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Abstract
We present an approach for automatic translation of sequen-
tial, imperative code into a parallel MapReduce framework.
Automating such a translation is challenging: imperative up-
dates must be translated into a functional MapReduce form
in a manner that both preserves semantics and enables paral-
lelism. Our approach works by first translating the input code
into a functional representation, with loops succinctly repre-
sented by fold operations. Then, guided by rewrite rules, our
system searches a space of equivalent programs for an effec-
tive MapReduce implementation. The rules include a novel
technique for handling irregular loop-carried dependencies
using group-by operations to enable greater parallelism. We
have implemented our technique in a tool called MOLD. It
translates sequential Java code into code targeting the Apache
Spark runtime. We evaluated MOLD on several real-world
kernels and found that in most cases MOLD generated the
desired MapReduce program, even for codes with complex
indirect updates.

Categories and Subject Descriptors D.3.4 [Programming
languages]: Processors—Code generation, Compilers, Op-
timization; D.1.3 [Programming techniques]: Concurrent
Programming; I.1.4 [Symbolic and algebraic manipula-
tion]: Applications; I.2.2 [Artificial intelligence]: Automatic
Programming—Program transformation, Program synthesis

General Terms Performance, Languages

Keywords Program Translation; Rewriting; Imperative;
Functional; MapReduce; Scala

1. Introduction
Over the past decade, the MapReduce programming model
has gained traction both in research and in practice. Main-
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stream MapReduce frameworks [1, 9] provide significant
advantages for large-scale distributed parallel computation.
In particular, MapReduce frameworks can transparently sup-
port fault-tolerance, elastic scaling, and integration with a
distributed file system.

Additionally, MapReduce has attracted interest as a par-
allel programming model, independent of difficulties of dis-
tributed computation [24]. MapReduce has been shown to be
capable to express important parallel algorithms in a number
of domains, while still abstracting away low-level details of
parallel communication and coordination.

This paper addresses the challenge of automatically trans-
lating sequential imperative code into a parallel MapReduce
framework. An effective translation tool could greatly reduce
costs when re-targeting legacy sequential code for MapRe-
duce. Furthermore, a translator could simplify the process of
targeting MapReduce in new programs: a developer could
concentrate on sequential code, letting the translator handle
parallel computation using MapReduce.

Translating an imperative loop to the MapReduce model
inherits many of the difficulties faced by parallelizing compil-
ers, such as proving loops free of loop-carried dependencies.
However, the MapReduce framework differs substantially
from a shared-memory parallel loop execution model. No-
tably, MapReduce implies a distributed memory program-
ming model: each mapper and reducer can operate only on
data which is “local” to that function. So, an automatic trans-
lator must at least partition memory accesses in order to
create local mapper and reducer functions which do not rely
on shared memory.

Additionally, the communication model in MapReduce
is more limited than traditional distributed memory parallel
programming with message-passing. Instead, mappers and
reducers communicate via a shuffle operation, which routes
mapper outputs to reducer inputs based on on key fields in the
data. These restrictions allow practical MapReduce frame-
works to run relatively efficiently at large scale; however, they
also introduce constraints on the programmer and challenges
for an automatic translator.

Figure 1 illustrates the design of our translator. An input
program is first translated into Array SSA form [17] which
facilitates the derivation into an lambda-calculus-style func-
tional representation. In contrast with Appel’s and Kelsey’s



Figure 1. Overview of our translation system.

work on converting from SSA to functional code [6, 15], our
translation uses a fold operator to maintain the structure of
loops, which is essential for later transformations.

The initial “lambda plus fold” representation of a pro-
gram is still far from an effective MapReduce program. While
fold operations could be implemented using reducers, the
lack of mappers hinders parallelism, and the code still op-
erates on shared data structures. To address these problems,
we employ a rewriting system to generate a large space of
MapReduce programs. The rewrite rules govern where map-
per constructs can be introduced in a semantics-preserving
manner. Critically, in more complex cases where loop itera-
tions access overlapping locations, we exploit the MapReduce
shuffle feature to group operations by accessed locations, ex-
posing much more fine-grained parallelism than previous
approaches. Given the rewriting rules, our system performs a
heuristic search to discover a final output program, using a
customizable cost function to rank programs.

We have implemented our techniques in a tool named
MOLD, which transforms input Java programs (i.e., Java
methods) into Scala programs that can be executed either on
a single computing node via parallel Scala collections, or
in a distributed manner using Spark, a popular MapReduce
framework [2, 31]. MOLD leverages the WALA analysis
framework [5] to generate Array SSA and implements a
custom rewriting engine using the Kiama [27] library. In an
experimental evaluation, we tested our tool on a number of
input kernels taken from real-world Java and MapReduce
benchmarks. In most cases, MOLD successfully generated
the desired MapReduce code, even for codes with complex
indirect array accesses that cannot be handled by previous
techniques. To our knowledge, MOLD is the first system
that can automatically translate sequential implementations
of canonical MapReduce programs like “word count”(see
Section 2) into effective MapReduce programs.

This paper makes the following contributions:

• We give an automatic translation from imperative array-
based code to a functional intermediate representation,

amenable to generating MapReduce programs. Critically,
the translation represents loops as fold operations, pre-
serving their structure for further optimization.

• We present a rewriting system to generate a broad space
of equivalent MapReduce programs for a given imperative
program from our functional IR. The space is explored
via heuristic search based on a cost function that can be
customized for different backends.

• We describe a rewrite rule in our system that introduces
groupBy operations to effectively handle complex indi-
rect array accesses. This novel technique is critical for
handling basic MapReduce examples like “word count.”

• We present an implementation of our techniques in a tool
MOLD, and an experimental evaluation showing its ability
to handle complex input programs beyond those in the
previous work.

2. Motivating Example
We assume the reader is familiar with the MapReduce model.
Here, we briefly review MapReduce details as presented by
Dean and Ghemawat [9] before presenting an overview of
our approach using their wordcount example.

MapReduce background. In the MapReduce framework,
the programmer defines a map function and a reduce function.
The functions have the following types:

map : 〈k1, v1〉 → List[k2, v2]
reduce : 〈k2, List[v2]〉 → List[v2]

The MapReduce framework relies on a built-in, implicit
shuffle function to route the output of the mappers to the input
of the reducers. Logically, the shuffle function performs a
group-by operation over the map outputs. That is, for each
distinct key k of type k2 output by a mapper function, the
shuffle function collects all the values of type v2 associated
with k, forms a list l of these values, and sends the resulting
pair (k, l) to a reducer.

Dean and Ghemawat present wordcount as an example
to define mappers and reducers. In their wordcount example,
the map function takes as input a document name and a String
which holds the document contents. For each word w in the
contents, the mapper emits a pair (w, 1). The shuffle operation
will create a list of the form [1, 1, . . . , 1] for each word w,
grouping the map output values (all ones) by word. Then the
reducers simply sum up the number of ones present in the list
associated with each word. The resulting sums represent the
frequency count for each word.

The built-in shuffle or group-by operation plays a central
role, for at least two reasons. Firstly, the shuffle operation
encapsulates all communication between nodes. In traditional
distributed memory parallel computing models, the program-
mer must explicitly pass messages or manage remote mem-
ory access in order to express communication. Instead, in
MapReduce, the programmer simply defines functions which



1 Map <String ,Integer > wordCount(List <String > docs) {
2 Map <String ,Integer > m = new HashMap <>();
3 for (int i = 0; i < docs.size (); i++) {
4 // simplified word split for clarity
5 String [] split = docs.get(i).split(" ");
6 for (int j = 0; j < split.length; j++) {
7 String w = split[j];
8 Integer prev = m.get(w);
9 if (prev == null) prev = 0;

10 m.put(w, prev + 1);
11 }
12 }
13 return m;
14 }

Figure 2. Java word count program.

produce and consume tuples, and the framework transpar-
ently implements the necessary communication. MapReduce
cannot express every possible parallel algorithm and commu-
nication pattern – but when MapReduce does apply, it relieves
the programmer from the burden of managing communication
explicitly, resulting in much simpler parallel programming.
Secondly, we note that the shuffle operation can be extremely
expensive, and can limit performance in many use cases if
not managed carefully. Naïve use of MapReduce can result in
all-to-all communication patterns whose overhead can over-
whelm any speedups from parallel computation.

In the remainder of this paper, we focus on MapReduce
primarily as a convenient model for expressing parallel
computation. In particular, we consider the challenge of
automatically translating sequential code into a MapReduce
parallel programming model. We will not address issues
specific to large-scale distributed Map-Reduce deployments,
such as fault-tolerance, elasticity, and distributed file systems.

Overview of our approach. Consider the challenge of
automatically generating effective MapReduce code for
wordcount. Figure 2 shows the sequential Java code, our
starting point. The program iterates through a list of docu-
ments docs, accumulating the word counts into the m map.

Parallelizing the Figure 2 example is difficult because of
the updates to the shared m map in different loop iterations—
naïvely running loop iterations in parallel would cause a
race conditions on m if two iterations try to simultaneously
update a word’s count. Some parallelism might be achieved
by splitting the docs list of documents into chunks, and
computing word counts for each chunk simultaneously.

