
164

Optimization of Swift Protocols

RAJKISHORE BARIK, Uber Technologies Inc., USA
MANU SRIDHARAN, University of California, Riverside, USA

MURALI KRISHNA RAMANATHAN, Uber Technologies Inc., USA
MILIND CHABBI, Uber Technologies Inc., USA

Swift, an increasingly-popular programming language, advocates the use of protocols, which define a set of
required methods and properties for conforming types. Protocols are commonly used in Swift programs for
abstracting away implementation details; e.g., in a large industrial app from Uber, they are heavily used to
enable mock objects for unit testing. Unfortunately, heavy use of protocols can result in significant performance
overhead. Beyond the dynamic dispatch often associated with such a feature, Swift allows for both value and
reference types to conform to a protocol, leading to significant boxing and unboxing overheads.

In this paper, we describe three new optimizations and transformations to reduce the overhead of Swift
protocols. Within a procedure, we define LocalVar, a dataflow analysis and transformation to remove both
dynamic dispatch and boxing overheads. We also describe Param, which optimizes the case of protocol-typed
method parameters using specialization. Finally, we describe SoleType, a transformation that injects casts
when a global analysis (like type-hierarchy analysis) discovers some protocol variable must have some concrete
type. We also describe how these optimizations work fruitfully together and with existing Swift optimizations
to deliver further speedups.

We perform elaborate experimentation and demonstrate that our optimizations deliver an average 1.56×
speedup on a suite of Swift benchmarks that use protocols. Further, we applied the optimizations to a production
iOS Swift application from Uber used by millions of customers daily. For a set of performance spans defined
by the developers of the application, the optimized version showed speedups ranging from 6.9% to 55.49%. A
version of our optimizations has been accepted as part of the official Swift compiler distribution.
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1 INTRODUCTION

Swift is a relatively new compiled programming language that was initially developed for program-
ming the iOS and Mac OS X platforms. Since its release, Swift has been gaining in popularity, and
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it now has ports for multiple platforms and a version with built-in support for the TensorFlow ma-
chine learning framework.1 Positive features include strong static typing, error handling constructs
to prevent crashes after deployment, and automatic memory management via reference count-
ing [SwiftLangDoc 2019]. One of the popular paradigms associated with Swift is protocol-oriented
programming [Hoffman 2019], where the design favors composition over inheritance [Gamma
et al. 1995]. Unlike inheritance-heavy systems where classes at the top of the hierarchy become
monolithic by including unrelated functionalities, the composable nature of protocols enables these
large monolithic classes to be broken into smaller components. Further, the implementation(s) of
the protocols can exist independent to that of their declaration.

At Uber Technologies Inc. (Uber), protocols have been used widely, resulting in more than 9000
protocols in a Swift mobile app code base of 1.45 MLoC (million lines of code). Interestingly, the
protocols have primarily been used to facilitate testing. In this scenario a protocol declaration
is associated with two implementations, one for the actual features of the app, and one mock
implementation for testing purposes. The test code is protected under a compile-time macro, so
when the production version of app is created, the mocking implementations are eliminated entirely,
leaving only the feature-relevant implementation in the shipped binary. This ensures that testing-
related code is not shipped and also the binary conforms to the over-the-air (OTA) size restrictions
imposed by Apple’s app store [AppleOTA 2019].
Extensive use of protocols introduces three types of performance overheads. First, a method

invocation through a variable of protocol type requires indirection through a dispatch table, known
in Swift as a protocol witness table. Such calls are analogous, e.g., to an interface call in Java [Ishizaki
et al. 2000]. These indirect calls are costly at runtime and hinder other crucial optimizations like
inlining. Second, the Swift type system distinguishes between value and reference types, and it also
allows both value and reference types to implement a single protocol. The Swift compiler generates
code for such cases via boxing and unboxing operations, enabling methods to operate generically
over such protocols. These operations introduce both runtime overhead and some amount of code
bloat. Finally, for each protocol, Swift generates global data structures like protocol witness tables,
and as the number of protocols increase, the presence of these tables can impact app startup time.

In this paper, we describe the design and implementation of three compiler optimizations designed
to eliminate much of this protocol-based overhead for common cases.2 The optimizations stem
from the well-known insight that if a protocol-typed variable can only have a single concrete type
at runtime, the code can be rewritten to operate directly on that concrete type. The Swift compiler
already contains optimizations that remove protocol-based overheads based on this insight for
simple, local cases. Our techniques leverage more sophisticated intra-procedural value flow analysis
and global analysis to optimize many more cases.

Within a procedure, when local variables are declared as protocol types but have a single concrete
type, we eliminate the dispatch and boxing overheads for the protocol with an optimization
named LocalVar. We employ a data flow analysis that tracks when there is an available variable
that holds the contents of a boxed protocol, or łexistential containerž (see Section 2 for further
background), and then employ a transformation that replaces uses of a container with that variable.
This transformation eliminates both dispatch and boxing overheads from the protocol. The analysis
precisely handles pointer-based operations used in boxing, and the transformation can introduce

1https://www.tensorflow.org/swift
2We also investigated optimizing via source-to-source transformation, simply replacing references to a protocol with the
concrete implementation name for simple cases. But, several language features of Swift severely limited the applicability of
this approach. For the large mobile application from Uber, we found several problematic cases, such as usage of the static
meta-type of a protocol via .self and differences in access visibility between the protocol and its implementation.
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new variables to enable further optimization in the presence of conditional updates (details in
Section 4.2).
For cases where a callee has a protocol parameter but a call site passes a value with a specific

concrete type, we employ a transformation Param to enable optimization. Such cases could be
handled via inlining, but excessive inlining can lead to code bloat. Param instead rewrites the
method signature to use a constrained generic type (details in Section 4.3), enabling Swift’s existing
generic specializer to remove the protocol overheads without requiring inlining of the callee.
Finally, when a global analysis identifies a single concrete type for some protocol variable, we

employ a SoleType transformation to inject downcast instructions reflecting the concrete type
information, which can then be leveraged for call site devirtualization. Currently our global analysis
is a type hierarchy analysis [Dean et al. 1995], but the transformation is agnostic to the type of
analysis used. SoleType interacts fruitfully with the other optimizationsÐits injected downcasts
can be used to guide the specialization of Param, and it can leverage information from LocalVar

to discover better locations for injecting casts, enabling further optimization.
From a program analysis perspective, the techniques we employ for our optimizations (class

hierarchy analysis, intra-procedural dataflow analysis) are standard. The novelty of the present
work is in the application of these analyses to optimizing Swift protocols, which pose unique
challenges that were not faced by many previous works, like elimination of boxing overheads.
Our solutions are also carefully designed for practical usage in a real-world compiler. Rather
than performing a full-blown points-to analysis, we develop a dataflow analysis that surgically
removes protocol overheads by only tracking the flow of concrete values through protocol variables;
rather than performing whole-program class-hierarchy analysis, we perform module-level protocol
conformance analysis; and finally, rather than performing program-wide generic specialization,
we perform specialization only at the call sites when the concrete type is known so as to reap the
maximum benefit without incurring a very high analysis cost.
We have implemented the aforementioned optimizations on top of the Swift compiler v5.0.0.

We have evaluated the usefulness of these optimizations by applying them on 13 benchmarks
from Swift performance benchmark suite and a BucketSort algorithm from BucketSort [2019].
On average, we observe a 1.56× speedup by executing the binary obtained by applying all the
three optimizations compared to the baseline using optimization flag ł-O -wmo". Further, our
experimental results demonstrate a reduction in code size as well. More importantly, we have also
evaluated our optimizations on a very large proprietary mobile app from Uber consisting of close
to 1.5 million lines of Swift code and have observed speedups ranging from 6.9% to 55.49% on key
spans in the app identified by other developers.

1.1 Technical Contributions

We make the following technical contributions in this paper:

• We describe the runtime and code size inefficiencies due to the wide spread use of protocols
in Swift code bases.

• Wegive a partial semantics of protocol-related instructions in the Swift Intermediate Language
(SIL).

• We present the design of three compiler optimizations targeted towards reducing the ineffi-
ciencies of protocols.

• We evaluate our optimizations on a number of benchmarks from Swift Performance Bench-
mark suite. We demonstrate an average speedup of 1.56× compared to the baseline. We also
show performance benefits for a number of core functionalities in a large proprietary Swift
application.
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Fig. 1. Swift compiler passes.

2 SWIFT BACKGROUND

A protocol in Swift defines a set of requirements on methods, properties, and associated types.
A type conforms to a protocol if its implementation satisfies the protocol’s requirements and it
declares the conformance. Both reference types (classes) and value types (e.g., structs and enums)
can conform to protocols. A class protocol can only be conformed to by class types, whereas a
non-class protocol can be conformed to by either classes or value types. Multiple protocols can be
combined into a single requirement with protocol composition. Swift provides access modifiers
such as open, public, internal, fileprivate, and private for assigning specific access controls for
properties and methods of a protocol. Open access is the least restrictive access level where as
private access is the most restrictive access level.

