
Explaining Program Failures via
Postmortem Static Analysis

Manu Sridharan
UC Berkeley

Roman Manevich
Tel Aviv University

Stephen Adams, Manuvir Das, Zhe Yang
Center for Software Excellence

Microsoft Corporation

Motivation

•  Programs are shipped with bugs
•  Crash reports ease bug fixing

•  Automated, sent over network

•  Give type of failure and stack trace

•  But, problems remain
•  No execution trace provided

•  Reconstructing trace is time-consuming

An Example Crash
foo(rec *x, rec *z)

{

 q = z->f;

 *p = u;

 if (b)

 y = z;

 else

 y = x->f;

 *y = …;

} NULL pointer dereference

Which branch? Both?

Does dereference of z matter?
What does p point to?

Lots to keep track of!

Tool Support Needed

•  Input: crash report
•  Program point of failure

•  Type of failure, eg. NULL dereference

• Output: error traces
•  Paths to point of failure that cause error

Static slicing?
foo(rec *x, rec *z)

{

 q = z->f;

 *p = u;

 if (b)

 y = z;

 else

 y = x->f;

 *y = …;

} static slice

infeasible

x->f NULL at entry

more informative
error-specific
slice

Postmortem Symbolic Evaluation

•  Dataflow analysis to find traces
•  Track value backwards from error

•  Maintain flow information on each path

•  Use error type to filter traces

•  Borrow techniques from ESP [DLS02]
•  For scalability, precision, soundness

Tracking Flow: The Witness

u->f = NULL;
z = u;
y = z;
x = y->f;
*x = …;

{u->f}
{u->f,z->f}
{u->f,z->f,y->f}
{u->f,z->f,y->f,x}

{}

Expressions holding value

•  Expression from which value is copied
•  Specific to path

•  Single witness per point on path
•  Demand analysis

witness

Computing The Witness

u->f = NULL;
*p = u;
y = z;
x = y->f;
*x = …; <x>

<y->f>
<z->f>

<x>
<y->f>
<z->f>

<u->f>
done

<z->f>
<z->f>

<?>

p == &z p != &z

Witness Witness

•  Substitution like weakest preconditions
•  Query aliasing oracle for indirect updates
•  Still polynomial time

•  Bound number of witnesses
•  Switch to abstract location when too long

Using The Error Type

•  No double deref of NULL on path
•  x = NULL; *x = y; *x = z is infeasible

•  Just check if witness is dereferenced

•  In general, handle typestate errors
•  Automaton describes behavior

•  Crash at transition to error state

•  Do double derefs generalize?

Automaton Reversal
Closed

Opened

Error Open

Print
Open

Close

Print/Close

Closed

Opened

Error Open

Print
Open

Close

Print/Close

File I/O

print(f,”hi”);
close(f);

reverse

infeasible

?

Putting It All Together

•  ESP-style dataflow analysis [DLS02]
•  Interprocedural, path-sensitive
•  Engine maintains / presents traces
•  GOLF serves as aliasing oracle [DLFR01]

•  Stack trace used if available
•  Restricts traversal up call stack

•  Detect simple tests for NULL
•  Eg. if (p)
•  If p is witness on true branch, infeasible

Evaluation: Does It Scale?

•  Test SPEC95 derefs for NULL deref
•  2,000 – 140,000 lines of code

•  100 random derefs per benchmark

•  If no traces for a deref, proven safe

•  No stack traces
•  Configurations

•  Normal: full analysis

•  NoDD: no filtering using double derefs

Average Query Times

•  Most queries fast (usually more than 90%)
•  The rest are quite slow (minutes)

•  No useful analysis result, so timeout (15 seconds)

Aliasing

•  Imprecise analysis for heap pointers
•  False positives + increased analysis time

•  Traces with aliasing inscrutable
•  No explanation for alias

•  Thus far, useless to developers

•  Configuration “Unsound”
•  No checking for indirect updates

•  No abstraction for long witnesses

SPEC Number of Error Reports

•  Remaining false positives
•  Global flag

•  Use of abstract locs (eg. a[i])

Evaluation: Useful traces?

•  PREfix: static bug finding tool [BPS00]
•  Checked five real NULL deref errors
•  Five successes with “Unsound”

•  Found error-causing traces only

•  Query times under a second

•  Stack traces helpful

•  Four succeeded with “Normal”

Related Work

•  Slicing [Tip95]
•  Postmortem analysis [LA02]
•  Typestate analysis [SY86,SY93]
•  Fault localization
•  Remote program sampling [LAZJ03]
•  Forward analyses (Metal, ESP, model

checkers)

Conclusions

•  New analysis for diagnosing errors
•  Value traced back from error
•  Witnesses give useful flow information
•  False traces pruned using error type

•  Results are promising
•  Extensions

•  Integration with Watson
•  Evaluating other typestate errors
•  Presentation of aliases to developer

The End