However, this transformation still leaves the sequential
work of combining the word counts from the different chunks
into final, global word counts. In contrast, the standard
MapReduce word count program, which MOLD can gen-
erate, enables parallel accumulation of final word counts, by
assigning the accumulation task for different ranges of words
to different reducers.

We first consider generating a MapReduce program for
the inner loop of Figure 2 (lines 6–11), which computes word
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Figure 3. Array SSA form for the inner loop of Figure 2.

counts for an array of words split. The first step of our
technique is to translate the input program into a functional
representation via Array SSA form [17]. Figure 3 gives the
Array SSA form for our inner loop. Note that here, the m map
is the “array” being updated by the loop. Our implementation
treats Java arrays, Lists, and Maps in a unified manner as
mappings from keys to values. This form can be seen as
functional if every write to a location of m is treated as creating
a new copy of the map with a new value for the appropriate
word.

After constructing Array SSA form, MOLD translates
the program to a more explicitly functional form. Unlike
previous translations from SSA to functional code [6, 15],
our technique preserves the structure of loops by translating
them using the standard fold operation from functional
programming. MOLD transforms each non-φ SSA assignment
into a let statement. E.g., w = split[j3] is transformed to
let w = split[j3] in . . . .

Each loop (branching and φ instructions) is transformed
into a fold going over the domain of the initial loop, with
its combining operation taking the tuple of φ values as one
argument and the loop’s index as the other, and returning a
new tuple of values. In our example, the fold goes over the
range of integers from 0 to the length of the split array,
with a combining operation that takes as arguments m2 and
j3 and returns m1, i.e., the in-loop branch of φ(m1,m2).

Each remaining φ value with its corresponding branch
instruction is rewritten into into a predicated if assignment.
E.g. φ(prev0, prev1) with the corresponding branch condi-
tion prev1 == null is transformed to:

if prev1 == null then prev0 else prev1



Thus, the SSA-form code in Figure 3 is converted to:

let updatedCount = λm2 j3 .

letw = split [j3] in

let prev1 = m2[w] in

let prev2 = if prev1 == null then 0 else prev1 in

letnewCount = prev2 + 1 in

letm1 = m2 [w :=newCount ] in

m1

in foldm0 updatedCount (0...(length split))

Next, MOLD explores the space of possible optimizing
transformations that can be applied to the code above. The
transformations are expressed as rewrite rules and are de-
tailed in Section 5. For now, we will focus on the particular
transformations that take the functional, yet sequential, code
above and turn it into MapReduce form.

After inlining some of the let expressions and renaming
variables for readability, we get to:

let updatedCount = λm j .

letw = split [j] in

let prev = m[w] in

m[w :=(if prev == null then 0 else prev) + 1]

in foldm updatedCount (0...(length split))

One initial observation is that the fold traverses a range of
integers instead of the split collection itself. Thus, MOLD
transforms the code such that the fold traverses the collection
without indirection:

let updatedCount = λm w .

let prev = m[w] in

m[w :=(if prev == null then 0 else prev) + 1]

in foldm updatedCount split

Next, MOLD identifies common update idioms and lifts
them to more general functional operations. In our example,
the m map is lifted to return zero for non-existent keys. Thus,
the if condition returning either zero or the previous value
in the map becomes unnecessary, and MOLD replaces it with
just the map access. Thus, MOLD transforms the program to:

let updatedCount = λm w .m[w :=m[w] + 1] in

foldm updatedCount split

The fold call takes the initial m map, the updatedCount
function, and the split String array, and computes a new
map with updated word counts. The updateCount accumu-
lator function takes a map m and a word w as arguments, and
returns a new map that is identical to m except that the count
for w is incremented.

The functional form above is semantically equivalent to
the original imperative code, but unfortunately exposes no
parallelism, since the fold operation is sequential. Further-
more, trying to parallelize the fold directly would not work
as the accesses to the m collection do not follow a regular pat-
tern, i.e. w may have any value, independent of the underlying
induction variable of the loop.

A common way to parallelize such code is to take advan-
tage of the commutativity of the updating operation and tile
the fold, namely the loop [19]. While this solution does ex-
pose parallelism, it is coarse-grained, may not be applicable
in the presence of indirect references, and does not match the
MapReduce model of computation.

MOLD generates this tiled solution, but it also explores
a different parallelization avenue: instead of avoiding the
non-linear w value, a program can inspect it [8] to reveal
parallelism. Parts of computation operating on distinct w
values are independent so they can be executed in parallel.
Thus, our example is also equivalent to:

let grouped = (groupBy id split) in

map(λ k v . foldm[k](λ y x . y + 1) v) grouped

The inner fold is only computing the size of the v list of
words, and adding it to the previous value in m. Assuming an
initially empty map m, in the end, the rewrite system produces
the following program as part of its output:

let grouped = (groupBy id split) in

map(λ k v . v.size) grouped

The sequential fold operation has been completely elimi-
nated. Instead, we are left with the equivalent of the canonical
MapReduce implementation of word counting. The groupBy
operation yields a map from each word to a list of copies of
the word, one for each occurrence; this corresponds to the
standard mapper. Then, the map operation takes the grouped
data and outputs the final word count map, corresponding to
the standard reducer.1 Given a large number of documents
spread across several servers, the groupBy task can be run
on each server separately, and the map task in the reducer
can also be parallelized across servers, given the standard
“shuffle” operation to connect the mappers and reducers. The
standard MapReduce implementation does not construct ex-
plicit lists with a groupBy, but instead sends individual word
instances to the reducers using “shuffle.” MOLD further op-
timizes the above program to generate this more efficient
implementation.

In this section we discussed the inner loop of the input
wordcount program. In Section 5 we discuss how this
integrates with the fold for the outer loop, and how MOLD
brings the entire program to an optimized MapReduce form.

1 The value of the map operation is itself a map, with the same keys as the
input map; see Section 5.1 for details.



Finally, MOLD takes what it considers the best generated
code versions and translates them to Scala. The best generated
version, exactly as it is output by MOLD, is:

docs
.flatMap({ case (i, v9) => v9.split(" ") })
.map({ case (j, v8) => (v8, 1) })
.reduceByKey({ case (v2, v3) => v2 + v3 })

The generated code’s computation structure is similar to
classic MapReduce solutions for the WordCount problem.
Each document is split into words, which are then mapped
to (word, 1) pairs. The reduceByKey groups the “1” val-
ues by their associated word, and then reduces each group
by +, effectively counting the number of words. The code
above uses custom collection classes which implement in-
terfaces that provide higher-order functional operators (e.g.,
map). The system provides three implementations of these
operators. The code can execute using Scala sequential collec-
tions, Scala parallel collections, or on the Spark MapReduce
framework [31].

3. Generating Functional IR
In this section, we describe the initial stages of our translation
system, which convert an input program into a functional
intermediate representation via Array SSA form.

3.1 Array SSA
The standard SSA representation enables straightforward
tracking of def-use relationships by ensuring each variable
has a single static definition which reaches all uses. However,
standard SSA does not reflect modification to the stack or
heap, such as the effects of array writes. Array SSA form [17]
extends traditional SSA form with constructs that represent
modifications to array contents.

Array SSA form generates a new name for an array
variable on each write. Any subsequent reads from the array
use the new name, simplifying tracking of data flow though
the array. In contrast to the original work on Array SSA, our
system treats arrays as being immutable data structures, as we
aim to translate the program into a functional representation.
Hence, each array write is modeled as creating a fresh array
with a new SSA name. With this functional model, our Array
SSA form is simplified compared to the previous work [17];
we do not require a φ statement after each array write, and
we do not require a special semantics for φ statements over
array variables.

MOLD generalizes the collections covered by Array SSA
to include maps and lists. Thus, new SSA names are also
introduced when putting an element into a map, or adding
or putting an element into a list. This allows MOLD to treat
arrays, lists, and maps in a unified manner as mappings from
keys to values.

The Array SSA form guarantees that, as long as no aliases
are introduced through callee or caller functions, and no
pointer to an array is retrieved/stored through another object

Var a|b|c| . . .
|〈Var,Var, . . . 〉

Exp λVar[: Type] .Exp

| letVar = Exp inExp

| Exp Exp

|〈Exp,Exp, . . . 〉
|Exp[Exp]

|Exp[Exp :=Exp]

Type A | B | C | . . .
| Type→ Type

| 〈Type,Type, . . . 〉
| Type[Type]

Figure 4. Lambda calculus IR

or array, the arrays (and the lists and maps) can be treated as a
values. Note that our translation to Array SSA form does not
check for aliasing of array variables introduced in unobserved
code, e.g., via caller or callee functions. Our implementation
currently assumes that unobserved code does not introduce
such aliasing.

3.2 Functional IR
Previous work by Appel [6] and Kelsey [15] observed that
a program in SSA form is essentially a functional program.
This observation can be extended in a straightforward manner
to the Array SSA form described above, yielding a method
for translating to a functional intermediate form. However,
the aforementioned translation techniques are not suitable
for our purposes, as they do not preserve the structure of
loops (which are translated to general recursive function
calls). Transformation of loop computations is critical to
introducing parallelism, so our system relies on knowledge
of loop structure. Here, we give a translation from our Array
SSA form to a functional IR that includes a built-in fold
construct, used to preserve the structure of loops.