Figure 1 depicts the overall flow of Swift compiler. As a first step, the input Swift file is parsed to
produce an AST on which various semantic checks are performed. Subsequently, SILGen generates
Swift Intermediate Language (SIL) from the AST and performs various inter- and intra-procedural
optimizations. Later on, LLVM IR is generated from SIL, further optimized, and an executable binary
is finally produced. Swift supports both single-file and whole-module compilation (via compiler
flag -wmo) modes. With whole-module compilation, all the input files of a single Swift module
are optimized together at the SIL level. This enables interprocedural optimizations across files
within the same module, particularly for methods and properties that are accessed with access
levels internal or private (as they are not visible outside the module).
At the SIL level, protocol types are implemented using Existential Containers (EC), a boxed

representation. (Protocol types are a form of existential types; see Chapter 24 of Pierce [2002].)
An existential container for protocol P holds a reference to a value of some conforming type T
and a reference to a Protocol Witness Table (PWT) showing which methods of T implement the
requirements of P . An EC for a class protocol is referred to as a łclass existential containerž (or simply
łclass containerž). Class containers are created and manipulated using the init_existential_ref
and open_existential_ref SIL instructions. An EC for a non-class protocol is referred to as an
łopaque existential containerž (or simply łopaque containerž). Opaque containers are manipulated
using SIL init_existential_addr, open_existential_addr and deinit_existential_addr instructions.
Furthermore, copy_addr and destroy_addr operations copy and destroy the contained concrete
value in the opaque container. Further details on these existential operations are provided in
Section 4.

Existential containers introduce additional overheads when lowered from SIL to LLVM IR. The
compiler uses a special storage layout for ECs consisting of a stack allocated three-word value buffer,
a Value Witness Table (VWT), and a protocol witness table. If the conforming type is a reference
type, the reference itself is stored in the value buffer. If it is a value type and it fits in the three
word value buffer, it is stored directly, and otherwise it is stored on the heap and a reference is
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1 protocol Sorter {

2 func sort <T: Sortable >(items: [T]) -> [T]

3 }

4
5 struct InsertionSorter: Sorter {

6 func sort <T: Sortable >(items: [T]) -> [T] { /* implementation elided */}

7 }

8
9 struct Bucket <T: Sortable > {

10 var elements: [T]

11 func sort(algorithm: Sorter) -> [T] {

12 return algorithm.sort(elements)

13 }

14 }

15
16 func bucketSort <T>( elements: [T], sorter: Sorter , buckets: [Bucket <T>]) -> [T] {

17 // distribute elements contained in buckets , storing result in bucketsCopy (elided)

18 ...

19 for bucket in bucketsCopy {

20 results += bucket.sort(sorter) // results is array of T

21 }

22 return results

23 }

24
25 var array: [Int] = ... // array of integers

26 var buckets = [Bucket <Int >]() // Array of buckets of integers

27 let sorted = bucketSort(array , sorter: InsertionSorter (), buckets: buckets)

Listing 1. Motivating Example

stored in the value buffer. The VWT is also created for a value type in order to manage the lifetime
of a value, including heap-allocated large values. A VWT exposes additional APIs for allocation
and deallocation: allocate, copy, destruct, and deallocate. Additional details on the EC layout can be
found in the presentation [WWDCSwiftPerf 2016].

The data structure for an EC and the API calls required to manipulate its content add significant
boxing and unboxing overheads. Additionally, method invocations through protocol types are
dynamically dispatched using thewitness_method SIL instruction and cannot be inlined. Moreover,
if a Swift application uses a large number of protocols, it can increase overall startup time due to
the cost of loading the global data structures related to protocol and value witness tables.
The optimizations described in this paper target eliminating these overheads. Such overheads

were particularly acute in the Uber code base due to heavy use of protocols to support mock
objects for testability, as discussed in Section 1. In production builds of this code base, there are
many protocols with exactly one implementation (as the mock implementations are not present),
providing many opportunities for optimization.

3 MOTIVATION

In this section, we provide examples to motivate our optimizations of protocol overheads and to
give an overview of how the optimizations work.

3.1 Existential Parameter Specializer

Listing 1 shows a bucket sorting algorithm adapted from BucketSort [2019] that uses Swift protocols.
The protocol Sorter defines a function sort that operates over elements of generic type T (lines 1-3).
T is constrained to conform to protocol Sortable (not shown) to ensure a comparison operation
is present for sorting. InsertionSorter is one implementation of Sorter, which implements an
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1 struct InsertionSorter {

2 func sort(items: [Int]) -> [Int] { ... } // func is specialized to Int

3 }

4 // array and function are specialized to Int

5 struct Bucket {

6 var elements: [Int]

7 func sort() -> [Int] {

8 // syntactic sugar to show the absence of witness table lookup

9 return sort@line2(elements)

10 }

11 }

12 func bucketSort(elements: [Int], buckets: [Bucket <Int >]) -> [Int] {

13 ...

14 for bucket in bucketsCopy {

15 results += bucket.sort() // the sorter parameter is no longer necessary

16 }

17 return results

18 }

19 ...

20 let sorted = bucketSort(array , buckets: buckets) // the sorter param is removed

Listing 2. Optimized version of the example shown in Listing 1

insertion sort (lines 5-7). Elements within a bucket are sorted using a parameter algorithm of the
Sorter protocol (lines 9-14).
For a given array of elements of type Int, an array of buckets of integers is defined (lines

25ś26). bucketSort takes the array, the underlying sorting implementation employed within a
bucket (InsertionSorter), and the array of buckets as input (line 27). The actual implementation
distributes the elements across various buckets (not shown in the listing). Subsequently, sorting on
each bucket is undertaken by using the provided Sorter implementation. A concatenation of the
sorted elements within the buckets is returned, which corresponds to the sorted order for the input
array (lines 19ś22).

While Listing 1 provides a generic implementation that can be used to sort elements of any type,
it imposes non-trivial overhead compared to an implementation specialized to a particular element
type and sorting algorithm. The main overhead is the implementation of the sorting algorithm,
which must perform comparison operations through indirect calls on values of Sortable type. Swift
has extensive support for specializing generic methods based on the types present at a call site.
However, in Listing 1 the sorting routine itself is invoked through an indirect call at line 12 (via
protocol witness method lookup), thwarting generic specialization.
Listing 2 gives a source-level view of the optimizations enabled by our technique. The key

protocol-related optimization is at line 9: rather than invoking a sort routine via a protocol witness
table lookup, our optimizations enable rewriting this call to directly invoke the InsertionSorter

.sort method. With this call devirtualized, the Swift compiler can create a specialized copy of
InsertionSorter.sort that operates directly on Int values, rather than using indirect Sortable
operations. This optimized implementation significantly outperforms the generic implementation
shown in Listing 1, achieving a speedup of 21.75× for an array size of 10 million random elements.

For this example, our technique optimizes away the protocol dispatch by introducing new generic
type parameters in a targeted manner. Observing that an InsertionSorter value is passed on line
27 of Listing 1, the optimizer rewrites the bucketSort signature as follows:

func bucketSort <T, U: Sorter >( elements: [T], sorter: U, ...
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1 protocol P {

2 func foo() -> Int

3 }

4
5 class A : P {

6 func foo() -> Int { return 10 }

7 }

8
9 func bar(y:Bool) {

10 let a1:P = A()

11 var a2:P = A()

12 if y { a2 = a1 }

13 a2.foo()

14 }

15
16 func baz(a:P) { a.foo() }

Listing 3. Illustrative example.

17 func bar(y:Bool) {

18 x1 = alloc_ref A

19 x2 = alloc_ref A

20 x3 = x2

21 if y { x4 = x1 }

22 x5 = ϕ(x4, x3)

23 f = foo@line6

24 apply f(x5)

25 }

26
27 func baz(a:P) {

28 a1 = open_existential_addr a to

opened_k2(P)

29 a2 = unchecked_addr_cast a1, A*

30 f = foo@line6

31 apply f(a2)

32 }

Listing 4. Optimized version of illustrative
example.

33 func bar(y:Bool) {

34 // let a1:P = A()

35 x1 = alloc_ref A

36 a11 = alloc_stack P

37 a12 = init_existential_addr a11 : A, P

38 store x1, a12

39
40 // var a2:P = A()

41 x2 = alloc_ref A

42 a21 = alloc_stack P

43 a22 = init_existential_addr a21 : A, P

44 store x2, a22

45
46 if y {

47 // a2 = a1

48 copy_addr a11 , a21

49 }

50
51 // a2.foo()

52 a24 = open_existential_addr a21 to

opened_k1(P)

53 f = witness_method opened_k1(P) foo

54 apply f(a24)

55 }

56
57 func baz(a:P) {

58 // a.foo()

59 a1 = open_existential_addr a to

opened_k2(P)

60 f = witness_method opened_k2(P) foo

61 apply f(a1)

62 }

Listing 5. SIL instructions for illustrative
example.

Given this new signature, Swift’s existing generic specializer creates a version of bucketSort
specialized for an InsertionSorter. A similar transformation is performed to enable the key
optimization of the Bucket.sortmethod.We describe the optimization in further detail in Section 4.3.

