
1 

Refinement-Based Context-Sensitive 
Points-To Analysis for Java 

Manu Sridharan, Rastislav Bodík 
UC Berkeley 

PLDI 2006 



2 

What Does Refinement Buy You? 
Increased scalability: enable new clients 

•  Memory: orders of magnitude savings 
•  Time: answer for a variable comes back in 1 second 
•   ) Suitable for IDE 

Precision: 

Cast Safety Client 



3 

Approach: Focus on the Client 

Demand-driven: only do requested work 
Client-driven refinement: stop when 

client satisfied 
Example: 

•  client asks: “can x point to o?”   

•  we refine until we answer NO (the good 
answer) or we time out 



4 

Context-Sensitive Analysis Costly 

Context-sensitive analysis (def): 
•  Compute result as if all calls inlined 

•  But, collapse recursive methods 

Exponential blowup (code growth) 



5 

Why Not Existing Technique? 

Most analyses approximate same way in all code 
•  E.g., k-CFA 

•  Precision lost, esp. for data structures 

Our analysis focuses precision where it matters 
•  Fully precise in the limit 

•  Only small amount of code analyzed precisely 

•  First refinement algorithm for Java 



6 

Points-To Analysis Overview 

Compute objects each variable can point to 
For each var x, points-to set pt(x) 

Model objects with abstract locations 
1: x = new Foo() yields pt(x) = { o1 } 

Flow-insensitive: statements in any order 



7 

Points-To Analysis as  
  CFL-Reachability 

1) Assignments 
x = new Obj(); // o1 
y = new Obj(); // o2 
z = x; o1 x 

y 

z 

o2 

a 

b 

pid retid d c 

(1 )1 

(2 )2 

[f 

[g 

]f 

2) Method calls 
id(p) { return p; }  
a = id(x); 
b = id(y); 

3) Heap accesses 
c.f = x; 
c.g = y; 
d = c.f; pt(x) = { o | o flowsTo x } 

flowsTo: balanced call and field parens flowsTo: balanced call parens flowsTo: path exists 



8 

Summary of Formulation 

Graph represents program 

Compute reachability with two filters 
•  Language of balanced call parens 

•  Language of balanced field parens 



9 

Single path problem 

Problem: show path is unbalanced 
Goal: reduce number of visited edges 
Insight: enough to find one unbalanced paren 

o x t0 t1 t2 [f 

(1 )1 

[h 

[f (1 )1 [h 

t5 
)5 

t6 

(7 

t8 

t9 t7 
… … 

… 

]j [p )8 

o2 t10 

t11 

t12 ]g 
]k 



10 

Approximation via Match Edges 

Match edges connect matched field parens 
•  From source of open to sink of close 

•  Initially, all pairs connected 

Use match edges to skip subpaths 

o t3 t0 t1 t2 
[f [g [h ]h 

t4 x 
]j ]f 

[f [g [h ]h ]j ]f 



11 

Refining the Approximation 

Refine by removing some match edges 
•  Exposes more of original path for checking 

Soundness:  Traverse match edge )  
   assume field parens balanced on skipped path 

Remove where unbalanced parens expected 
•  Explore deeper levels of pointer indirection 

o t3 t0 t1 
[f [g 

t4 x 
]j ]f 

[f [g [h ]h ]j ]f 



12 

Refinement With Both Languages 

o t5 t0 t1 t2 
(1 )1 

[g ]g 
t6 x ]f 

)3 t3 t4 
[f 

(2 

Match edges enable approximation of calls 
•  Only can check calls on match-free subpaths 

Match edge removal ) more call checking  
•  Key point: refine heap and calls together  

Calls: (1 )1 (2 )3 

Fields: [f [g ]g ]f 



13 

Evaluation 



14 

Experimental Configuration 

Implemented in Soot framework 

Tested on large benchmarks x 2 clients 
•  SPECjvm98, Dacapo suite 

•  Downcast checking, factory method props 

Refine context-insensitive result 

Timeout for long-running queries 



15 

Precision: Cast Checking 



16 

Scalability: Time and Memory 

Average query time less than 1 second 
•  Interactive performance (for IDE) 

•  At most 13 minutes for casts,  
    4 minutes for factory client 

Very low memory usage: at most 35MB 
•  Of this, 30MB for context-insensitive result 

•  Compare with >2GB for 1-ObjSens analysis 



17 

Demand-Driven vs. Exhaustive 

Demand advantage: no caching required 
•  Hence, low memory overhead 

•  No engineering of efficient sets 

•  Good for changing code; just re-compute 

Demand advantage: faster for many clients 
•  Often only care about some variables 

Demand disadvantage: slower querying all vars 
•  At most 90 minutes for all app. vars 

•  But, still good precision, memory 



18 

Conclusions 

Novel refinement-based analysis 
•  More precise for tested clients 

•  Interactive performance for queries 

•  Low memory: could scale even more 

•  Relatively easy to implement 

Insight: refine heap and calls together 
•  Useful for other balanced-paren analyses? 


