summaries driven by functional-style IPA [29].

Boogie [5] is a verifier for Spec# in the tradition of ESC. The
Boogie program representation includes modifies specifications for
procedures, which SNUGGLEBUG could exploit to improve separa-
tion. Boogie also employs abstract interpretation to synthesize loop
invariants, also potentially beneficial to SNUGGLEBUG.

Like SNUGGLEBUG, the PSE tool [24] performed backwards
interprocedural symbolic analysis using functional-style IPA, tar-
geting bug validation. Unlike SNUGGLEBUG, PSE did not provide
a sound underapproximate analysis, since the tool did not repre-
sent the entire path condition and sometimes fell back to abstract
representations of the heap.

Preconditions generated by symbolic analysis to a library entry-
point may still be infeasible, ruled out by other program invari-
ants. Addressing this problem, the DSD-Crasher [11] tool com-
bines ESC-Java with a tool to generate concrete tests as counterex-
amples. Moreover, it uses a dynamic invariant detector to constrain
inputs to obey likely invariants, ruling out some spurious bug re-
ports. Handling this invariant issue in SNUGGLEBUG remains for
future work.

Program Testing via Symbolic Execution Program testing gen-
erally targets high coverage, and not specific goal states. Never-
theless, much work that enhances program testing using symbolic
execution has technical connections to SNUGGLEBUG.

PREfix [8] was among the first systems to show fully au-
tomatic interprocedural symbolic execution on real-world pro-
grams. PREfix relied on a pre-built call graph and processed pro-
cedures bottom-up, building underapproximate procedure sum-
maries. These summaries may not represent all possible input
environments to a function, so PREfix falls back to conservative
estimates of behavior as needed. In contrast, SNUGGLEBUG com-
putes partial summaries as needed on demand.

Saturn [33] performs an interprocedural bit-precise symbolic
execution for C programs, and it has been demonstrated to find
bugs in large systems programs. Saturn employs property-specific
function summaries for modular interprocedural analysis, but the
summaries do not generally support full interprocedural path sen-
sitive analysis. In contrast, SNUGGLEBUG builds fully automatic
path-sensitive symbolic summaries on demand, exploiting general-
ization to enhance reuse.

373

Calysto [3] introduced “structural” abstraction, a staged sym-
bolic execution that initially skips over many calls and inlines them
later if they appear on feasible paths. This work represents the clos-
est precursor to our directed call graph construction. Calysto relied
on a pre-computed call graph for handling indirect calls; in contrast,
our directed call graph construction exploits constraints discovered
during symbolic analysis and requires no whole-program pointer
analysis. Calysto did not perform summary-based interprocedural
analysis, but instead inlined callee representations.

Systems such as DART [17] and CUTE [28] use symbolic anal-
ysis in concert with concrete execution to improve coverage of
random testing. To address scalability problems with the DART-
like approach, the SMART system [16] incorporated function sum-
maries. Follow-on work [1] described a demand-driven computa-
tion of summary edges, similar in spirit to the tabulation algo-
rithm [26] we use. This work [1] also described the use of unin-
terpreted functions to skip processing of callees.

KLEE [9] and Java PathFinder [31] perform interprocedural
symbolic execution, each with novel techniques for aggressive
on-the-fly simplification and path pruning, optimized representa-
tions of the symbolic search space, and informed search heuristics.
SNUGGLEBUG builds on this approach, applying analogous tech-
niques to backward symbolic analysis of Java.

Jackson and Vaziri [22] translate a program into constraints
in the Alloy specification language, finitizing the problem via
bounded unrolling of loops, method inlining, and bounding the
heap. Miniatur [13] extended this work, using program slicing to
reduce the search space. Demand-driven backwards analysis obvi-
ates the need for such slicing. Work by Taghdiri [30] extended this
approach to avoid inlining callees, instead inferring partial method
specifications via abstraction refinement.

Abstraction-based approaches Counter-example guided abstrac-
tion refinement (CEGAR) systems [4, 20] perform abstract inter-
pretation over a predicate abstraction and refine predicates based on
feedback from a precise symbolic execution. These systems could
be used to concretize paths to errors, such as the experiment we
considered. Directed call graph construction can be viewed as a
form of CEGAR.