MOLD’s intermediate representation, shown in Fig. 4, is a
typed lambda calculus. For brevity, throughout the rest of the
paper, we omit the types when they are clear from the context.
The IR is enriched with a tuple constructor, e.g., 〈e1, e2, . . . 〉.
Tuples behave like functions (e.g., 〈f, g〉 〈a, b〉 = 〈f a, g b〉),
and are unwrapped on application (e.g., (λx y . y) 〈a, b〉 = b).
We sometimes use a tuple notation in the parameter part of
lambda expression for highlighting a particular grouping
of the parameters, but it can be interpreted in a curried
fashion, e.g., λ〈x, y〉z . e = λx y z . e. The IR has let
expressions which allow simple pattern-matching on tuples
(e.g., let〈x1, x2〉 = 〈e2, e2〉 inx1 + x2). a[b] and a[b := c]
are read and write accesses at index b of map (array) a.



(data structures)

M[A] : bag (multiset) with values of type A

M[K,V ] : map with keys of type K and values of type V

M[K,V ] is an M[〈K,V 〉]

(higher order functions)

fold : B → (〈B,A〉 → B)→ (M[A]→ B)

map : (A→ B)→ (M[A]→ M[B])

map : (〈K,V 〉 →W )→ (M[K,V ]→ M[K,W ])

groupBy : (A→ K)→ (M[A]→ M[K, M[A]])

(functions and operations)

zip : 〈M[K,A], M[K,B]〉 → M[K, 〈A,B〉]
zip : 〈M[A], M[B]〉 → M[〈A,B〉]
zip : 〈M[K], M[K,B]〉 → M[K,B]

++ : 〈M[K,A], M[K,A]〉 → M[K,A]

addition with replacement of matching keys

⊕ � monoid plus operators

⊕ : 〈M[K,A], M[K,A]〉 → M[K,A]

a⊕ b = (mapλ k〈x y〉 . x� y)(a zip b)

Figure 5. Builtin data structures and operators

Figure 5 shows the built-in data structures along with
signatures for the functions and operations operating over
them. These constructs are mostly well-known, and we
will describe them as needed throughout the paper. The
translation from Array SSA relies on left-fold, a higher-
order function that takes an initial element (a zero) of type
B and a combining operation B → A → B, and returns
a function which reduces the elements of a collection of A
elements into a value of type B by applying the operation
from left to right.

MOLD transforms Array SSA form to the functional IR by
applying the rules in Figure 6. The instructions in the CFG
are visited in topological order. SCCs are considered nodes
in the order, and are visited in turn in topological order. We
use the ≺ operator in Figure 6 to reflect this ordering: s ≺ R
matches a statement s followed by remaining statements R
in the topological ordering.

We first discuss the non-loop rules, which are mostly
straightforward. SSA assignments x = E are transformed to
lets. Any branch instruction is skipped, left to be handled
when reaching its associated φ. The return instruction is
replaced with the returned variable, which eventually sits at
the innermost level of the let nest.

An if statement in the original code corresponds a branch-
ing statement followed by a set of φ instructions in SSA form.

MOLD transforms each of the φ instructions corresponding to
an if into a functional if with the condition coming from the
branching instruction, and the branches being the arguments
of the φ instruction. As the instructions are visited in a topo-
logical order, the variables holding the result for each of the
two branches are already available in scope. Computing the
results for the if before the instruction is not an issue from a
semantic perspective because in our representation we have
no side effects and no recursion (except for structured fold
recursion). Also, performance is not hurt as the two branches
are inlined by the rewrite system in a latter step.

The more complex rule translates loops to applications of
the fold operator. In Figure 6, a loop is specified in terms
of its φ variables, which include the index variable i and
other variables r1, r2, . . . updated in the loop body. These
variables characterize all possible effects of the loop visible
to subsequent code. For each φ variable rk, we use r′k to refer
to the value coming from outside the loop, and r′′k for the
new value produced by the loop. The loop gets translated
to a fold over the domain of values for the index variable,
from i′ to l, the loop bound, in Figure 6. The combining
function takes as arguments the current rk values and loop
index, runs the body of the loop E once for those values, and
returns the new rk values. The initial value for the fold is
a tuple of the r′k values coming from outside the loop. Any
loop with a loop-invariant domain (i.e., the domain does not
depend on the loop’s φ functions) can be translated to a fold.
Our current implementation only handles indexed collection
iteration with a range of numbers with stride 1.

All other SSA instructions (function calls, operations,
etc.) are transformed to lambda calculus in the intuitive
straightforward manner. Function calls are not inlined.

4. Translation system
Exploration and refinement. The transformation described
in the previous section generates a lambda calculus repre-
sentation of the original program but it is still far from
MapReduce form. The loops in the original program are now
sequential folds that do not expose any parallelism. In order
to get to MapReduce form, MOLD explores the space of
semantically equivalent programs obtained by applying a set
of program transformation rules.

MOLD distinguishes between refinement and exploration
rewrite rules. Refinement rules make definite improvements
to the input term, e.g., eliminating a redundant operation
such as fold r λ〈r, 〈k, v〉〉 . r[k := v]. Exploration rules may
either improve the original code or bring it to a form that
allows other rules to apply, e.g., loop fission is not necessarily
an optimization but may allow another rule to eliminate part
of the original loop.

Exploration rules are treated as transitions between states,
i.e., applying a transition rule generates a new state in the
system. Refinement rules do not generate new states but
are applied exhaustively to the output of an exploration



L(x = E ≺ R)→ letx = L(E) inL(R)

L(a[x := y])→ a[x := y]

L(return x)→ x

L(branch instruction ≺ R)→ L(R) (handled when reaching its φ)

L


for i = φ(i′, i′′),

r1 = φ(r′1, r
′′
1 ), . . . , rn = φ(r′n, r

′′
n)

i < l
{ E } ≺ R

→ L
 let f = λ r1 r2 . . . i .L(E ≺ 〈r′′1 , . . . , r′′n〉) in

let r = fold〈r′1, . . . , r′n〉 f Range(i′, l) in
let r1, . . . , rn = r inL(R)



L

 x = φ(x0, x1)
generated by the if
with branch condition C

≺ R

→ letx = if C thenx0 elsex1 inL(R)

L(. . . )→ . . .

Figure 6. Array SSA to Lambda Calculus with fold. L is the translation function, and ≺ reflects a topological ordering of
statements in the CFG.

rule. One transition in our rewrite system is comprised
of one application of an exploration rule followed by a
complete reduction using the set of refinement rules. The
set of refinement rules can be seen as a separate confluent
rewrite system.

The set of transformation rules is not complete, i.e., they
do not generate all possible semantically equivalent programs.
The rules are intended to be sound, i.e., they are intended to
preserve the semantics of the original program, but we have
not formally proven this. More formal characterizations of
soundness and completeness are planned for future work.

Optimized exploration. MOLD’s rewrite system imple-
ments optimization mechanisms which can be applied ac-
cording to a number of policies, guided by estimates of code
quality. The system is not confluent nor terminating – so, the
rewrite engine explores the space of possible rewrites guided
by a heuristic driven by a cost function. The optimization
problem reduces to searching through this system for a good
solution. The number of states is kept in check by having a
single state represent all alpha-equivalent programs that have
the same beta-reduced form.

MOLD searches through the state space guided by a cost
approximation function over program variants. The cost
function approximates the runtime performance of the code
on a particular platform. Thus, MOLD allows optimization for
different platforms by adopting appropriate cost functions.

Figure 7 shows the cost estimation function for generat-
ing MapReduce programs. The estimated cost is computed
recursively over a given term. The cost of function compo-
sition/application and tuples is the sum of the cost of their
subexpressions. The cost for collection accesses has an extra
weight (Ccollection

get and Ccollection
set ) to encourage access lo-

calization. map and fold operators have an initial cost meant
to model the start of a distributed operation (Cmap

init, C
fold
init ,

C(F ◦G) = C(F ) + C(G)

C(F (G)) = C(F ) + C(G)

C(〈F,G, ...〉) = C(F ) + C(G) + ...

C(A[I]) = Ccollection
get + C(A) + C(I)

C(A[K :=V ]) = Ccollection
set + C(A) + C(K) + C(V )

C(mapF ) = Cmap
init + Cmap

op ∗ C(F )

C(fold I F ) = C(I) + Cfold
init + Cfold

op ∗ C(F )

C(groupByF ) = CgroupBy
init + CgroupBy

op ∗ C(F )

Figure 7. Cost estimation function

and CgroupBy
init ), and have their operation cost multiplied by a

constant (Cmap
op , Cfold

op , and CgroupBy
op ) representing an approxi-

mation for the size of the array. Binary operations are curried,
and their function has a constant cost. All other functions
have a predefined, constant, cost.

A unique set of constants is used for generating all pro-
grams in our evaluation, i.e., the constants are not program-
specific. We determined good values by manually running
experiments and refining the constants. This process could
be automated to find a more precise and possibly platform-
specific set of constants. Furthermore, our rough cost esti-
mation function could be made more precise by applying
techniques such as those proposed by Klonatos et al.[16],
but the current approach has proved sufficient for optimizing
most programs in our evaluation suite.