3.2 Eliminating Unnecessary Existential Containers

We now illustrate the additional costs imposed by use of existential containers, and how our
optimizations can reduce these costs. Listing 3 presents a (contrived) code example designed to
explain our techniques. It contains the definition of protocol P, a class A that conforms to P, and
two methods bar and baz manipulating P and A variables.

Listing 5 sketches the Swift Intermediate Language (SIL) representation generated by the compiler
for Listing 3. (A more detailed semantics for the instructions is given in Section 4.) Here, we observe
instruction bloat for existential-related operations. For instance, each definition of a protocol
variable (line 34) corresponds to four SIL instructions (lines 35-38) that construct the corresponding
existential container. The boxing operation includes allocating a reference for an object of type A,
allocating stack space for the container, initializing the container, and finally storing the object
reference into the container. Any use of the contained values requires łunboxingž instructions, e.g.,
line 52. Additionally, the invocations of foo involves witness table lookups (lines 53 and 60).
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instructions i ::= xi = alloc_stack T
| store xi to x j
| copy_addr xi to x j
| x j = init_existential_ref xi : C, P
| x j = open_existential_ref xi to openedk (P)
| x j = init_existential_addr xi : T , P
| x j = open_existential_addr xi to openedk (P)
| xi = witness_method openedk (P) siд

Fig. 2. SIL instructions relevant to our analysis and optimization.

A version of the Listing 5 optimized by our techniques appears in Listing 4. In this version, the
existential containers have been completely optimized away. Note that to do so, the optimizer has
introduced new SIL variables and a phi statement, to track the data flow of the values previously
stored in the existential containers. This transformation requires careful tracking of variables
corresponding to containers, particularly in the presence of address-based manipulations like lines
37ś38 and 48. This LocalVar optimization is described in detail in Section 4.2.
Our SoleType transformation injects downcasts of values in existential containers when some

other analysis discovers a single concrete type for the values. For example, consider the cast
instruction at line 29. For this example, a type hierarchy for the full program shows that P has only
one conforming implementation, A, so such a cast is safe. The cast enables devirtualization of the
subsequent foo call. In general, SoleType is agnostic to which other analysis provides the precise
type information, and it could be integrated with global pointer analysis or even profile-guided
techniques.
The key sophistication in SoleType is its fruitful interactions with LocalVar. Given results

from LocalVar’s data flow analysis, SoleType can choose program points early in methods to
inject casts. In turn, LocalVar can be re-run with the cast present and leverage it to remove more
existential containers. SoleType is described in detail in Section 4.4.

4 EXISTENTIAL SPECIALIZATION

In this section we present our optimizations in full technical detail. We start by giving a (partial)
semantics for the relevant SIL instructions in Section 4.1. We then describe the LocalVar analysis
and transformation used for eliminating existential containers in Section 4.2. Section 4.3 describes
the Param transformation for specializing protocol-typed parameters, and Section 4.4 presents the
SoleType transformation for injecting casts with additional type information. Finally, Section 4.5
describes enhancements to dead-code elimination motivated by the previous optimizations.

4.1 Semantics

Figure 2 lists the SIL instructions we model for the purposes of our optimization. We include
the alloc_stack, store, and copy_addr instructions for allocating and modifying memory. The
init_existential_ref and open_existential_ref instructions create and open class containers for ref-
erence types (see Section 2), while the init_existential_addr and open_existential_addr instructions
handle opaque containers, which can contain either a value or a reference. The witness_method
instruction performs a method lookup on a protocol type.

A method invocation on a value in an existential container proceeds via the following instruction
sequence:
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Optimization of Swift Protocols 164:9

(1) The container is opened using open_existential_ref or open_existential_addr as appropriate;
(2) a witness_method instruction performs the method lookup; and finally
(3) an apply instruction invokes the method with appropriate parameters.

For method invocations, our optimizations primarily modify method lookup, but not the actual
invocation.3 So, we elide modeling of method invocations and the apply instruction here.4

SIL uses archetypes to connect the protocol witness table referenced by an existential con-
tainer to the method lookup performed by a corresponding witness_method instruction. Each
open_existential_ref and open_existential_addr instruction is tagged with a unique archetype
id, naming the łopenedž existential type of the instruction’s return value. A subsequent
witness_method instruction references an archetype id when performing a method lookup, con-
necting it to a corresponding open instruction. Using these ids, the compiler determines which
protocol witness table to use for a method lookup. Archetypes help to simplify SIL by enabling use
of the same witness_method lookup instruction across all types of existential containers.5

Figure 3 gives a partial semantics for our modeled SIL instructions, capturing the behaviors
relevant to our optimizations. A program state consists of an environment ρ mapping variables to
values (where values include addresses), a store σ mapping addresses to values, and an archetype
map α mapping archetype IDs to protocol witness tables. Note that in the Swift compiler, α is com-
puted and used only at compile time; our modeling here shows the tracking that the compiler must
do. The partial semantics elides various safety checks like ensuring well-typedness of instruction
arguments or that memory is initialized before use; the Swift compiler only generates well-formed
SIL code that respects these properties (modulo bugs).
The rules in Figure 3 show how each SIL instruction transitions an input state ρ, σ , α to an

updated state ρ ′, σ ′, α ′. An alloc_stack instruction allocates a fresh memory location a and marks it
as uninitialized via a special uninit value. (We discuss stack vs. heap allocation in Section 4.1.1.) A
store instruction writes the value in variable xi to the memory address referenced by x j . copy_addr
copies a value from the address in xi to the address in x j .

An init_existential_ref instruction takes as arguments a variable xi holding the address a of an
object o, the class C of o, and a protocol P that C conforms to. It finds the protocol witness table
K indicating how methods in P should be dispatched on a C object, and stores K and a in a new
class existential container clContainer(K ,a).6 An open_existential_ref instruction takes a variable
xi holding a class existential container clContainer(K ,a) as an argument. The instruction is labeled
with some archetype type openedk (P), where k is unique to the instruction. The instruction both
extracts the contained address a and updates the archetype map α to map id k to the contained
protocol witness table K .
Allocation and initialization of opaque existential containers require an instruction sequence

similar to the following (; is a sequencing operator):

xk = . . . ; xi = alloc_stack P ; x j = init_existential_addr xi : T , P ; store xk to x j

The memory for the opaque container is always stack-allocated (see Section 4.1.1) using an
alloc_stack instruction. The address a of this memory is then passed to an init_existential_addr
instruction, along with a concrete type T and corresponding protocol P . init_existential_addr
stores an opaque existential container opContainer(K ,a′) into a, with K = pwt(T , P) (similar to the
init_existential_ref case) and a′ for storing the contained value. a′ may be an address within the
block of memory allocated by alloc_stack (for reference types and inline storage of small values)

3Invocations are affected only in that the calling convention is modified after devirtualization.
4The Param optimization in Section 4.3 inspects apply instructions, but it does not transform them.
5SIL has five types of existential containers [SILDocs 2019]; we only describe the two most common ones here for simplicity.
6clContainer and opContainer construct SIL-level data types, not accessible to Swift source.
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ρ,σ ,α , s → ρ ′,σ ′
,α ′

AllocStack

a is fresh

ρ,σ ,α ,xi = alloc_stack T → ρ [xi 7→ a] ,σ [a 7→ uninit] ,α

Store

ρ(xi ) = v ρ(x j ) = a

ρ,σ ,α , store xi to x j → ρ,σ [a 7→ v] ,α

CopyAddr

ρ(xi ) = a1 σ (a1) = v ρ(x j ) = a2

ρ,σ ,α , copy_addr xi to x j → ρ,σ [a2 7→ v] ,α

InitExRef

ρ(xi ) = a K = pwt(C, P) c = clContainer(K ,a)

ρ,σ ,α ,x j = init_existential_ref xi : C, P → ρ
[

x j 7→ c
]

,σ ,α

OpenExRef

ρ(xi ) = clContainer(K ,a)

ρ,σ ,α ,x j = open_existential_ref xi to openedk (P) → ρ
[

x j 7→ a
]

,σ ,α [k 7→ K]

InitExAddr

ρ(xi ) = a K = pwt(T , P) a′ = valAddr(a,T , P) c = opContainer(K ,a′)

ρ,σ ,α ,x j = init_existential_addr xi : T , P → ρ
[

x j 7→ a′
]

,σ [a 7→ c] [a′ 7→ uninit] ,α

OpenExAddr

ρ(xi ) = a σ (a) = opContainer(K ,a′)

ρ,σ ,α ,x j = open_existential_addr xi to openedk (P) → ρ
[

x j 7→ a′
]

,σ ,α [k 7→ K]

WitMeth

α(k) = K K(siд) =m

ρ,σ ,α ,xi = witness_method openedk (P) siд → ρ [xi 7→m] ,σ ,α

Fig. 3. Partial semantics for relevant SIL instructions.

or for newly-allocated memory (for storing large values) [WWDCSwiftPerf 2016]; the valAddr
function abstracts this logic. To complete initialization, the appropriate T value is written to a′ via
a store or copy_addr instruction.
Finally, the witness_method instruction performs a method lookup. It takes as arguments an

archetype type openedk (P) and a method signature sig. It looks up the archetype id k in α to get the
corresponding protocol witness table K , and uses K to find the appropriate methodm based on sig.