Synergy [19] presented an algorithm to combine CEGAR anal-
ysis with DART-like underapproximate search. Dash [7] extended
Synergy to the interprocedural setting and introduced an algorithm
to refine pointer abstractions without whole-program pointer anal-
ysis. In general, CEGAR approaches and SNUGGLEBUG are com-
plementary: SNUGGLEBUG may benefit from a feedback loop with
abstraction refinement, and CEGAR scenarios could benefit from
directed call graph construction.

9. Conclusion
We have presented SNUGGLEBUG, a new approach to demand-
driven interprocedural symbolic analysis. We presented sev-
eral novel techniques to improve scalability, including directed
call graph construction, generalization to improve reuse, and
lightweight domain-specific on-the-fly simplification and path
pruning. Results for bug validation tasks on large Java libraries
indicate that the techniques work in concert to improve perfor-
mance significantly, bringing practical tools based on this technol-
ogy within reach.

References
[1] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven composi-

tional symbolic execution. In TACAS, 2008.
[2] L. O. Andersen. Program Analysis and Specialization for the C

Programming Language. PhD thesis, University of Copenhagen,
DIKU, 1994.

[3] D. Babic and A. J. Hu. Calysto: scalable and precise extended static
checking. In ICSE, 2008.

[4] T. Ball and S. K. Rajamani. The SLAM project: debugging system
software via static analysis. In POPL, 2002.

[5] M. Barnett, B. E. Chang, R. Deline, B. Jacobs, and K. R. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
FMCO, 2005.

[6] C. Barrett and C. Tinelli. CVC3. In CAV, 2007.
[7] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons.

Proofs from tests. In ISSTA, 2008.
[8] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer

for finding dynamic programming errors. Softw. Pract. Exper.,
30(7):775–802, 2000.

[9] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
OSDI, 2008.

[10] P. Cousot and R. Cousot. Modular static program analysis. In CC,
2002.

[11] C. Csallner, Y. Smaragdakis, and T. Xie. Dsd-crasher: A hybrid
analysis tool for bug finding. ACM TOSEM, 17(2):1–37, 2008.

[12] E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1997.

[13] J. Dolby, M. Vaziri, and F. Tip. Finding bugs efficiently with a SAT
solver. In FSE, 2007.

[14] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for
ESC/Java. In FME, 2001.

[15] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In PLDI, 2002.

[16] P. Godefroid. Compositional dynamic test generation. In POPL,
2007.

[17] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In PLDI, 2005.

[18] D. Grove and C. Chambers. A framework for call graph construction
algorithms. ACM Trans. Program. Lang. Syst., 23(6):685–746, 2001.

[19] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K.
Rajamani. SYNERGY: a new algorithm for property checking. In
FSE, 2006.

[20] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In POPL, 2002.

[21] D. Hovemeyer and W. Pugh. Finding bugs is easy. In OOPSLA
Companion, 2004.

[22] D. Jackson and M. Vaziri. Finding bugs with a constraint solver. In
ISSTA, 2000.

[23] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

[24] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang. PSE:
explaining program failures via postmortem static analysis. FSE,
2004.

[25] J. McCarthy. A basis for a mathematical theory of computation.
Technical report, MIT, Cambridge, MA, USA, 1962.

[26] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL, 1995.

[27] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, 2002.

[28] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing
engine for C. In FSE, 2005.

[29] M. Sharir and A. Pnueli. Two approaches to interprocedural data
flow analysis, chapter 7, pages 189–233. Prentice-Hall, 1981.

[30] M. Taghdiri. Inferring specifications to detect errors in code.
Automated Software Engineering, International Conference on,
0:144–153, 2004.

[31] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test input generation
with java pathfinder. In ISSTA, 2004.

[32] T.J. Watson Libraries for Analysis (WALA). http://wala.sf.net.
[33] Y. Xie and A. Aiken. Saturn: A scalable framework for error detection

using boolean satisfiability. ACM TOPLAS, 29(3):16, 2007.

374