5. Optimization rules
In this section we present the main rules of MOLD’s rewrite
system. We show the rules in a simplified form. The actual



E letters in uppercase are pattern variables

x letters in lowercase are program variables

or patterns matching program variables

E1 ⊂ E2 E1 is a subexpression of E2

free(E) is the set of free variables in E

x ∈ E is shorthand for x ∈ free(E)

E[E1/E0] substitute E1 for E0 in E

K is only used for denoting pattern matches

on the parameters binding to the keys of

the operator domain

Figure 8. Legend for following figures

rules have additional complexity for updating types, for
handing idiosyncrasies of our source and target languages, for
piggy-backing arity information useful for code generation,
and for optimizing the exploration. Furthermore, the actual
rule set has additional variants and guards for correctly
handling non-pure functions like random.

Figure 8 summarizes the notation and functions we use in
the following figures.

5.1 Extract map from fold

The transformation for revealing parallelism which is most
commonly applied is the “extract map from fold” rule
in Figure 9. It transforms a fold by identifying indepen-
dent computations in its combining function f , i.e., op-
erations that do not depend on results from other f invo-
cations during the fold. These independent computations
are extracted into a (parallelizable) map operation. For
example, fold 0λ r k v . r + (f k v) is transformed to
(fold 0λ rk vf . r + vf ) ◦ (mapλ k v . f k v), as (f k v)
is independent (we shall explain map shortly). After the
transformation, the purely-functional map can be easily par-
allelized, while the fold with the commutative + operation
can also be executed very efficiently.

The signatures for our data structures and mapping oper-
ators relevant to this transformation are shown in Figure 5.
Data structures are either a bag of values of type A, or in-
dexed collections (e.g., arrays or maps) with key type K and
value type V . We often view an indexed collection as a list of
key-value pairs. The first map version takes a collection of el-
ements of typeA into a collection of elements of typeB, as is
standard. The second map version is similar but only applies
to indexed collections; it generates a new indexed collection
with the same keys as the original and the mapped values. We
assume that a mapping function A→ B is implicitly lifted
to 〈K,A〉 → B if necessary.

The “extract map from fold” rule, shown in Figure 9,
matches on any fold taking 〈r00, . . . , r0n〉 as the initial

value and a function combining each tuple of keys K
and values V of a collection to a tuple 〈r0, . . . , rn〉. The
fold operation E is split into the composition of functions
(λ〈vf0 , . . . , vfm〉 . F ) ◦ G, such that G is the most expensive
computation (according to the cost function C; see Section 4)
that is independent of other “iterations” of the fold’s execu-
tion. If we see the fold as a loop, G does not have any loop
carried-dependencies.

How do we reason that G is independent? For a functional
fold operation, a dependence on other fold “iterations” must
be manifest as an access of an accumulator parameter ri, i.e.,
a parameter holding the “result thus far” of the fold. Hence,
if G makes no reference to any parameter ri, it is trivially
independent. Unfortunately, this simple level of reasoning is
insufficient for providing independence for important cases
like the following:

fold r0 λ r k . r[k := f(r[k])]

This fold updates each entry in a collection to a function of
its previous value. We would like to extract the computation
f(r[k]) into a parallel map operation, but it accesses accumu-
lator parameter r and hence is not trivially independent.

To handle cases like the above, we use this more sophisti-
cated independence check for G:

@i ∈ [0..n] .ri ∈ G ∧ ri ∈ E[r0_/r_]

As shown in Figure 9, the E[r0_/r_] expression substitutes
an access to the initial collection r0i [k] for ri[k] in E, for
all possible ri and k. (We shall discuss the reason for this
particular substitution shortly.) So, in essence, the formula
ensures that for any ri ∈ G, all appearances of ri in the
enclosing expression E are of the form ri[k], i.e., they are
accesses to a current key k. (Any non-conforming access
like ri[k + 1] will not be removed by the r0_/r_ substitution.)
Checking that all collection accesses in E use a current key
ensures that G remains independent in spite of its access of
the accumulator collection.

If a non-trivial (i.e., contains computation with a non-
zero cost) G is found, it is pulled out into a map which
is then composed with a fold executing F , the remaining
computation in E. The signature of the fold’s operation is
adjusted to account for the change: vf0 , . . . , v

f
m, the variables

linking G to F , are now parameters, and any previous
parameters (V ) which are still needed by F are propagated
(i.e., V∩ free(F )). As the extracted G no longer has access to
the ri parameters, we place G[r0_/r_] in the map instead, so
its accesses are performed on the initial collection r0.

The rule does not specify how E is decomposed. E is in
many cases a tuple of expressions. Our current implementa-
tion selects the subexpression with the largest cost for each
expression in the tuple E. It uses a recursive function com-
puting the largest subexpression considering name binding
constraints and the cost function.



(extract map from fold)

fold〈r00, . . . , r0n〉λ〈r0, . . . , rn〉K V .E

(fold〈r00, . . . , r0n〉λ〈r0, . . . , rn〉K 〈v
f
0 , . . . , v

f
m〉V∩ free(F ) . F )

◦ (mapλK V .〈G[r0_/r_], V∩ free(F )〉)

E = (λ〈vf0 , . . . , vfm〉 . F ) ◦G
F is arg max C(G) with the condition:

@i ∈ [0..n] .ri ∈ G ∧ ri ∈ E[r0_/r_] where

r0_/r_ = r0i [k]/ri[k] applied for all i ∈ [1..n] k ∈ K

(fold to group by)

fold r0 λ r V . r[E :=B]

(mapλ k l .(fold r0[k]λ g V .C) l) ◦ (groupByλV .E)

C = B[g/r[E]]

r /∈ C ∧ r /∈ E ∧ ∃ v ∈ V.v ∈ E
we cannot prove E is distinct across the folding

Figure 9. Rules revealing parallelism in fold operators

The “extract map from fold” rule rewrites the example
above that updates all collection values to:

(fold r0 λ r〈k, v〉 . r[k := v]) ◦ (mapλ k . f(r0[k]))

The “extract map from fold” transformation is somewhat
analogous to parallelizing a loop with no loop-carried de-
pendencies in imperative code. A key difference is that here,
we leverage our functional IR to extract and parallelize sub-
computations of the fold without worrying about side ef-
fects; similar transformations for imperative loops would
likely require greater sophistication.

5.2 fold to groupBy

While the “extract map from fold” rule exposes significant
parallelism, it cannot handle cases where distinct loop iter-
ations can update the same array / map location. MapRe-
duce applications like wordcount from Section 2 often work
around such issues by using a shuffle operation to group in-
puts by some key and then process each group in parallel.
Here we present a “fold to groupBy” rule that enables our
system to automatically introduce such shuffle operations
where appropriate, dramatically increasing parallelism for
cases like wordcount. We are unaware of any similar auto-
matic transformation in previous work.

The transformation we used for grouping by word is an
application of the “fold to groupBy” rule shown in Figure 9.
As shown in Figure 5, groupBy clusters the elements of a
collection of type M[A] according to the result of the function
A → K. It returns a map from keys K to lists M[A] of
elements in the original collection that map to a specific
key. The rule matches any fold with a body which is an
update of a collection at an index E that we cannot prove as
distinct for each execution of the fold’s body. (If the index
is obviously distinct, MOLD applies the “extract map from
fold” rule instead; see Section 5.1.)

The output code first groups the elements of the collection
by the index expression (groupByλV .E), and then it folds

each of the groups using the update expression B from
original body of the loop. groupBy’s output is a Map from
each distinct value of E to the corresponding subset of the
input collection. The map operation’s parameters are k, which
binds to the keys of the grouped collection (i.e., evaluations
of E), and l which contains a subset of the input collection.
The fold starts from the k value of r0, and folds l using the
operation C, which is original expression B with accesses
to index E of the old reducer replaced with with g, the new
parameter corresponding only to the k-index of r.

The side condition requires that r does not appear in either
the new expression C or the index expression E. Otherwise,
the result of the of computation could depend on fold’s
evaluation order, so the transformation would not be correct.
To avoid grouping by an invariant expression, resulting in
a single group, the side condition also requires that E is
dependent on some parameter in V .

Revisiting the original example, the expression below is
the program before applying the rule (with a beta reduction
applied to highlight to make the match clear):

foldm λm w .m[w :=m[w] + 1]

The outer m matches r0, the inner m matches r, w
matches E, and m[w] + 1 matches B. The side conditions
are satisfied, so the expression is rewritten to:

map(λ k l . foldm[k](λ g w . g + 1) l) ◦ (groupByλw .w)

5.3 Localizing accesses
MapReduce platforms often require computations to be local,
i.e., to be free of accesses of global data structures. Our
system contains rules to localize computations that do not
meet this condition. Consider the following computation,
based on an intermediate transformation of the wordcount
example:

(mapλ k v .m[k] + size v) grouped



(localize-map-accesses)

mapλKV .E
λa .((mapλK V v .E[v/c[i]])

◦(zip a c))

c ∈ {c ⊂ E |
(∃!i ∈ K.c[i] ⊂ E)∧
(free(c) \ free(E) = ∅) ∧
(@v ∈ K ∪ V . v ∈ c)}

(localize-group-by-accesses)

groupBy(λ k .E) D

groupBy(λ kv .E[v/c[k]])c

D is the domain (set of

keys) of the c Map

Figure 10. Rules for localizing accesses

Here grouped maps each word to a list of occurrences, and
the map is summing the size of each list with existing counts
in some map m. This code cannot be executed in MapReduce
because it accesses the collection m, unless it is localized.