4.1.1 Key Invariants. The soundness of our optimizations rely on the following key invariants
regarding existential containers in SIL:

• Class existential containers (created by init_existential_ref) are of loadable types with SSA
representation and hence are immutable, i.e., the contained reference never changes after
initialization. store and copy_addr instructions only update opaque containers (but not
class containers) that are of address types, which are guaranteed by checkStoreInst and
checkCopyAddrInst in SILVerifier [SILVerifier 2017], respectively.
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• An opaque container must be stack allocated if it is the operand of an init_existential_addr
instruction or the target operand of a store or copy_addr instruction. The opaque container
is always copied before reading from / storing to the heap.

• At any point during program execution, there is at most one location in stack memory
corresponding to an alloc_stack instruction. In particular, SIL enforces a discipline that
ensures that any memory stack-allocated in a loop does not outlive the current loop iteration.

These invariants are guaranteed by the current frontend of Apple’s Swift compiler. Our data flow
analysis relies on these invariants to perform strong updates on (abstract) containers for store and
copy_addr instructions, as detailed in the next section.

4.2 Flow-Based Optimization

Given the semantics in Section 4.1, we now describe LocalVar, our core flow analysis and opti-
mization for devirtualizing witness method calls and removing unnecessary existential containers.
LocalVar is able to completely remove an existential container c in cases where it can determine
both the concrete type of the value v in c and another SIL variable guaranteed to already hold
v . LocalVar first uses dataflow analysis to discover existential containers for which there is a
corresponding SIL variable (or variables) holding their contained value. It then performs a trans-
formation to replace uses of such containers, after which dead code elimination can remove the
containers entirely. We first describe the dataflow analysis, and then present the subsequent code
transformation.

4.2.1 Flow Analysis. The abstract domain for our flow analysis consists of pairs of maps ⟨Γ, Σ⟩.
Γ maps each SIL variable to a set of abstract containers it may point to (i.e., contain the address
of). Abstract containers are static representations of runtime existential containers. We use an
allocation site abstraction, representing containers allocated by all executions of an instruction
with a single abstract container. However, note that by the invariants given in Section 4.1.1, we
know that for opaque containers used in init_existential_addr, store, and copy_addr instructions,
at most one concrete container can be alive at a time for the corresponding abstract container. We
assume a unique identifier l for each alloc_stack and init_existential_ref instruction, and write cl
for the abstract container representing the allocations by instruction l .

Σ maps each abstract container to the set of all SIL variables possibly holding its contained
value. SIL employs static single assignment (SSA) form, so each SIL variable has a unique defining
instruction. Hence, given Σ, we can find both the instructions creating the value stored in an
existential container and the possible concrete types of the value. We leverage a special marker
variable x⊤ to handle cases where the analysis cannot precisely track the variables holding a
container’s value, e.g., when the container is passed in as a method parameter.
At the start of analysis, Γ and Σ at each program point respectively map each SIL variable and

abstract container to ∅. Our lattice is a standard subset lattice extended to pairs of maps:

⟨Γ, Σ⟩ ⊑ ⟨Γ′, Σ′⟩ ≡ (∀xi . Γ(xi ) ⊆ Γ
′(xi )) ∧ (∀ci . Σ(ci ) ⊆ Σ

′(ci ))

And at control-flow merge points, we apply the following join function ⊔:

⟨Γ, Σ⟩ ⊔ ⟨Γ′, Σ′⟩ ≡ ⟨Γ ⊎ Γ
′
, Σ ⊎ Σ

′⟩

Here, ⊎ is a map union operator that combines values for the same key using ∪.
Table 1 gives the transfer functions for our dataflow analysis. For an init_existential_ref instruc-

tion at line l , we update Γ to map the assigned variable x j to the corresponding abstract container
cl , and update Σ to map cl to the argument variable xi . Handling opaque existential containers
is more complex due to their multi-instruction initialization sequence (see Section 4.1). For an
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Table 1. Transfer functions for dataflow analysis.

Stmt Result State
l : x j = init_existential_ref xi : C, P ⟨Γ

[

x j 7→ {cl }
]

, Σ [cl 7→ {xi }]⟩

l : xi = alloc_stack P ⟨Γ [xi 7→ {cl }] , Σ⟩

x j = init_existential_addr xi : T , P ⟨Γ
[

x j 7→ Γ(xi )
]

, Σ⟩

store xi to x j , Γ(x j ) = {cl } ⟨Γ, Σ [cl 7→ {xi }]⟩

store xi to x j , |Γ(x j )| > 1 ⟨Γ, addTop(Σ, Γ(x j ))⟩
copy_addr xi to x j , Γ(xi ) = {cl }, Γ(x j ) = {cl ′} ⟨Γ, Σ [cl ′ 7→ Σ(cl )]⟩

copy_addr xi to x j , |Γ(xi )| > 1 ∨ |Γ(x j )| > 1 ⟨Γ, addTop(Σ, Γ(x j ))⟩
xi leaked, Γ(xi ) , ∅ ⟨Γ, addTop(Σ, Γ(xi ))⟩
xk = ϕ(xi ,x j ) ⟨Γ

[

xk 7→ Γ(xi ) ∪ Γ(x j )
]

, Σ⟩

alloc_stack instruction at line l , we update Γ for the corresponding cl ; our implementation only
updates the abstract state when P is a protocol type.
The init_existential_addr transfer function is the most counter-intuitive. The function updates

Γ to map the assigned variable x j to the same container(s) mapped by the input variable xi . But,
init_existential_addr actually returns an address for the contained value, not for the container
(see Figure 3). So how can this rule work? The key insight is that our analysis is concerned only
with the values stored in existential containers, not the protocol witness tables. Hence, the rule
treats the container as a direct box for the contained value and ignores the protocol witness table
initialization performed by init_existential_addr, instead treating the instruction like a copy.

store and copy_addr instructions are modeled with strong updates when possible. For store, we
have two cases. In the case where our analysis shows the destination variable x j can only point
to abstract container cl , we update Σ to map cl to {xi }. This treatment is sound since we know in
this case that cl corresponds to exactly one concrete opaque container (see Section 4.1.1). When
|Γ(x j )| > 1, the analysis updates Σ to add x⊤ to the variable set for all abstract containers in Γ(x j ),
as the analysis cannot determine which container is getting updated. For this case we leverage the
auxiliary function addTop:

addTop(Σ,C)(c) =

{

Σ(c) ∪ x⊤ c ∈ C

Σ(c) otherwise

Similarly, the analysis performs a strong update for copy_addr instructions when both the source
and target variable each point to exactly one abstract container, and conservatively adds x⊤
otherwise.
If any variable xi containing an abstract container is leaked out of the function scope (e.g., by

being passed to a callee via an inout parameter), the analysis adds x⊤ to the abstract state for the
corresponding container(s), as the analysis cannot ensure that the containers do not get updated by
other code. Finally, ϕ statements are handled by taking the union of abstract container sets for the
argument variables. Note that this ϕ handling is in addition to applying the join function ⊔ defined
earlier at control-flow merge points. ⊔ is needed to merge states for abstract containers in Σ, as
their updates via store and copy_addr instructions are not reflected in ϕ statements.

Note that our analysis solves a problem similar to intra-procedural must-alias analysis for single-
level pointers, as described by Landi and Ryder [1991]. Our analysis need only track a single level
of pointers for opaque containers, since only aliasing with variables holding the same value is
relevant for our transformation. We do not directly adapt the algorithms of Landi and Ryder as we
found our dataflow formulation to integrate more naturally with the subsequent transformations
for optimization, described in Section 4.2.2.
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Table 2. Partial results for dataflow analysis on Listing 5.

Line State After
36 ⟨[a11 7→ {c36}], []⟩

37 ⟨[a11 7→ {c36},a12 7→ {c36}], []⟩

38 ⟨[a11 7→ {c36},a12 7→ {c36}], [c36 7→ {x1}]⟩

44 ⟨[a11 7→ {c36},a12 7→ {c36},a21 7→ {c42},a22 7→ {c42}], [c36 7→ {x1}, c42 7→ {x2}]⟩

48 ⟨[a11 7→ {c36},a12 7→ {c36},a21 7→ {c42},a22 7→ {c42}], [c36 7→ {x1}, c42 7→ {x1}]⟩

50 ⟨[a11 7→ {c36},a12 7→ {c36},a21 7→ {c42},a22 7→ {c42}], [c36 7→ {x1}, c42 7→ {x1,x2}]⟩

Example. Table 2 shows partial results for running the dataflow analysis on the example in Listing 5.
For each line number, the table shows the entries in Γ and Σ after the line (excluding entries with
value ∅). The first three rows show handling of the container initialization in lines 36ś38. After
line 38, the analysis concludes that variable x1 holds the value stored in the container allocated on
line 36. Similarly, after line 44, the analysis knows that x2 holds the value stored in container c42.
The copy_addr at Line 48 overwrites the contents of c42, the container referenced by a21. Here, the
analysis is able to do a strong update and conclude that after the instruction, x1 holds the value in
c42. Finally, line 50 is a control-flow merge, so the analysis computes a join of the states from lines
44 and 48, and concludes that either x1 or x2 may hold the value in c42.