Localization is achieved by explicitly passing global data
as a parameter to the relevant operations, using the built-in
zip operation from Figure 5. zip is overloaded to allow
various input collection types. Its first version takes two maps
with the same key type into a map from keys to pairs of values.
If one of the maps is missing a value for a certain key, the zero
value for the map’s value type is used instead. For example:
zip(M(1→ 8),M(2→ 9)) = M(1→ 〈8, 0〉, 2→ 〈0, 9〉).
zip’s second version takes a bag S and a map M and returns
a map that retains only the entries from M with keys from S,
e.g., zip(S(3),M(3→ 8, 1→ 9, 2→ 7)) = M(3→ 8).

Using the zip operation, the map from the example above
can be transformed to:

map (λ k v vm . vm + size v) zip(grouped ,m)

The “localize map accesses” rule in Figure 10 achieves this
transformation. In this form, the map’s operation only refers
to data provided through its parameters, making it amenable
to MapReduce execution. The “localize groupBy accesses”
(Figure 10) and “localize fold accesses” (not shown) achieve
the same purpose for their respective operators.

5.4 Loop optimizations and code motion
Our rewrite system has many rules that are inspired from
classic loop optimizations and code motion that permits the
application of more rules during rewriting. These are detailed
in Appendix B.

5.5 Monoid-based transformations
Various transformation rules rely on viewing the map data
structure as a monoid, i.e., a set with an associative binary
operator and an identity element. Its identity is an empty map,
while its “plus” operation (denoted by ⊕) is based on the
“plus” of its value type parameters.

(eliminate null check)

if a[k] == null then 0

else a[k]

a[k]

a is a monoid with 0

as identity

(identify map monoid plus)

map(λ i x y . x⊕ y)

(zipA B)

A�B

A and B are M[T ] monoids

⊕ is the plus for T

� is the plus for M[T ]

(swap map and fold)

(fold r0 ⊕) ◦ (map f)

λ c .(r0 ⊕ f(fold 0� �) c))

map over monoid �, 0�

∀ab.f(a� b) = f(a)⊕ f(b)

(flatMap)

(fold r0 ⊕) ◦ (map f)

r0 ⊕ flatMap f
fold over the monoid ⊕, 0⊕

Figure 11. Monoid-based rules

The sum of two maps, i.e., a⊕ b, is another map with the
same keys and the values the sum of their values. If a value is
missing in either map, it is replaced by the value type’s zero.
At the bottom of Figure 5 we give a possible implementation
for the ⊕ based on zip.

Identifying computation that can be seen as operating over
monoid structures allows further optimizations, since we can
exploit associativity to expose more parallelism. Figure 11
shows our set of monoid-based transformation rules. The
first two rules are “enabling” rules that make code more
amenable to other optimizations, while the final rule is itself
an optimization.

To illustrate the “eliminate null check” rule in Figure 11,
let us revisit an intermediate expression from the motivating
example:

let prev = m[w] in

m[w :=(if prev == null then 0 else prev) + 1]

Here, the conditional block can be eliminated by considering
m a monoid with 0 as the identity element. Applying the rule
yields:

let prev = m[w] in m[w := prev + 1]

This transformation enables other optimizations by giving the
code a more uniform structure.

In Section 2 we showed how the the inner loop of the
wordcount code of Figure 2 is transformed to a MapReduce
form. We now explain the last two rules of Figure 11 by
showing how they are used to optimize the full loop nest. The
inner loop of Figure 2 iterates over each line in the input.



After beta reduction, and without assuming m is initially
empty as we did in Section 2, its optimized form is:

(mapλ k v .m[k] + size v) ◦ (groupBy id)

Placing this code in the context of the IR for the outer loop
yields (after applying some non-monoid rules):

foldmλm 〈i, doc〉 .
let do_count = (mapλ k v . size v) ◦ (groupBy id) in

m ++ ((mapλ k〈v1, v2〉 . v1 + v2)

(zip m (do_count (split doc))))

We can simplify this program using the “identify map
monoid plus” rule in Figure 11. The m map and the value
of (do_count (split doc)) are both maps from strings to
numbers. Integer numbers are monoids with arithmetic ad-
dition as plus, so our maps can be seen as monoids with
the ⊕ operator defined in Figure 5. Zipping two monoids
and adding up their corresponding values, as done above, is
simply an implementation of the ⊕ operator. Thus, applying
the rule rewrites the code to:

foldmλm 〈i, doc〉 .
let do_count = (mapλ k v . size v) ◦ (groupBy id) in

m⊕ (do_count (split doc))

do_count (split doc) does not depend on the m param-
eter, so can be extracted to a map using the “extract map
from fold rule (see Section 5.1). Furthermore, the resulting
map is split into a composition of maps through fission. The
computation reaches this form:

let foldDocCount = foldmλm 〈i, docCount〉 .
m⊕ docCount in

foldDocCount ◦
(mapλ i groups .(mapλ k v . size v) groups) ◦
(mapλ i split . groupBy id split) ◦
(mapλ i doc . split doc)

While the above computation reveals significant paral-
lelism, the final fold, which merges the word count map for
each document, is inefficient: it repeats the work of grouping
results by word and summing counts. Notice that instead of
doing all the operations for each doc and merging the results
at the end, the program could start by merging all the docs and
then computing word counts on the result. The “swap map
with fold” shown in Figure 11 achieves this transformation.

“swap map with fold” rewrites a composition of a fold
over a monoid of M[B] using the monoid’s plus (⊕) with a
map using function f : A → B into an application of f
to the result of folding over maps input using monoid A’s
plus (�). The original value r0 is also ⊕-added. Notice that
the transformation eliminates the map operation, replacing

it with a single application of f . Depending on the cost of
f , this may result in significant speedups. The operation is
correct as long as f distributes over the monoid pluses, i.e.,
∀ a b . f(a� b) = f(a)⊕ f(b).

All three map functions in the above programs have dis-
tributive operations. Guided by our cost function, MOLD
applies the “swap map with fold” rule two times and does
two reductions of operations with identity. After some re-
structuring for readability, we reach the following program:

let foldBagPlus = fold 0Bag λ allWords 〈i,words〉 .
allWords �Bag words in

letmapToSize = mapλ k v . size v

in λ input .m⊕ (mapToSize ◦ (groupBy id) ◦
foldBagPlus ◦ (mapλ i doc . split doc)) input

foldBagP lus is the counterpart of foldDocCount from
the previous code version but, instead of merging count maps,
it now merges Bags of words. A map followed by a folding
of the Bag is equivalent to a Scala flatMap operation, as
expressed by the “flatMap” rule in Fig. 11. Applying the rule
bring the above program to:

letmapToSize = mapλ k v . size v

in λ input .m⊕ (mapToSize ◦ (groupBy id) ◦
(flatMapλ i doc . split doc)) input

The groupBy generates a Map from words to Bags of
words, which can be expensive in terms of I/O. As we are only
interested in the size of the Bag, the program is transformed
(by the “reduce by key” rule in 14 from Appendix B) to:

letmapToSize = mapλ k v . size v

in λ input .m⊕ (reduceByKey +) ◦
(mapλ i word .(word, 1)) ◦
(flatMapλ i doc . split doc)) input

The Bag of words is mapped to a Bag of (word, 1) pairs.
reduceByKey groups the “1” values by key (i.e., word) and
reduces each group using + operation, which is equivalent to
the previous counting but does not generate a Bag of identical
words for each key(i.e., word).

6. Implementation
We present some details regarding MOLD’s implementation
by following through the transformation phases in Figure
1. The translation from Java to Array SSA is an extension
of the SSA implementation in WALA [5] to handle arrays
and collections. The translation from Array SSA to the
Lambda IR is implemented in Scala. For the rewrite system
we extended Kiama [27], a strategy-based term rewriting
library for Scala. We added support for state exploration,
name-bindings aware operations (e.g., “subexpression of”),



and cost-guided exploration modulo αβ-conversion. MOLD
renames variables where necessary to solve name conflicts,
and flattens let expressions to improve performance by the
following rule:

letx = (let y = Ey inEx) in ...
let y = Ey in (letx = Ex in ...)

The flattened let constructs translate to cleaner Scala code
with less block nesting. MOLD generates Scala code from the
lambda calculus IR by syntactic pretty-printing rules like (S
is a function translating to Scala):

S(λV . F )→ {S(V )=>S(F )}

The let expressions are transformed to value declarations:

letX = Y inZ → val S(X) = S(Y ) ; S(Z)

The Scala code is emitted using Kiama’s pretty printing li-
brary [29] and Ramsey’s algorithm [23] for minimal paren-
thesization.

The built-in data structures (Fig. 5) roughly follow Scala
collection library’s conventions. Code generated by our tool
can be executed as traditional Scala code by simple implicit
conversions [22]. The same code can be executed either
sequentially or using the Scala parallel collections [4]. In a
similar manner, we also provide a backend based on the Spark
MapReduce framework [31]. This allows programs generated
by MOLD to be executed on Hadoop YARN clusters [30].

7. Evaluation
We now present and experimental evaluation designed to
answer the following research questions:

1. Can MOLD generate effective MapReduce code? We
define effective code as satisfying three conditions: 1) it
should not do redundant computation, 2) it should reveal
a high level of parallelism, and 3) accesses to large data
structures should be localized, to enable execution on a
distributed memory MapReduce platform.

2. Is MOLD efficient? We measure how long it takes for
MOLD to find an effective solution.

3. Is the proposed approach general? We show that the
core rewrite rules are general and match many code
scenarios. Also, we discuss how our cost optimization
approach can generate effective solutions for different
execution platforms.

To answer these questions, we study the results of using
MOLD to translate several sequential implementations of the
Phoenix benchmarks [24], a well-established MapReduce
benchmark suite which provides both MapReduce and corre-
sponding sequential implementations. The benchmark suite
provides C implementations while our system expects Java
code as input. We do a manual, straightforward, syntactic,

translation of the C sequential implementations to Java. We
transform C struct to simple Java data classes, functions to
static methods, and arrays to Java arrays. Since Java does not
have native multi-dimensional arrays, we use a separate Java
class implementing two-dimensional array behavior. Also,
because MOLD takes a single Java method as input, we inline
methods that contain significant parts of the computation.

Furthermore, we manually implemented and tuned each
of the benchmarks in Scala to provide a baseline against
which we compare the performance of the MOLD-generated
code variants (see Section 6). We derived three hand-written
implementions: the first uses sequential Scala collections,
the second uses parallel Scala collections, and the third use
Spark [31]. We did not directly use third-party implementa-
tions since in some cases they do not exist, and in other cases
they introduce optimizations orthogonal to the translation
to MapReduce (e.g., they use the Breeze [3] linear algebra
library).

To gauge the quality of the code generated by MOLD we
pass each program through our tool, we execute the resulting
code and hand-written implementations, and we measure and
evaluate the results. For each program:

• we measure MOLD’s execution time and log the sequence
of applied rules to reach the optimal solution,

• we check that the transformations preserved the semantics
of the original program by executing both the original
program and the generated one on the same input data set
and asserting that the results are the same,

• we manually inspect the code to check whether the opera-
tors going over large input data sets have been parallelized,
and whether data accesses have been localized,

• we execute the generated code with the three backends
described at the end of Section 6, and then we execute the
hand-written implementations on the same data sets.

When comparing with hand-written implementations, we
execute each version of a benchmark on the same dataset five
times within the same JVM instance. We report the average
of the measurements after dropping the highest and lowest
time values. We run the experiments on a quad-core Intel
Core i7 at 2.6 GHz (3720QM) with 16 GB of RAM. MOLD’s
rewrite system state exploration is parallelized.

7.1 Can MOLD generate effective MapReduce code?
We discuss how MOLD generates MapReduce code for each
of the subject programs, and how the generated code com-
pares to hand-written implementations. Table 1 shows the
number of loops and loop nests in the original programs, and
gives the translation time and a summary of the transforma-
tions applied in order to reach the optimal version.

WordCount Figure 2 shows the original sequential code,
with the outer loop iterating over documents, and the inner
loop iterating over each word in each document and updating



# loop Translation Optimization
Algorithm nests # loops time (s) fold

fold ◦ map
fold

groupBy Localization & Enabling Monoid Total

WordCount 1 1 11 1 1 3 7 3 15
Histogram 1 1 233 0 3 1 11 3 18
Linear Regression 1 1 28 1 0 1 0 0 2
String Match 1 1 68 1 0 1 0 0 2
Matrix Product 1 3 40 4 0 2 14 0 20
PCA 2 5 66 10 0 1 4 0 15
KMeans 2 6 340 5 0 1 4 0 10

Table 1. Evaluation programs and applied transformations

a shared map (counts). One of the solutions found by MOLD
is a map over all documents followed by a fold. The map
contains a groupBy operation which computes a word count
for each document (facilitated by the “fold to groupBy”
rule). The fold merges the word counts across documents.
While this is a good solution, merging word count maps may
be expensive. Using the “swap map with fold” rule, MOLD
moves the fold operation up the computation chain. In this
way it reaches a form similar to the traditional MapReduce
solution for the WordCount problem. The documents are
split into words, which are then shuffled (groupBy) and the
numbers of elements in each word bucket is counted.

The generated code exposes the maximal amount of
parallelism for this case, and all accesses are localized so
the code is distributable. Appendix A lists the transformation
steps taken by the tool to reach the solutions discussed above.

Histogram This benchmark poses a similar challenge to
WordCount. It computes the frequency with which each RGB
color component occurs within a large input data set. MOLD
generates a solution similar to WordCount. It first groups each
color component by its values, and then maps to the size of
the groups. Given a cost function which puts a higher weight
on groupBy operations, MOLD can also generate a solution
where the input data set is tiled and a map goes over each tile
to compute its histogram, and the resulting histograms are
merged by a final fold. This is similar to the approach taken
by the Phoenix MapReduce solution.

The generated code is parallel and accesses are localized.
The Phoenix implementation assumes the input is a single
array encoding the RGB channels. The “fold vertical fission”
rules split the computation by channel but cannot eliminate
the direct stride accesses to the input array. To localize the ac-
cesses, the tool assumes the MapReduce implementation has
a function selectEveryWithOffset(k,o) which takes ev-
ery kth element of the input starting with offset o.

Linear Regression and String Match These two bench-
marks are less challenging. MOLD brings them both to a
parallelized and localized form by an application of “extract
map from fold” followed by an application of “localize map
accesses”.

Matrix Product Matrix multiplication is a classic problem
with many possible parallel and distributed implementations.
The solution reached by MOLD under the cost function tar-
geting MapReduce is a nesting of three map operators. Con-
sidering the input arrays a and b, the outer map goes over
a’s rows, the middle map goes over b-transposed’s rows (i.e.,
goes over b’s columns), and the inner operation zips a’s row
with b’s column, then it maps with the multiplication opera-
tion, and finally it sums up the products. The generated code
allows fine grained parallelism and it has good localization
of accesses.

PCA and KMeans Generally, for these benchmark the gen-
erated code exposes good parallelism and access localization,
but the generated code is not optimal. In PCA, there are three
redundant maps and one redundant fold, out of a total of
twelve operators. They are leftover due to some limitations of
our code motion rules in handling complex tuple structures.
In both cases the transformation leaves some additional no-
op restructuring of the results at the end of the computation
pipeline. Considering that the transformation is source-to-
source, a programmer could identify and fix these issues,
while still benefiting from having most of the algorithm well
parallelized.

Backends For five of the benchmarks, the Scala generated
code type-checks. For the remaining two, we had to add types
where MOLD could not infer them due to type erasure in the
input Java bytecode. Using the backends described in the
Section 6, we were able to execute all benchmarks using
the Scala collections, and we were able to execute five of
the benchmarks on Spark. The remaining two benchmarks,
KMeans and PCA, were not executable on Spark due to
current limitations of the framework (it does not allow nested
distributed data structures).

Comparison with hand-written implementations Table 2
compares the execution time of the generated code and hand-
written implementations. Columns 2 and 3 show the execution
time of the generated code using sequential and parallel Scala
collections, respectively. Similarly, columns 4 and 5 show the
hand-written implementations using sequential and parallel
Scala collections, respectively. Columns 6 and 7 show the



Scala Spark

program generated hand-written generated hand-written

sequential parallel sequential parallel 1-thread 8-thread 1-thread 8-thread

WordCount 42.31 17.38 35.58 14.94 5.99 2.41 5.93 2.42
Histogram 9.65 7.17 9.98 6.60 8.84 2.42 8.65 2.59
LinearRegression 13.77 11.00 13.08 10.60 1.15 0.62 1.03 0.51
StringMatch 8.65 3.81 2.58 0.68 4.78 1.92 4.48 1.57
MatrixProduct 8.81 2.05 0.41 0.48 9.02 2.29 5.90 1.58
PCA 7.02 14.86 3.53 0.77 - - - -
KMeans 11.90 40.31 0.61 0.89 - - - -

Table 2. Execution results.

results of executing the generated code using Spark with
either 1 or 8 hardware threads. Columns 8 and 9 show the
corresponding results when executing the hand-written Spark
implementations.

The generated versions using parallel Scala collections
are between 23% and 80% faster than the generated sequen-
tial versions, with the exception of PCA and KMeans which
exhibit a slowdown when executed in parallel. The gener-
ated code for these two benchmarks was found to contain
significant redundant computation that severely impacts the
performance of the parallel code.

Comparing the executions of the generated and hand-
written versions that use parallel Scala collections, we found
the former is 4%-16% slower for WordCount, Histogram,
and LinearRegression, 4x-6x slower for StringMatch and
MatrixProduct, and at least one order of magnitude slower
for PCA and KMeans (for the reason explained earlier).