4.2.2 Transformation. Given the results of the flow analysis, our transformation pass proceeds
as follows. Recall the standard sequence of instructions used for a witness method invocation
(discussed in Section 4.1):

x j = open_existential_addr xi to openedk (P); xf = witness_method openedk (P) siд; apply xf (x j , . . .)

We identify open_existential_ref and open_existential_addr instructions in such sequences where
for the argument variable xi , Γ(xi ) = {cl }, Σ(cl ) , ∅, and x⊤ < Σ(cl ). In this case, Σ(cl ) contains
the variables possibly holding the value stored in the container cl . If Σ(cl ) is a singleton {xm}, we
can simply remove the open instruction,7 replace the subsequent witness_method instruction with
a function_ref instruction referencing the method to invoke,8 and update the invocation apply
instruction to pass xm directly, i.e.: xf = function_ref full_sig; apply xf (xm , . . .). Here, full_sig is
the resolved signature of the invoked function based on the concrete type.

Σ(cl ) can contain more than one variable in the case of control-flow merges. But, in some cases,
we can still transform away the open instruction by introducing new SIL variables and ϕ statements
at the control-flow merge points where the incoming states for cl differed. Once these ϕ statements
are introduced, there will be a new SIL variable xm corresponding to the latest merge point, and
we can use xm to perform the desired replacement. For the Listing 5 example, at line 52 either x1 or
x2 may hold the value in the container referenced by a21 (see final line of Table 2). For this case,
the transformation introduces a statement x5 = ϕ(x4, x3) at the previous control-flow merge, with
corresponding definitions for x4 and x3, as shown in Listing 4. Then, the call can be rewritten to
directly invoke A.foo(), passing x5.
The above discussion assumes that once we have the variable xi holding the value boxed by

an existential container, we can immediately determine the concrete type of xi by looking at its
definition. However, in some cases the defining instruction may itself be an open_existential_addr
or open_existential_ref instruction, corresponding to another container. Our implementation tracks
data flow recursively through these containers to compute a final set of relevant variables.

7Our implementation actually leverages an existing Swift optimization to remove the open instruction by introducing a
new alloc_stack instruction.
8A SIL function_ref instruction directly loads the method referenced by its signature argument.
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63 func fizz() {

64 let x1: A = A()

65 var p: P = x1

66 for i in 1...2 {

67 let x2: A = A()

68 let p2: P = x2

69 if i == 1 {

70 p = p2

71 }

72 p.foo()

73 }

74 }

Listing 6. Example with loop.

75 func fizz() {

76 x1 = alloc_ref A

77 for i in 1..2 {

78 x4 = ϕ(x1, x5)

79 x2 = alloc_ref A

80 if i == 1 {

81 x3 = x2

82 }

83 x5 = ϕ(x4, x3)

84 f = foo@line6

85 apply f(x5)

86 }

87 }

Listing 7. Optimized version of loop example.

88 func fizz() {

89 x1 = alloc_ref A

90 p11 = alloc_stack P

91 p12 = init_existential_addr p11 : A, P

92 store x1, p12

93
94 for i in 1...2 {

95 x2 = alloc_ref A

96 p21 = alloc_stack P

97 p22 = init_existential_addr p21 : A, P

98 store x2, p22

99
100 if i == 1 {

101 copy_addr p21 , p11

102 }

103
104 p3 = open_existential_addr p11 to

opened_k1(P)

105 f = witness_method opened_k1(P) foo

106 apply f(p3)

107 }

Listing 8. SIL instructions for loop example.

Once we have replaced all instructions opening an abstract container cl , it becomes useless,
which should allow standard dead-code elimination to remove the init instruction for cl . In practice
we found that we had to enhance the existing Swift dead-code elimination pass to fully remove
containers, as detailed in Section 4.5.

Example. Listing 6 gives a slightly more complex example code that includes a loop (the definitions
of class A and protocol P are the same as in Listing 3).9 Due to the loop, multiple objects allocated at
line 67 and assigned to x2 can be live simultaneously, so the transformation phase cannot naïvely
use x2 as a variable holding the container’s value. We show here how our technique can soundly
transform this example via additional ϕ statements to remove container overhead.

Listing 8 gives high-level SIL code for the example. At line 103, our flow analysis will determine
that either x1 or x2 holds the value in container c90 allocated at line 90. Note that for this example,
p will always be initialized at line 72 even without initializing p before the loop (as it gets set in the
first iteration); one may wonder if our analysis would conclude (unsoundly) that x2 always holds
the value in c90 in such a case. However, Swift disallows such code, as it performs a path-insensitive
analysis to determine if variables are initialized before they are used. To keep p uninitialized, the
code must use an optional type P? that requires null checking before use.10 Our optimizations do
not transform code using optional types directly; they only apply once a value has been successfully
read from an optional.
Listing 7 presents the optimized code for the example. The ϕ on line 83 is introduced for the

container c90 at line 103 in Listing 8 to hold either x1 or x2. Moreover, since the next iteration of the
loop nest uses the result of this ϕ in line 83, the incremental SSA updater [SILSSA 2017] in Swift’s
SIL inserts another ϕ in the loop entry block at line 78 in order to maintain the SSA form of the

9This example is based on one provided by an anonymous reviewer.
10https://developer.apple.com/documentation/swift/optional
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108 // non -class protocol NCP

109 protocol NCP {...}

110 // SIL function foo taking p of type

NCP as parameter.

111 sil func foo(p:NCP) {

112 /* use of p */

113 }

Listing 9. Non-Class Param Specializer
Example (Before)

114 inline sil func foo(p:NCP) {

115 f = function_ref foo_inner

116 p1 = open_existential_addr p

117 apply f(p1)

118 }

119 sil func foo_inner <T1 where T1 : NCP >(

p:T1) {

120 p1 = alloc_stack $NCP

121 p2 = init_existential_addr p1

122 copy_addr p to p1

123 destroy_addr p

124 /* use of p is replaced with p1 */

125 dealloc_stack p1

126 }

Listing 10. Non-Class Param Specializer
Example (After)

intermediate representation. The concrete values, x1 and x2, are subsequently used to devirtualize
the foo method invocation on line 84. Moreover, the two containers, c90 and c96, including other
existential overheads are eliminated by the dead code elimination 4.5.

4.3 Existential Parameter Specialization (Param)

In some cases, the purely intra-procedural approach of Section 4.2 is insufficent for optimization. A
common inter-procedural case occurs when a method formal parameter is of protocol type, but at
a call site the concrete type of the actual parameter is evident, e.g., the bucketSort method and its
call in Listing 1. Here, we describe our Param optimization, which leverages generic specialization
to remove protocol overheads for this case without forcing inlining.
The central idea of Param is to rewrite the protocol type of the relevant parameter to instead

use a fresh, constrained generic type parameter. E.g., given a function signature foo(p: P) where P

is a protocol, Param effectively rewrites the signature to foo<T: P>(p: T), where T is a fresh type
variable. This alternate representation enables the Swift compiler’s GenericSpecializer pass to
create a specialized version of foo for some concrete type, removing the protocol overheads. Param
only performs this transformation after determining that some specialization will occur, based
on analyzing call sites. Also, note that if all call sites end up invoking a specialized version of the
method, the original method will be deleted by dead-code elimination.
Our implementation differs slightly from the procedure described above. In actuality, Param

outlines the body of the original method into a fresh generic method and modifies the original
method body appropriately. The original method is also marked with the inline attribute to ensure
it is always inlined. This technique allows Param to perform transformations locally on the target
method, without having to modify all call sites of the method.
Listing 9 (before) and Listing 10 (after) depict how we optimize a non-class protocol parameter

using Param. Lines 114-118 present the modified method with an inline attribute, calling the
inner generic method on Line 117. Lines 119-126 show the body of the inner generic method. Lines
120-123 and 125 show how we box/unbox the generic parameter as an existential in order to reuse
the old callee body. Similarly, Listing 11 (before) and Listing 12 (after) show how we transform
class-protocol parameters.

In most cases in practice, the Param optimization is profitable in terms of both running time and
code size. However, we note two caveats. First, if there are multiple concrete types that conform to
a protocol and these concrete types are used in many different calling contexts, the specialization
per concrete type may lead to code size bloat. Second, Param can introduce extra overhead if the
transformed method stores the relevant parameter in a protocol-typed heap location. In this case,
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127 // class protocol CP

128 protocol CP : class {...}

129 // SIL function foo taking p of type CP

as parameter.