The 8-thread Spark-based versions of WordCount, Linear-
Regression, and StringMatch are faster than the Scala-based
ones. We believe Spark gains this advantage by caching inter-
mediate results and by using memory mapping for IO. The
generated Spark codes for WordCount and Histogram are
slightly faster (1% and 7% respectively) than the hand-written
Spark versions. The remaining benchmarks are 22%-45%
slower. As explained earlier, the generated code for KMeans
and PCA relies on nested distributed data structures, which
are not currently supported in Spark.

7.2 Is MOLD efficient?
Table 1 reports the MOLD execution time in column 4. For
all but one program, the tool reaches the solution in under 4
minutes, and in some cases, MOLD is fast enough that it could
run interactively, with the programmer getting the translated
code within tens of seconds. The outlier is KMeans, which
is a larger program compared to the others and has separated
nested loops and complex control structure.

7.3 Is the proposed approach general?
We say that a rewrite rule set is general if it can be used
to reach effective solutions for multiple programs, and each

good solution depends on the application of multiple rules.
Columns 5-9 of Table 1 show, for each program, the num-
ber of applications for each of the rule groups presented in
Section 5. The “extract map from fold” rule (column 5) is re-
quired in all but one of the programs. The “fold to groupBy”
rule (column 6) is used for WordCount and Histogram, the
two programs with indirect accesses. Upon inspection, we
found that the previous two rules parallelized the computa-
tionally expensive sections of the programs. Furthermore, the
access localization rules are useful in all cases (column 7).
With the exception of Linear Regression and String Match,
all other programs also require the application of classic loop
optimization and code motion transformations.

8. Related Work
Inspector-Executor. MOLD exposes parallelism using the
fold to groupBy rewrite that introduces shuffle operations
to move data to computation. This particularly benefits imper-
ative loops that update a global data structure with irregular
access patterns, as in wordcount.

This mechanism is akin to inspector-executor frameworks
where (1) at runtime, an inspector curates data access patterns
for a loop body and determines an ordering for retrieving data
values, and (2) an executor fetches the values from remote
memory locations in the specified order and executes the
loop body. This model is used for irregular reference patterns
over sparse data structures to improve spatial locality and
hide memory access latency. Initial inspector-executor trans-
formations were applied manually [8]. Numerous advances
have automated the process and introduced advanced data
reordering that combine static and runtime analysis (e.g., [28]
and [25]). In [28], the authors showed that sequences of loop
transformations (e.g., data reordering, iteration reordering,
tiling) can be legally composed at compile time to yield better
performance for indirect memory references.

MOLD differs from inspector-executor models in a number
of ways. By rewriting loops into a functional style with high-
level operators, we retain a level of abstraction that is not
available when loops are decomposed into explicit inspector
and executor loops. Further, MOLD operators may be mapped



to more general parallel execution frameworks that include
MapReduce, as we have shown in this paper.

MapReduce. MapReduce offers a programming model for
parallel computing that is convenient and scalable, for appli-
cations that fit the paradigm. It frees the programmer from
the burden of orchestrating communication in a distributed or
parallel system, leaving such details to the MapReduce frame-
work which may offer other benefits as well. For this reason,
it is often the target of compilation from annotated sequential
codes or domain-specific languages. In our work, we aimed
to apply a source-to-source transformation to MapReduce
directly from unmodified sequential (Java) code.

The prevalence of general purpose GPUs has catalyzed
the interest in source-to-source transformations from sequen-
tial codes to parallel orchestration languages (e.g., OpenMP,
OpenCL) or GPU languages (e.g., CUDA). In [21] for exam-
ple, a number of these approaches are evaluated and a new
skeleton-based compiler is described. A common theme in
these efforts is the reliance on a programmer to identify and
annotate their source code to aid the compiler in generating
a suitable and correct parallel implementation. In compari-
son, MOLD automatically discovers if a loop is suitable for
translation into a MapReduce style and applies term rewriting
rules to enumerate a number of candidate implementations.

In [19], the author describes a compiler analysis for
recognizing parallel reductions. This analysis relies on array
dataflow analysis [13] to summarize data that is reachable
and modified within a loop, and is applicable when memory
aliases can be disambiguated. An important differentiator in
our work is the use of groupBy which affords the ability to
resolve data aliases via MapReduce shuffle operations.

The MOLD internal representation is derived from a
program in array SSA form, extending previous observations
that a program in SSA form is essentially a functional
program [6, 15]. This functional representation is the basis
for the transformations described in the paper to rewrite
imperative loops into a MapReduce style. MOLD leverages
the power of functional programming [18] and its algebraic
properties [7, 20]. We use many of these properties in the
optimization rules described in Section 5.

Program synthesis and refactoring. An extensive body of
work concerns the use of program synthesis techniques to
generate efficient code. Particularly relevant to our work is
superoptimization, where program forms are enumerated and
checked against supplied test cases to find a desired code
sequence. This may be exhaustive as in the original superopti-
mizer, goal-oriented [14], or stochastic [26]. In many of these
applications, the context is a peephole optimizer that reorders
the instructions of a critical inner loop at ISA-level. This is
also the case for component based program synthesis [12].
In contrast, our work is a source-to-source transformation
that applies a much larger scale refactoring to loops from an
imperative code sequence to a functional MapReduce style.

There is also work on refactoring toward parallelism
or a more functional form. For example, [10] proposes a
refactoring tool to parallelize Java loops, and [11] presents an
automated refactoring of Java code to use the Java 8 collection
operators. Both approaches transform the original program
AST directly and are limited to specific access patterns.

9. Conclusion
We presented MOLD, a tool that automatically translates
sequential, imperative code into code suitable for parallel
MapReduce execution. MOLD first translates input code
into a functional intermediate representation, preserving loop
structures using fold operations. Then, MOLD searches the
space of equivalent programs for an effective MapReduce
implementation, based on a set of rewrite rules and a cost
function that can be tuned for particular architectures. In
contrast to previous work, MOLD can effectively handle
irregular array accesses by introducing groupBy operations,
which translate directly to MapReduce shuffle operations.
Our evaluation showed that MOLD generated the desired
MapReduce output for several real-world kernels, including
codes like wordcount that are beyond previous techniques.
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A. WordCount
for ( i n t i = 0 ; i < docs . l e n g t h ; i ++) {

S t r i n g [ ] s p l i t = docs [ i ] . s p l i t ( " " ) ;
for ( i n t j = 0 ; j < s p l i t . l e n g t h ; j ++) {

S t r i n g word = s p l i t [ j ] ;
I n t e g e r p r ev = m. g e t ( word ) ;
if ( p r ev == n u l l ) p r ev = 0 ;
m. p u t ( word , p r ev + 1 ) ;

}
}

⇓ Java to Lambda
Range ( 0 , docs . s i z e ) . f o l d (m) ( {

c a s e ( v34 , i ) =>
val s p l i t = docs ( i ) . s p l i t ( " " ) ;
val v10 = s p l i t . s i z e ;
Range ( 0 , v10 ) . f o l d ( v34 ) ( {

c a s e ( v33 , j ) =>
val v13 = v33 ( s p l i t ( j ) ) ;
val p rev = { if ( v13 != n u l l ) v13 else 0 } ;
v33 . u p d a t e d ( s p l i t ( j ) , p r ev + 1)

} )
} )

⇓ S:eliminate-null-check
Range ( 0 , docs . s i z e ) . f o l d (m) ( {

c a s e ( v34 , i ) =>
val v6 = docs ( i ) . s p l i t ( " " ) ;
val v4 = Range ( 0 , v6 . s i z e ) . groupBy ( {

c a s e ( j ) => v6 ( j )
} ) ;

val v5 = v4 . map ( {
c a s e ( v2 , v3 ) =>

v3 . f o l d ( v34 ( v2 ) ) ( {
c a s e ( v1 , j ) => v1 + 1

} )
} ) ;

v34 ++ v5
} )

⇓ S:reduce-monoid-identity-op
Range ( 0 , docs . s i z e ) . f o l d (m) ( {

c a s e ( v34 , i ) =>
val v6 = docs ( i ) . s p l i t ( " " ) ;
val v4 = Range ( 0 , v6 . s i z e ) . groupBy ( {

c a s e ( j ) => v6 ( j )
} ) ;

val v5 = v4 . map ( {
c a s e ( v2 , v3 ) =>

v34 ( v2 ) + v3 . s i z e
} ) ;

v34 ++ v5
} )

⇓ E:localize-group-by-accesses
Range ( 0 , docs . s i z e ) . f o l d (m) ( {

c a s e ( v34 , i ) =>
val v4 = docs ( i ) . s p l i t ( " " ) . groupBy ( ID ) . __2 ;
val v5 = v4 . map ( {

c a s e ( v2 , v3 ) =>
v34 ( v2 ) + v3 . s i z e

} ) ;
v34 ++ v5

} )

⇓ E:localize-map-accesses
Range ( 0 , docs . s i z e ) . f o l d (m) ( {

c a s e ( v34 , i ) =>
val v4 = docs ( i ) . s p l i t ( " " ) . groupBy ( ID ) . __2 ;
val v5 = v4 . z i p ( v34 ) . map ( {

c a s e ( v2 , ( v3 , v7 ) ) =>
v7 + v3 . s i z e

} ) ;
v34 ++ v5

} )
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⇓ E:localize-fold-accsses
docs . f o l d (m) ( {

c a s e ( v34 , ( i , v8 ) ) =>
val v4 = v8 . s p l i t ( " " ) . groupBy ( ID ) . __2 ;
val v5 = v4 . z i p ( v34 ) . map ( {

c a s e ( v2 , ( v3 , v7 ) ) =>
v7 + v3 . s i z e

} ) ;
v34 ++ v5

} )

⇓ E:map-vertical-fission
docs . f o l d (m) ( {

c a s e ( v34 , ( i , v8 ) ) =>
val v4 = v8 . s p l i t ( " " ) . groupBy ( ID ) . __2 ;
val v5 = v4 . map ( {

c a s e ( v2 , v3 ) => v3 . s i z e
} ) . z i p ( v34 ) . map ( {

c a s e ( v2 , ( v9 , v7 ) ) => v7 + v9
} ) ;

v34 ++ v5
} )

⇓ E:identify-map-monoid-plus
docs . f o l d (m) ( {

c a s e ( v34 , ( i , v8 ) ) =>
( v8 . s p l i t ( " " ) . groupBy ( ID ) . __2 ) . map ( {

c a s e ( v2 , v3 ) => v3 . s i z e
} ) | + | v34

} )

⇓ E:pull-map-from-fold-by-subexpression-extract
docs . map ( {

c a s e ( i , v8 ) =>
( v8 . s p l i t ( " " ) . groupBy ( ID ) . __2 ) . map ( {

c a s e ( v2 , v3 ) => v3 . s i z e
} )

} ) . f o l d (m) ( {
c a s e ( v34 , ( i , v10 ) ) =>

v10 | + | v34
} )

⇓ E:map-horizontal-fission
docs . map ( {

c a s e ( i , v8 ) =>
v8 . s p l i t ( " " ) . groupBy ( ID ) . __2

} ) . map ( {
c a s e ( i , v11 ) =>

v11 . map ( {
c a s e ( v2 , v3 ) => v3 . s i z e

} )
} ) . f o l d (m) ( {

c a s e ( v34 , ( i , v10 ) ) =>
v10 | + | v34

} )

⇓ E:swap-map-with-fold
val v11 = docs . map ( {

c a s e ( i , v8 ) =>
v8 . s p l i t ( " " ) . groupBy ( ID ) . __2

} ) . f o l d ( "ZERO−TOKEN" ) ( {
c a s e ( v12 , ( i , v13 ) ) =>

v12 | + | v13
} ) ;

v11 . map ( {
c a s e ( v2 , v3 ) => v3 . s i z e

} )

⇓ E:map-horizontal-fission
val v11 = docs . map ( {

c a s e ( i , v8 ) =>
v8 . s p l i t ( " " ) . groupBy ( ID )

} ) . map ( {
c a s e ( i , v14 ) => v14 . __2

} ) . f o l d ( "ZERO−TOKEN" ) ( {

c a s e ( v12 , ( i , v13 ) ) =>
v12 | + | v13

} ) ;
v11 . map ( {

c a s e ( v2 , v3 ) =>
v3 . s i z e

} )

⇓ E:map-horizontal-fission
val v11 = docs . map ( {

c a s e ( i , v8 ) =>
v8 . s p l i t ( " " )

} ) . map ( {
c a s e ( i , v15 ) =>

v15 . groupBy ( ID )
} ) . map ( {

c a s e ( i , v14 ) => v14 . __2
} ) . f o l d ( Map ( ) ) ( {

c a s e ( v12 , ( i , v13 ) ) =>
v12 | + | v13

} ) ;
v11 . map ( {

c a s e ( v2 , v3 ) =>
v3 . s i z e

} )

⇓ E:swap-map-with-fold
val v14 = docs . map ( {

c a s e ( i , v8 ) =>
v8 . s p l i t ( " " )

} ) . map ( {
c a s e ( i , v15 ) =>

v15 . groupBy ( ID )
} ) . f o l d ( Map ( ) ) ( {

c a s e ( v16 , ( i , v17 ) ) =>
v16 | + | v17

} ) ;
( v14 . __2 ) . map ( {

c a s e ( v2 , v3 ) =>
v3 . s i z e

} )

⇓ E:swap-map-with-fold
val v15 = docs . map ( {

c a s e ( i , v8 ) =>
v8 . s p l i t ( " " )

} ) . f o l d ( Map ( ) ) ( {
c a s e ( v18 , ( i , v19 ) ) =>

v18 | + | v19
} ) ;

val v14 = v15 . groupBy ( ID ) ;
( v14 . __2 ) . map ( {

c a s e ( v2 , v3 ) =>
v3 . s i z e

} )

⇓ E:flatMap
val v15 = docs . f l a t M a p ( {

c a s e ( i , v8 ) =>
v8 . s p l i t ( " " )

} ) ;
val v14 = v15 . groupBy ( ID ) ;
( v14 . __2 ) . map ( {

c a s e ( v2 , v3 ) =>
v3 . s i z e

} )

⇓ E:reducebykey
docs . f l a t M a p ( {

c a s e ( i , v8 ) =>
v8 . s p l i t ( " " )

} ) . map ( {
c a s e ( j , v6 ) =>

( v6 , 1 )
} ) . reduceByKey ( {

c a s e ( v2 , v3 ) =>
v2 + v3

} )



B. Loop Optimizations and Code Motion

(map fusion)

(mapλ k2v2 . E2) ◦ (mapλ k1v1 . E1)

mapλ k1, v1 . E2[k1/k2][E1/v2]

(fold vertical fission)

fold〈r00, . . . , r0n〉λ〈〈r0, . . . , rn〉V 〉 .〈E0, . . . , En〉
λ c .〈(fold r00 λ r0 V .E0) c, . . . , (fold r0n λ rn V .En) c〉

applied ∀k ∈ 0 . . . n

∀k′ 6= k.rk′ /∈ Ek

(map vertical fission)

(mapλKV .E) ◦ (zipC0 . . . Cn)

(mapλKV [z/v] . E[z/F ]) ◦ (zipC0 . . . (mapλ k v . F Ck) . . . Cn)

F,G = arg max
E=F◦G∧cond

C(F )

cond : (∃!k.Ck ∈ F ) ∧ v ∈ V goes over Ck ∧
∀v′ ∈ V.v 6= v ⇒ v′ /∈ Ck

(map horizontal fission)

map λK V .B

(mapλK(free(F ) ∩ V )(free(G) \ free(B)) . F ) ◦ (mapλKV .G)

F,G = arg max
B=F◦G

C(F )

F is not trivial

Figure 12. Fusion-fission rules for merging and splitting map and fold operators. As loops in original imperative program
often update multiple variables, the initial Array SSA to Lambda phase generates fold operators reducing over tuples of those
variables. Even after map operators are revealed, the operators sometimes still involves large tuples. The vertical fission rules
in the figure split the operators operating over tuples into multiple operators going over parts of the original tuples. The fold
vertical fission rule rewrites a fold reducing to a tuple into tuple of fold operators reducing to the same tuple. The map vertical
fission achieves the same purpose for the input domain. The map horizontal fission is the counterpart of the traditional loop
fission, splitting a map with a F ◦G into (mapF ) ◦ (mapG). The map fusion rule is its inverse.

(transpose zipped)

(mapλK〈v0, . . . , vn〉 . E)(zipC0 . . . Cn)

(mapλK〈v0, . . . , v′k, . . . , vn〉 . E[v′k/vk[J ]])(zipC0 . . . (t(Ck))[J ] . . . Cn)

k ∈ 1 . . . n

∃J.vk[J ] ⊂ E
free(J) ⊂ free(ALL)

(lower-dimension-for-update)

fold r0 λ r k V . r[〈c, k〉 :=E]

fold(r0[c])λ r′ k V . r′[k :=E[r′[k]/r[〈c, k〉]]
c is loop invariant

all accesses to r in E are r[〈c, k〉]

fold r0 λ r k V . r[〈k, c〉 :=E]

fold(t(r0)[c])λ r′ k V . r′[k :=E[r′[k]/r[〈k, c〉]]
c is loop invariant

all accesses to r in E are r[〈k, c〉]

Figure 13. Code motion rules for arrays and collections with multiple dimensions.



(eliminate empty fold)

fold r0(λ rKV . r[K :=V ])d

r0 ++ d

(eliminate empty map)

map(λ rV . V )d

d

(fold→ size)
fold r0 λ r I . r + E

λx .E ∗ (sizex) + r0
∀i ∈ I.i /∈ E

(reduce by key)

(map λK V . sizeV ) ◦ (groupByλP .E)

(reduceByKey +) ◦ (mapλP .(E, 1))

(transpose of transpose)

(t ◦ t) a

a

(factor out store)

fold r′ λ r i . r[E :=B]

r′[E := fold r′[E]λ k .B[k/r[E]]]
i /∈ E ∧ r /∈ E

(apply store)

r[I :=E0][I :=E1]

r[I :=E1[E0/(r[I :=E0][I])]]

Figure 14. Simplifying and enabling transformations rules used by MOLD to enable the application of other rules as well as to
simplify computation. They also generate code which uses ++, an operation shown in Figure 5. ++ takes two maps with the same
type into a new map where the entries are the union of the maps, and any matching keys taking their value from the second map.
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