130 sil func foo(p:CP) {

131 /* use of p */

132 }

Listing 11. Class Param Specializer Example
(Before)

133 inline sil func foo(p:CP) {

134 f = function_ref foo_inner

135 p1 = open_existental_ref p

136 apply f(p1)

137 }

138 sil func foo_inner <T1 where T1 : CP >(p

:T1) {

139 p1 = init_existential_ref p

140 /* use of p is replaced with p1 */

141 }

Listing 12. Class Param Specializer Example
(After)

while the original code may have been able to re-use an existential container, the transformed
code may perform an additional unboxing and boxing operation. We observed this behavior in one
benchmark and plan to enhance Param to avoid it in the future.
Returning to our motivating example from Listing 1, Param is the key optimization for this

benchmark. Both the bucketSort and Bucket.sort routines are transformed by Param, enabling
the de-virtualization of the call at line 12 that unlocks further specialization opportunities (see
Section 3.1).

4.4 Sole Type Transformation

In certain cases, the local flow analysis of Section 4.2 cannot determine a single concrete type for
a protocol-typed variable, but some other analysis like global type-hierarchy analysis is able to
do so. In such cases, we perform a SoleType transformation, inserting a downcast to make the
concrete type evident to other optimizations. In terms of SIL, we insert an unchecked_ref_cast or
unchecked_addr_cast instruction to the concrete type, depending on whether we have a class or
non-class protocol, respectively. By default, these casts are inserted immediately before call sites
where the value is used. Then, further optimization can either devirtualize the call if the value is
passed as the self argument, or specialize the callee using Param (see Section 4.3) if the value is
passed in some other argument position.

When provided the analysis results of LocalVar, SoleType can compute a more optimal place-
ment for cast instructions. Consider the example in Listing 13, and assume that field Struct.

somefield is of protocol type P. The struct_element_addr instruction returns the address of x0.
somefield, and the next two instructions copy the field’s value into a new existential container.
Then, in the loop, the container is opened twice for two different call sites. By default, SoleType
would insert a downcast for each call site, enabling devirtualization but no other optimization
of the local container. However, LocalVar determines that the container pointed to by x2 holds
the same value as container x1.11 With this information, rather than inserting casts at the call
sites, SoleType instead directly downcasts the value inside the container referenced by x1, by also
injecting an open_existential_addr instruction. The final optimized code is shown in Listing 14.
With this alternate cast, a subsequent run of LocalVar and dead code elimination can completely
remove the local existential container (x2) and its overheads.

Currently, we perform a global type hierarchy analysis [Dean et al. 1995] to find cases where a
protocol has a sole conforming type. This analysis is only performed when Swift’s whole-module
optimization mode is enabled. We can only conclusively analyze a protocol when its visibility is
set to internal or stricter, as a public protocol may have conforming types in client modules. In

11The version of LocalVar formalized in Section 4.2 does not track information about such address variables, but our
implementation does. The extension is straightforward and we elide it for the simplicity of presentation.
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142 x1 = struct_element_addr x0 : $*Struct ,

#Struct.somefield

143 x2 = alloc_stack $P

144 copy_addr x1 to [initialization] x2 : $

*P

145 Loop:

146 x3 = open_existential_addr

immutable_access x2 : $*P to $*

@opened P

147 apply(x3)

148 x4 = open_existential_addr

immutable_access x2 : $*P to $*

@opened P

149 apply(x4)

Listing 13. Combining LocalVar with
SoleType (Before)

150 x1 = struct_element_addr x0 : $*Struct ,

#Struct.somefield

151 x2 = open_existential_addr

immutable_access x1 : $*P to $*

@opened P

152 x3 = unchecked_addr_cast x2 : $*opened

P to $*K

153 Loop:

154 apply(x3)

155 apply(x3)

Listing 14. Combining LocalVar with
SoleType (After)

the future, we plan to investigate using global pointer analysis to find more sole types, and also to
use runtime profiles to find likely-sole types. For such cases, the SoleType transformation should
work without modification.

4.5 Existential Dead Code Elimination

After implementing the aforementioned optimizations, we found that in some cases the Swift
compiler’s existing dead code elimination (DCE) could still not remove certain unnecessary existen-
tial containers, so we implemented a pass to perform some additional cleanup before the built-in
DCE. The most important case to handle was an alloc_stack instruction allocating memory for a
container, where the memory was initialized via a store instruction, but the container otherwise
went unused (other than getting deallocated). For example, in Listing 5, after devirtualizing the call
to f and passing the A parameter directly (see Listing 4), the alloc_stack at line 36 is unused, but the
store at line 38 still initializes it. Built-in DCE is unable to clean up the existential container in such
cases. Our extra pass removes the dead store instruction, and once removed, the built-in DCE can
remove the alloc_stack instruction and corresponding de-allocation instructions. Via similar logic,
our pass also removes copy_addr instructions that write into a container that is otherwise unused.
Note that the combination of our optimizations can lead to a protocol becoming completely

unused. In such a case, the built-in DCE can remove the global protocol witness tables and value
witness tables associated with the protocol. Our evaluation showed that on a real-world industrial
code base, this cleanup could have a significant positive impact on app startup time.

5 IMPLEMENTATION

The overall framework for existential specializer is shown in Figure 4. Our optimization passes
are integrated tightly into the SILOptimizer phase of the Swift compiler as shown in Figure 1. We
have added two new analyses and four transformation passes apart from modifying the existing
SILCombiner pass. The two new analyses are SoleTypeAnalysis and LocalVarAnalysis. The
SoleTypeAnalysis attempts to find a sole type conforming to a protocol using type-hierarchy anal-
ysis [Dean et al. 1995]. LocalVarAnalysis performs the data-flow analysis described in Section 4.2
to determine the variable(s) holding the value in an existential container. If different variables hold
the value on different control-flow paths, we transform the program using LocalVarSSAUpdater

to insert additional ϕ instructions on the underlying variables, as described in Section 4.2.
The Param transformation described in Section 4.3 consumes the analysis results of

SoleTypeAnalysis and LocalVarAnalysis as well as the existing SingleWriteAnalysis pass in
the Swift compiler to decide when to introduce a constrained-generic type variable for a protocol
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Fig. 4. Overall implementation framework of our existential optimizations. Colored boxes refer to passes that
we have introduced in this paper except SILCombiner pass which we have extended.

parameter. Specifically, if at a call site we can determine a singleton concrete value or a sole concrete
type for the protocol argument of a callee, we decide to apply Param to the callee. We also introduce
the ExistentialDCE pass to remove unnecessary dead codes related to existentials as described in
Section 4.5.
We extend the SILCombiner pass to consume the outputs of SoleTypeAnalysis and

LocalVarAnalysis when rewriting call sites. The SoleType transformation determines optimal
locations for inserting unchecked_ref_cast and uncheck_addr_cast instructions using the concrete
value results from LocalVarAnalysis (as described in Section 4.4). LocalVar may be repeated
based on the code modifications performed by SoleType. The baseline Swift compiler today
performs a basic dominator-based single-write analysis for existentials (shown in Figure 4 as
SingleWriteAnalysis) and use it to devirtualize or specialize certain existential operations. Fi-
nally, we leverage existing GenericSpecializer and Devirtualizer to specialize and devirtualize
existential arguments.

6 EVALUATION

In this section, we present an experimental evaluation of the optimizations described in Section 4.
Our evaluation aimed to evaluate the impact of the optimizations on both running time and code
size. Here we detail our execution platform and methodology, and present results on both smaller
benchmarks and a large production mobile app code base.

Platform: All results were obtained on an iMac Pro 2017 model equipped with 18-Core Intel Xeon
W processor executing at 2.3GHz frequency with 64GB DDR4 memory, running Mac OS Mojave
v10.14.4.
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Benchmarks: We studied the impact of optimizing existential overheads on Swift Benchmark
Suite [SwiftBench 2019] and BucketSort from [BucketSort 2019].We only consider those applications
from the Swift Benchmark Suite that use protocols and compile with the baseline compiler. We
also evaluated impacts on a large production application, described in Section 6.3. The Swift
Benchmark Suite benchmarks are used by the Swift developers to check for performance regressions
in generated code. Thus, they provide evidence that the patterns seen in the benchmarks are common
in real-world applications.

Methodology: The optimization framework described in Section 5 was implemented in the master
branch of Swift compiler version 5.0-dev [SwiftLang 2019].12 We report experimental results for
the following cases:

(1) Baseline ś the baseline version without any of the optimizations described in this paper;
(2) Param ś the optimized version that uses the existential parameter specialization described in

Section 4.3.
(3) LocalVar ś the optimized version that uses the data-flow based optimization technique

described in Section 4.2.
(4) SoleType ś the optimized version that uses the sole-type based optimization technique

described in Section 4.4.

We also report results for all combinations of the above options including optimization option
ł-O -wmož. We enable whole module optimization, i.e., ł-wmož, for all our evaluations since it
enables inter-procedural optimizations. While Param and LocalVar do not necessarily need -wmo

mode, SoleType needs to analyze all the type declarations within a module. Additionally, we
measure code size impact by measuring the size of the text segment using the command łsize -mž.

The execution times reported were the average of five separate runs for each benchmark13. Since
all benchmarks studied in this paper are sequential, the results are not impacted by the number of
cores.

Static metrics: Table 3 presents both source-level and compile-time characteristics of our bench-
marks. Column 2 reports the number of protocols used in a benchmark. Column 3 reports LOC.
Column 4 reports input size. Column 5 summarizes the impact of various optimizations statically.
BucketSort is the largest benchmark in terms of LOC and uses 4 protocols. Six out of the 13 bench-
marks have methods that are optimized using Param. Using SoleType, four call sites were devirtual-
ized and 17 call sites were specialized. The ObserverForwarderStruct benchmark shows benefit
from LocalVar by specializing a call site. Three benchmarks including ObserverForwarderStruct,
ProtocolDispatch2 and SortLargeExistentials show benefits from our dead code elimination
using LocalVar. Please note that we only report copy_addr and store instructions removed by
our ExistentialDCE pass, but in reality it may lead to the removal of other existential related
dead code using the existing DCE pass. Overall, static metrics show each of our optimizations to be
having some impact on some subset of the benchmarks.

6.1 Performance Results

Table 4 reports the relative speedup for each configuration compared to Baseline for each bench-
mark using the optimization flag ł-O -wmož on the iMac Pro 2017 system. The second column
reports the absolute runtime for each benchmark in seconds for the Baseline. The remaining
columns, i.e., columns 3-9, report speedup. BucketSort and ProtocolDispatch2 benchmarks

12Specific versions of the base code are as follows: git sha 82c33dc0311a8874c333c8478d9c7251a21417ec, LLVM 6ddb64316c,
Clang 8bf0fa1829, and Swift b5aabd1747
13We have observed negligible variations between 1-2% from run-to-run in our measurements.
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Table 3. Static metrics using optimization flag ł-O -wmož. Column 5 summarizes the impact of various
optimizations statically for the optimizations described in this paper.

Benchmarks #Protocols LOC Input Optimization
Size Summary

ArrayOfGenericRef 1 111 10000 No change
ArrayOfRef 1 122 10000 No change
Codable 2 168 10000 No change
DictionarySubscriptDefault 1 133 10000 No change
NSError 1 60 10000 No change

ObserverForwarderStruct 1 67 10000

1 method specialized via Param;
1 call site devirtualized by SoleType;
1 call site specialized by LocalVar;
1 store instruction dead

ObserverUnappliedMethod 1 69 10000 2 methods optimized via Param
PopFrontGeneric 1 82 10000 No change

ProtocolDispatch2 1 87 10000

2 methods specialized via Param;
12 call sites specialized via SoleType;
2 call sites devirtualized via SoleType;
2 load instructions dead;

SortLargeExistentials 1 106 1000

1 method specialized via Param;
4 call sites specialized via SoleType;
1 call site devirtualized via SoleType;
4 store instructions dead

StackPromo 1 74 10000
1 method specialized via Param;
1 call site specialized via SoleType

StaticArray 1 109 1M No change
BucketSort 4 249 10M 2 methods specialized via Param

Table 4. Speedup of various combinations of optimizations compared to Baseline using optimization flag ł-O
-wmož. Column 2 reports the absolute runtime for each benchmark in seconds for the Baseline configuration.
Columns 3-9 report speedups for various combination of optimizations vs. Baseline.

Benchmark Baseline Param SoleType LocalVar Param+ Param+ SoleType+ Param+
(sec) SoleType LocalVar LocalVar SoleType+

LocalVar
ArrayOfGenericRef 3.5 1.01 1.01 1.01 1.01 1.00 1.01 1.01
ArrayOfRef 3.42 1.00 1.00 1.00 1.00 1.00 1.00 1.01
Codable 10.6 1.00 1.01 1.00 1.01 1.01 1.00 1.01
DictionarySubscriptDefault 9.12 1.01 1.00 1.01 1.00 1.00 1.01 1.01
NSError 3.15 1.01 1.01 1.00 1.02 1.02 1.01 1.00
ObserverForwarderStruct 2.26 1.08 1.04 1.00 1.01 1.05 1.02 1.11
ObserverUnappliedMethod 2.3 1.12 1.02 1.01 1.11 1.11 1.01 1.12
PopFrontGeneric 0.4 1.00 1.00 1.00 1.00 1.00 0.99 1.00
ProtocolDispatch2 10.84 7.83 4.22 1.00 7.77 7.81 4.23 7.81
SortLargeExistentials 8.37 1.00 1.17 1.00 0.47 0.99 1.14 1.12
StackPromo 2.03 0.98 1.42 1.00 1.34 0.98 1.41 1.33
StaticArray 2.05 0.99 0.99 1.00 0.99 0.98 1.00 1.00
BucketSort 3.83 21.68 1.02 1.01 21.75 21.66 1.00 21.84
GEOMEAN 1.50 1.17 1.00 1.45 1.50 1.16 1.56

show significant performance benefits with Param configuration, i.e., 21.75× and 7.77× respectively.
Both benchmarks exhibit method invocations with existential parameters in the hot loop, making
them perfect candidates for Param. Overall, Param and SoleType show average speedups of 1.5×
and 1.17×, respectively. Across the board for all optimization configuration combinations, we
observe an average speedup of 1.56× when all the three optimizations are combined. In particular,
LocalVar is able to eliminate a number of existential related deadcodes (static metrics are shown
in the Table 3) resulting in an additional 6% performance improvement on top of Param.
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156 func testStackAllocation(_ p: Protocol) -> Int {

157 var a = [p, p, p]

158 var b = 0

159 a.withUnsafeMutableBufferPointer {

160 let array = $0

161 for i in 0..<array.count {

162 b += array[i].at()

163 }

164 }

165 return b

166 }

Listing 15. Param Specializer Counter Example

Interestingly, while SortLargeExistential shows a maximum benefit when SoleType is ap-
plied, it demonstrates a degradation of 5% when all the three optimizations are combined together.
We found that this was due to the phase ordering problem between optimizations, i.e, SoleType
transforms the generic methods produced by Param before these methods are specialized via
GenericSpecializer, leading to a sub-optimal code sequence. Ideally, one would like to specialize
the Param-generated methods before applying SoleType. This behavior is also clearly evident
when Param+SoleType observes a speedup of 0.47× in SortLargeExistential. However, this
slowdown disappears when LocalVar optimization is enabled for this benchmark. Fixing the phase
ordering issue requires a significant restructuring of the Swift compiler passes and is left as a future
work.

While a similar behavior is also observed in StackPromo, this benchmark also had a slowdown
because of the boxing operations introduced by Param, which were not eliminated since the
existential was stored into an array. The code snippet for this is shown in Listing 15. In this example,
the protocol parameter p is stored into an array in Line 112 and subsequently accessed out of the
array in Line 117. Even though p can be specialized to a concrete type, it is clearly beneficial to
keep p in existential form. Param converts p into a generic parameter and later on boxes it to build
an existential (like Listing 9), which leads to additional boxing overhead and thus the slowdown. In
future, we would like to enhance the profitability of Param to handle this scenario.

6.2 Code Size

Table 5 presents code size improvements in bytes for various configurations. The last column
reports the size reduction for the configuration with all optimizations applied together compared
to Baseline. All benchmarks that observe performance benefits observe a reduction in code size
except BucketSort. We found out that BucketSort defines the method bucketSort as public (i.e.,
another Swift module can access this method) which means although this method gets specialized
by Param, its original version still remains in the final binary along with the specialized version.
Thus we observe an increase in code size even though we significantly improve the performance for
this benchmark. If we change the access level of this method from public to internal, we observe a
code size decrease of 758 bytes14. Overall, the data show that on these benchmarks, the performance
improvements from our optimizations do not come at a cost of code bloat.

6.3 Proprietary Large Swift application

We also evaluate the benefits of our optimization on a large proprietary iOS application from
company Uber written mostly using Swift. The total LOC for Uber’s Rider application is 1.7MLoC,
out of which Swift code constitutes 83% approximately and the remaining code is written using

14Only Param optimization suffers from this problem, but not SoleType or LocalVar.
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Table 5. Code size savings in bytes using optimization flag ł-O -wmož. Columns 2-9 report actual bytes used
for different optimization combinations. Column 10 reports the absolute code size savings in bytes.

Benchmark Baseline Param SoleType LocalVar Param+ Param+ SoleType+ Param+ Diff
SoleType LocalVar LocalVar SoleType+ Baseline -

LocalVar (Param+
SoleType+
LocalVar)

ArrayOfGenericRef 14251 14251 14251 14251 14251 14251 14251 14251 0
ArrayOfRef 11035 11035 11035 11035 11035 11035 11035 11035 0
Codable 22010 22010 22010 22010 22010 22010 22010 22010 0
DictionarySubscriptDefault 26155 26155 26155 26155 26155 26155 26155 26155 0
NSError 2715 2715 2715 2715 2715 2715 2715 2715 0
ObserverForwarderStruct 4720 4656 4527 4720 4607 4656 4463 4415 305
ObserverUnappliedMethod 5865 5817 5865 5865 5817 5817 5865 5817 48
PopFrontGeneric 6085 6085 6085 6085 6085 6085 6085 6085 0
ProtocolDispatch2 4336 3645 3823 4336 3645 3645 3823 3645 691
SortLargeExistentials 19832 19832 19768 19832 20024 19832 19464 19512 320
StackPromo 3456 3468 3285 3456 3269 3468 3285 3269 187
StaticArray 14518 14518 14518 14518 14518 14518 14518 14518 0
BucketSort 12866 14114 12866 12866 14114 14114 12866 14114 -1248

Objective-C. Our optimizations only target Swift code. The application is used by millions of
customers every day. Although it is not possible to release the source code of this proprietary
application, prior versions of the core architecture of this application has been released in the open
source [UberRibs 2017]. Nevertheless, we also present results from a micro-benchmark that mimics
some of the functionalities of the large app.

Since the application does not yet compile on the latest Swift compiler version 5.0, we backported
our optimizations to Swift version 4.2. We report execution time results on a iPhone 6S device. We
compare the following approaches:

(1) UNOPT using optimization flag ł-Osize -wmož;
(2) OPT using optimization flag ł-Osize -wmož and Param+SoleType+LocalVar.

Static Metrics: The core components of the application use a large number of protocols. In
total, they use 9991 swift protocols out of which 4992 are declared as public and the rest are
either internal or private. Many of the protocols are used for test mocking, i.e., a protocol has
two implementations, one for testing in debug mode and another for production mode. Our OPT
configuration specialized 6296 methods using Param. Furthermore, it devirtualizes a total of 23418
call sites and specializes arguments of 88 call sites using SoleType statically. The LocalVar helps
in removing 1066 number of copy_addr and store instructions in addition to other existential
operations that are proved dead using existing DeadCodeElimination pass.

Runtime improvements: We ran cold startup of the app as well as the most frequently used
core-functionality of the application 15 times on the iPhone 6S device and report average timings
for different spans using UNOPT and OPT configurations as shown in Figure 5. These performance
spans were inserted by the app developers15 and they are used to track performance regressions in
the field. We only report timings for spans that take more than 100 milliseconds.
Overall, we observe significant positive speedups for all spans in the core functionality, with a

minimum improvement of 6.88% to a maximum improvement of 55.49%. For the cold-startup16,
we observe an improvement of 12%. We notice an improvement of 13% for the premain time (this
is the time is spent before the app code gets executed, e.g., loading dylibs, rebasing, and binding)
which is primarily due to the reduction in protocol witness tables from the final binary after our
optimizations are applied.

15None of the authors were involved in defining the performance spans.
16cold-startup refers to launching the app for the first time and that there is no caching for the app in the kernel. This is the
worst case behavior for the app launch.
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Fig. 5. Runtime benefits (in percentage) for cold startup and core functionalities using optimization flag
ł-Osize -wmož for the large proprietary Swift app. The same sequence of operations were performed 15 times
for both UNOPT and OPT on the iPhone 6S mobile device.

Codesize reduction: Although specialization techniques presented in this paper could potentially
lead to code bloat, we actually observed a code size reduction of 1.7% and 1.4% on armv7 and
arm64 architectures, respectively. This result is very encouraging, as excessive code size bloat is
unacceptable for a production mobile app at scale.

Micro-benchmark: We are unable make Uber’s Rider app code base public. Instead, we have
constructed a micro-benchmark17 that mimics some of the common protocol usage scenarios of
the real app. On a 2018 Macbook Pro system comprising of 2.6 GHz Intel Core i7 and 32GB RAM
running Mac OS 10.14.6 and a Swift compiler v5.1-dev18, we observe a speedup of 11.76% with all
the three optimizations described in this paper (i.e., LocalVar + Param + SoleType) compared to
the Baseline (ł-O -wmož).

7 RELATED WORK

In this section, we compare our Swift protocol optimizations with prior work on eliminating virtual
call overheads in different settings.
Devirtualizing method calls is one of the important optimizations in dynamically typed lan-

guages [Ahn et al. 2014; Anderson et al. 2011; Deutsch and Schiffman 1984; Dot et al. 2017; Gal et al.
2009; Hölzle et al. 1991; Hölzle and Ungar 1994] and most of the techniques perform some form of
łinline cachingž. These techniques typically rely on observing call targets inside a JIT compiler. Swift
uses ahead-of-time compilation, but we plan to investigate integrating profile-guided optimization
to obtain further benefits. Note that inline caching aids in devirtualization, but it is insufficient to
eliminate the overheads of boxing and unboxing from existential containers.

17https://github.com/rajbarik/OOPSLA-2019-SampleApp
18Based on git commit sha 44af3a9398914ef8bdb92eea37d235a92be60925 from [SwiftLang 2019]; please note that we also
had to port our changes to Swift 5.1 branch for this evaluation.
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It is well known that for statically typed languages, method call overhead is negligible [Ishizaki
et al. 2000], but the ability to inline the callee and specialize it based on the concrete type information
yields higher benefits. Although Swift is statically typed, the protocol support for handing both
reference types and value types makes their sizes unknown statically and hence involves runtime
resolution via boxing and unboxing.
A large body of work [Bacon and Sweeney 1996; Dean et al. 1995; Fernández 1995; Sundaresan

et al. 2000] performs class-hierarchy analysis to identify concrete types to optimize virtual method
calls. In particular, Dean et al. [Dean et al. 1995] perform a whole-program analysis to establish
the complete class hierarchy. They then use this information to replace virtual method calls with
static calls at call sites where the receiver type can be proven to be in the class hierarchy sub-tree
that has no overrides for the the virtual function under question. They apply their technique to
both statically and dynamically typed languages. This technique requires no data-flow analysis and
hence is fast and avails itself to incremental compilation. The SoleType technique described in
this paper leverages a similar type-hierarchy analysis, but since our analysis operates at a module
granularity instead of on the whole program, it only analyzes protocols internal to the module. More
importantly, our SoleType pass determines optimal places to inject the casts based on LocalVar.

A large body of work [Agesen et al. 1993; Bacon and Sweeney 1996; Hirzel et al. 2007; Jagannathan
and Weeks 1995; Shivers 1988, 1991; Steensgaard 1996] performs inter-procedural points-to analysis
to determine the set of classes that might be stored into a variable and use that information to
improve the accuracy of devirtualization. In the future, we could leverage similar techniques along
with the SoleType transformation to achieve further performance gains. Our LocalVar technique
is related to this body of work, but it operates purely intra-procedurally, and it focuses only on
concrete values stored and manipulated in existential containers.
Java programs have received significant attraction in method devirtualization and focused on

fast techniques [Cierniak et al. 2000; Detlefs and Agesen 1999; Ishizaki et al. 2000] in the presence
of partial class hierarchy information. These techniques, typically, devirtualize and inline based
on prediction or a previous execution history and allow łback patchingž when the speculation
fails. Our techniques are orthogonal to these techniques; we do not employ speculation and back
patching. Moreover, code patching at runtime is not an option for compiled binaries in the iOS
mobile app distribution. Similar to the previously discussed techniques, the optimizations in Java
do not circumvent the boxing and unboxing concerns that exist in Swift.

Specialization is another common optimization in Java and other object-oriented languages [Fuji-
nami 1998; Kedlaya et al. 2013; Masuhara and Yonezawa 2002; Rompf et al. 2014; Schultz et al. 2003].
Our parameter optimization (Param) identifies the places for optimization based on concrete types
at call sites and relies on Swift’s generic specialization to generate the specialized code variants.
Type classes in Haskell [Hudak and Fasel 1992, ğ5] are the generic interfaces that provide a

common feature set over many types. Haskell performs łmonomorphizationž, which transforms a
type-checked Haskell program with type classes into the code without type classes or bounded
polymorphism. Monomorphization recursively substitutes all overloaded identifiers with whatever
they resolve to until no overloading is left. Monomorphization eliminates the run-time overhead
associated with dynamic dispatch, however, monomorphization requires whole program analysis
and does not work with separate compilation units. Our repeated application of the Param opti-
mization bears resemblance with monomorphization, but we neither guarantee 100% substitution
nor require whole program analysis.
Traits in the Rust programming language [Klabnik and Nichols 2019, ğ10.2] are similar to

protocols in Swift, in that both value and reference types may implement the same trait. However,
by default Rust does not perform boxing and unboxing corresponding to existential containers to
generate code that can handle arbitrary concrete types implementing a trait. Instead, programmers
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must opt in to such boxing explicitly, using trait objects [Klabnik and Nichols 2019, ğ17.2]. So, the
overhead concerns this paper addresses for Swift should be less prevalent in Rust.

8 CONCLUSION

In this paper, we have highlighted performance inefficiencies associated with protocols in the Swift
language. Due to the versatility of protocols, they can introduce both dynamic dispatch and boxing
overheads on protocol-heavy code. We have described three key optimizations for analyzing and
optimizing protocol-related code at the intermediate-language level. Overall, our optimizations
improve runtime performance by 1.56× on average for a set of 13 benchmarks obtained from
Swift Benchmark Suite. Moreover, we demonstrate a speedup ranging from 6.9% to 55.49% for
performance spans in a production mobile application consisting of close to 1.5MLOC Swift code.
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